Multiagent Systems (BE4M36MAS)

Distributed Constraints Satisfaction

Karel Horák, José Hilario

Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague

> horakka5@fel.cvut.cz hilarjos@fel.cvut.cz

November 19, 2019

Find an assignment for variables that satisfy given constraints.

 $C_i \subseteq D_{i_1} \times \cdots \times D_{i_r}$ denotes a *r*-ary constraint over variables x_{i_1}, \ldots, x_{i_r} .

Constraint Satisfaction Problem (CSP)

Solution: *n*-tuple (d_1, \cdots, d_n) , such that:

•
$$d_i \in D_i$$
, for $1 \le i \le n$.

•
$$(d_{i_1}, \ldots, d_{i_r}) \in C_k$$
 for every constraint $C_k \subseteq D_{i_1} \times \cdots \times D_{i_r}$.

Synchronized backtracking

```
v_i \leftarrow \text{value from } D_i \text{ consistent with } (v_1, \dots, v_{i-1}) \text{ ;}

if No such v_i \text{ exists then}

\mid \text{ backtrack ;}

else if i = n then

\mid \text{ stop ;}

else

\mid \text{ ChooseValue}(x_{i+1}, (v_1, \dots, v_i)) \text{ ;}

end

Algorithm 1: ChooseValue(x_i, (v_1, \dots, v_{i-1}))
```

Distributed Constraint Satisfaction Problem (DCSP)

Every variable **must be** assigned to one of the agents. \rightarrow otherwise the DCSP problem is **not fully defined**.

Assumptions:

- Every agent controls a single variable.
- Agents communicate via messages.
- Constraints are binary.
- Messages are delivered in a finite time (but this time may vary randomly).
- Whenever an agent A sends messages to agent B, agent B receives them in the same order as A sent them.

Asynchronous Backtracking (ABT)

Initial knowledge of the agent:

- Total ordering (priorities) of agents.
- Constraints he is involved in.
- Domain of the variable that he controls.

Asynchronous Backtracking (ABT)

Data structures:

- Agent's current assignment.
- Set of outgoing links (i.e., agents who need to know my assignment).
- Set of incoming links (i.e., agents who will notify me about their assignment).
- Agent view agent's idea about current assignment of other agents.

 \rightarrow May be out of sync!

Nogood store — justification of forbidden values in the domain.

 \rightarrow If Nogood is no longer active (i.e., satisfied in the current context), it is removed, and involved values from the agent's domain become available again.

Asynchronous Backtracking (ABT)

- John needs to arrange a meeting with Bob and Alice.
- As all agents, he is a busy guy both meetings must happen in a single day.
- Bob doesn't know about Alice's meeting, and vice versa.

$$\begin{split} \mathcal{A} &= \{ \text{Alice, Bob, John} \} \\ \mathcal{X} &= \{ x_{\text{Alice}}, x_{\text{Bob}}, x_{\text{John}} \} \\ \text{Agent } i \text{ controls variable } x_i. \\ \mathcal{D} &= \{ D_{\text{Alice}}, D_{\text{Bob}}, D_{\text{John}} \} \\ D_{\text{Alice}} &= \{ \text{Mon, Thu} \} \\ D_{\text{Bob}} &= \{ \text{Tue, Thu} \} \\ D_{\text{John}} &= \{ \text{Mon, Tue, Thu} \} \\ \mathcal{C} &= \{ x_{\text{Bob}} = x_{\text{John}}, x_{\text{Alice}} = x_{\text{John}} \} \end{split}$$

 $Bob \rightarrow John:$ Ok?(Bob \rightarrow Tue)

 $\begin{array}{l} \mathsf{Alice} \rightarrow \mathsf{John:} \\ \mathsf{Ok?}(\mathsf{Alice} \rightarrow \mathsf{Mon}) \end{array}$

Mon, Tue, Thu

Alice: Ø Bob: Ø

Alice: \emptyset Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon}

Alice: \varnothing Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon}

Bob: John told me that the meeting cannot happen on Tuesday if Alice opts for Monday. Let's try Thursday then...

 $Bob \rightarrow John:$ Ok?(Bob \rightarrow Thu)

Mon, Tue, Thu

Alice: \emptyset Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon, Bob \rightarrow Thu}

Mon, Tue, Thu

Alice: \emptyset Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon, Bob \rightarrow Thu}

Alice: \emptyset Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon}

Bob: {Alice \rightarrow Mon} John: {Alice \rightarrow Mon} Alice: Ø

Mon, Tue, Thu

Alice: Ø

Bob: Ø

John: {Alice \rightarrow Mon}

Alice: \varnothing Bob: {Alice \rightarrow Thu} John: {Alice \rightarrow Thu}

John: Finally. Thursday seems like a viable option.

Mon, Tue, Thu

Alice: \emptyset Bob: {Alice \rightarrow Thu} John: {Alice \rightarrow Thu, Bob \rightarrow Thu}

From the exercise sheet available in the CourseWare, solve the task:

Production Line.