Multiagent Systems (BE4M36MAS)

Distributed Constraints Satisfaction

Karel Horák, José Hilario

Artificial Intelligence Center, Department of Computer Science, Faculty of Electrical Engineering,
Czech Technical University in Prague
horakka5@fel.cvut.cz
hilarjos@fel.cvut.cz

November 19, 2019

Constraint Satisfaction Problem (CSP)

Find an assignment for variables that satisfy given constraints.
■ $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of variables to assign.
■ $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ - set of domains $\left(x_{i} \in D_{i}\right)$.
■ $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ - set of constraints.
$C_{i} \subseteq D_{i_{1}} \times \cdots \times D_{i_{r}}$ denotes a r-ary constraint over variables $x_{i_{1}}, \ldots, x_{i_{r}}$.

Constraint Satisfaction Problem (CSP)

Solution: n-tuple $\left(d_{1}, \cdots, d_{n}\right)$, such that:

- $d_{i} \in D_{i}$, for $1 \leq i \leq n$.
- $\left(d_{i_{1}}, \ldots, d_{i_{r}}\right) \in C_{k}$ for every constraint $C_{k} \subseteq D_{i_{1}} \times \cdots \times D_{i_{r}}$.

Centralized algorithm

Synchronized backtracking

$v_{i} \leftarrow$ value from D_{i} consistent with $\left(v_{1}, \ldots, v_{i-1}\right)$;
if No such v_{i} exists then
backtrack ;
else if $i=n$ then
stop ;
else
ChooseValue $\left(x_{i+1},\left(v_{1}, \ldots, v_{i}\right)\right)$;
end
Algorithm 1: ChooseValue $\left(x_{i},\left(v_{1}, \ldots, v_{i-1}\right)\right)$

Distributed Constraint Satisfaction Problem (DCSP)

■ $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$ - set of variables to assign.

- $\mathcal{D}=\left\{D_{1}, \ldots, D_{n}\right\}$ - set of domains $\left(x_{i} \in D_{i}\right)$.

■ $\mathcal{C}=\left\{C_{1}, \ldots, C_{m}\right\}$ - set of constraints.
■ $\mathcal{A}=\left\{A_{1}, \ldots, A_{k}\right\}$ - set of agents.
Every variable must be assigned to one of the agents. \rightarrow otherwise the DCSP problem is not fully defined.

Asynchronous Backtracking (ABT)

Assumptions:

- Every agent controls a single variable.
- Agents communicate via messages.
- Constraints are binary.
- Messages are delivered in a finite time (but this time may vary randomly).
■ Whenever an agent A sends messages to agent B, agent B receives them in the same order as A sent them.

Asynchronous Backtracking (ABT)

Initial knowledge of the agent:

- Total ordering (priorities) of agents.
- Constraints he is involved in.
- Domain of the variable that he controls.

Asynchronous Backtracking (ABT)

Data structures:
■ Agent's current assignment.
■ Set of outgoing links (i.e., agents who need to know my assignment).
■ Set of incoming links (i.e., agents who will notify me about their assignment).

- Agent view - agent's idea about current assignment of other agents.
\rightarrow May be out of sync!
■ Nogood store - justification of forbidden values in the domain.
\rightarrow If Nogood is no longer active (i.e., satisfied in the current context), it is removed, and involved values from the agent's domain become available again.

Asynchronous Backtracking (ABT)

Example: Meeting Scheduling

- John needs to arrange a meeting with Bob and Alice.

■ As all agents, he is a busy guy - both meetings must happen in a single day.
■ Bob doesn't know about Alice's meeting, and vice versa.

Example: Meeting Scheduling

$\mathcal{A}=\{$ Alice, Bob, John $\}$
$\mathcal{X}=\left\{x_{\text {Alice }}, x_{\text {Bob }}, x_{\text {John }}\right\}$
Agent i controls variable x_{i}.
$\mathcal{D}=\left\{D_{\text {Alice }}, D_{\text {Bob }}, D_{\text {John }}\right\}$
$D_{\text {Alice }}=\{$ Mon, Thu $\}$
$D_{\text {Bob }}=\{$ Tue, Thu $\}$
$D_{\text {John }}=\{$ Mon, Tue, Thu $\}$
$\mathcal{C}=\left\{x_{\text {Bob }}=x_{\text {John }}, x_{\text {Alice }}=x_{\text {John }}\right\}$
Mon, Thu

Mon,Tue,Thu

Example: Meeting Scheduling

Alice: $\varnothing \quad$ Bob: $\varnothing \quad$ John: \varnothing

Let's all propose a date and see what happens!

Bob \rightarrow John:
Ok?(Bob \rightarrow Tue)
Alice \rightarrow John:
Ok?(Alice \rightarrow Mon)
Mon, Thu

Tue,Thu

Mon,Tue,Thu

Alice: \varnothing Bob: \varnothing

Example: Meeting Scheduling

Alice: $\varnothing \quad$ Bob: $\varnothing \quad$ John: $\{$ Alice \rightarrow Mon, Bob \rightarrow Tue $\}$

John: Argh, I wanted to have both meetings in one day :-(Let's make them change their minds...

John \rightarrow Bob:
Nogood(\{Bob \rightarrow Tue, Alice \rightarrow Mon $\}$)
Mon,Thu

Tue,Thu

Mon,Tue,Thu

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon $\}$

Example: Meeting Scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon $\}$
Mon,Thu

Bob: Who is that Alice? I've never Tue,Thu heard of her.

Bob \rightarrow Alice:
AddLink(Alice \rightarrow Bob)

Mon,Tue,Thu

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon $\}$

Example: Meeting Scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon $\}$

Bob: John told me that the meeting cannot happen on Tuesday if Alice opts for Monday. Let's try Thursday then...

Bob \rightarrow John:
Ok?(Bob \rightarrow Thu)

Tue, Thu

Mon,Tue,Thu

Alice: \varnothing Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon, Bob \rightarrow Thu $\}$

Example: Meeting Scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon, Bob \rightarrow Thu $\}$

Alice: Bob, why are you so curious?
Alice \rightarrow Bob:
Ok?(Alice \rightarrow Mon)

Alice: \varnothing
Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon, Bob \rightarrow Thu $\}$

Example: Meeting Scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon, Bob \rightarrow Thu $\}$

John: They tried it again. Alright, one more try...

John \rightarrow Bob:
Nogood(\{Bob \rightarrow Thu, Alice \rightarrow Mon $\}$)

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon $\}$

Example: Meeting Scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Mon $\} \quad$ John: $\{$ Alice \rightarrow Mon $\}$

Bob: I have run out of options. It's up Tue, Thu to Alice now...

Bob \rightarrow Alice:
Nogood(\{Alice \rightarrow Mon\})

Alice: \varnothing
Bob: \varnothing
John: $\{$ Alice \rightarrow Mon $\}$

Example: Meeting Scheduling

Alice: $\varnothing \quad$ Bob: $\varnothing \quad$ John: $\{$ Alice \rightarrow Mon $\}$

Alice: I have one more option, let's try Tue, Thu Thursday.

Alice \rightarrow Bob, John:
Ok? (\{Alice \rightarrow Thu \})

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Thu $\} \quad$ John: $\{$ Alice \rightarrow Thu $\}$

Example: Meeting Scheduling

Alice: $\varnothing \quad$ Bob: $\{$ Alice \rightarrow Thu $\} \quad$ John: $\{$ Alice \rightarrow Thu $\}$

John: Finally. Thursday seems like a viable option.

Alice: \varnothing Bob: $\{$ Alice \rightarrow Thu $\} \quad$ John: $\{$ Alice \rightarrow Thu, Bob \rightarrow Thu $\}$

Task: Production Line

From the exercise sheet available in the CourseWare, solve the task:

 Production Line.