Multiagent Systems

Two Lectures on Coalitional Game Theory

Tomáš Kroupa

Faculty of Electrical Engineering
Czech Technical University in Prague

Game Forms

1. Normal (Strategic)
2. Extensive
3. Coalitional

Coalitional games - assumptions

- Players maximizing their utility are allowed to form coalitions
- Coalitions are sets of players coordinating their strategies in order to maximize the utility of the coalition
- Strategic aspects of coalitional games are unimportant, since they are implicitly part of the deal among players

Which Situations Are Captured by Coalitional Games?

- Transactions among buyers and sellers in a market
- Voting in committees
- Cost-sharing in large investment projects

Applications

- Google Analytics
- Explainable AI algorithms
- Analysis of voting procedures
- Genetic analysis

Players and Coalitions

- Player set $N:=\{1, \ldots, n\}$, where $n \in \mathbb{N}$
- Coalition is a subset $A \subseteq N$
- \emptyset empty coalition, N grand coalition
- Powerset $\mathcal{P}(N)$ is the set of all coalitions:

$$
\mathcal{P}(N):=\{A \mid A \subseteq N\}
$$

Coalitional Game

Definition

Coalitional game is a pair (N, v), where v is a function

$$
v: \mathcal{P}(N) \rightarrow \mathbb{R} \quad \text { such that } v(\emptyset)=0
$$

- Number $v(A)$ is called the worth of A and it can be interpreted as a utility/cost associated with the formation of A
- When N is fixed, we will identify a coalitional game (N, v) with function v and call v simply a game

Example 1

Gin \& Tonic

5 friends arrive at a party, 3 of whom with a bottle of gin apiece.
Each of the other 2 friends has 5 bottles of tonic. A price of cocktails made from 1 gin bottle and 5 tonic bottles is 2000 CZK.

$$
\begin{gathered}
G=\{1,2,3\}, \quad T=\{4,5\}, \quad N=G \cup T \\
v(A)=2000 \cdot \min \{|A \cap G|,|A \cap T|\}, \quad A \subseteq N
\end{gathered}
$$

Example 2

Security Council

UN Security Council has 5 permanent and 10 non-permanent members. The decision is approved by all the permanent members together with at least 4 non-permanent members.

$$
\begin{gathered}
N=\{1, \ldots, 5,6, \ldots, 15\} \\
v(A)= \begin{cases}1 & \text { if } A \supset\{1, \ldots, 5\} \text { and }|A| \geq 9 \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Properties of Games

Definition

We say that a coalitional game v is

- monotone if $v(A) \leq v(B)$ for all $A \subseteq B$,
- superadditive if $v(A \cup B) \geq v(A)+v(B)$ for all $A \cap B=\emptyset$,
- supermodular if $v(A \cup B)+v(A \cap B) \geq v(A)+v(B)$,
- additive if $v(A \cup B)=v(A)+v(B)$ for all $A \cap B=\emptyset$.
- Additive games are trivial, since the worth of A is

$$
v(A)=\sum_{i \in A} v(\{i\})
$$

- Supermodular (convex) games have very convenient computational properties

Coalitional games - questions

1. Which coalitions will form?
2. What is a worth allocation among individual players?
3. How to justify such a worth allocation?

Possible answers

1. It is extremely difficult (conceptually and computationally) to answer this question
2. We often assume that the grand coalition N was formed. This means that all the players eventually reach some agreement to distribute the worth $v(N)$
3. The problem of justification can be solved by adopting several basic principles, which determine the resulting allocation

Allocation

Definition

Allocation is a vector $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Define

$$
x(A):=\sum_{i \in A} x_{i}, \quad A \subseteq N
$$

An allocation x in a coalitional game v is

- efficient if $x(N)=v(N)$
- coalitionally rational if $x(A) \geq v(A)$ for all $A \subseteq N$
- individually rational if $x_{i} \geq v(\{i\})$ for all $i \in N$

Solution Concepts

Definition

Let Γ be the set of all coalitional games with a fixed player set N.
Solution is a mapping

$$
\sigma: \Gamma \rightarrow \mathcal{P}\left(\mathbb{R}^{n}\right)
$$

where $\mathcal{P}\left(\mathbb{R}^{n}\right)$ is the family of all subsets of \mathbb{R}^{n}.

- The set $\sigma(v)$ contains allocation vectors $x=\left(x_{1}, \ldots, x_{n}\right)$
- Solution reflects various aspects of economic rationality, fairness assumptions, or stability
- Solutions can be single-valued or multi-valued

Agenda

We will discuss the following solution concepts:

- Shapley value
- Core
- Nucleolus

Shapley value

Value of Coalitional Games

Definition

Value is a mapping

$$
\varphi: \Gamma \rightarrow \mathbb{R}^{n}
$$

with components $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. The number $\varphi_{i}(v)$ is called the value of player i.

Some principles of a fair allocation:

- Distribute the total utility available
- The same reward for the same working contribution
- "He who does not work, neither shall he eat"

Axioms of Value

Definition

We say that a value φ

- is efficient, if $\sum_{i \in N} \varphi_{i}(v)=v(N)$ for each game v
- is symmetric, if $\varphi_{i}(v)=\varphi_{j}(v)$, for each game v and players $i, j \in N$ fullfilling the condition $v(A \cup\{i\})=v(A \cup\{j\})$, for each coalition A not containing $\{i, j\}$
- satisfies the null player property, if $\varphi_{i}(v)=0$, for each game v and each $i \in N$ such that $v(A \cup\{i\})=v(A)$, for all $A \subseteq N$
- is additive, if $\varphi(u+v)=\varphi(u)+\varphi(v)$, for $u, v \in \Gamma$

Shapley Value

Theorem (Shapley, 1953)

There is a unique value $\varphi^{S}: \Gamma \rightarrow \mathbb{R}^{n}$, which is efficient, additive, symmetric, and satisfies the null player property.

The value of player $i \in N$ is

$$
\varphi_{i}^{S}(v)=\sum_{A \subseteq N \backslash\{i\}} \frac{|A|!(n-|A|-1)!}{n!} \cdot(v(A \cup\{i\})-v(A)) .
$$

Interpretation of Formula for Shapley Value

$$
\varphi_{i}^{S}(v)=\sum_{A \subseteq N \backslash\{i\}} \frac{1}{n\binom{n-1}{|A|}} \cdot \underbrace{(v(A \cup\{i\})-v(A))}_{\text {marginal contribution of } i \text { to } A}
$$

- The Shapley value of player i is the expected value of the player's marginal contribution to every possible coalition
- The probability $\frac{1}{n\binom{n-1}{|A|}}$ is determined as follows:

1. Player i randomly selects one of the sizes $0,1, \ldots, n-1$ of a coalition to enter
2. A coalition A of this size is then randomly chosen

Shapley Value as a Power Index

A game v is simple if

- $v(A) \in\{0,1\}$
- v is monotone and $v(N)=1$

Coalition $A \subseteq N$ is winning if $v(A)=1$, and loosing if $v(A)=0$.

Shapley-Shubik Index

$$
\varphi_{i}^{S}(v)=\sum_{\substack{A \subseteq N \\ A \text { loosing } \\ A \cup\{i\} \text { winning }}} \frac{|A|!(n-|A|-1)!}{n!}, \quad i \in N .
$$

Examples

Simple Majority Game

$$
v(A)=\left\{\begin{array}{ll}
1 & |A|>\frac{n}{2}, \\
0 & \text { otherwise }
\end{array} \quad A \subseteq N\right.
$$

Efficiency and symmetry yield $\varphi_{i}^{S}(v)=\frac{1}{n}$ for each $i \in N$.

UN Security Council With $N=\{1, \ldots, 15\}$

We assume that $1, \ldots, 5$ are permanent members.
$v(A)=1$ if $A \supset\{1, \ldots, 5\}$ and $|A| \geq 9$,
$v(A)=0$ otherwise.
If $6 \leq i \leq 15$, we get $\varphi_{i}^{S}(v)=\binom{9}{3} \cdot \frac{8!\cdot 6!}{15!} \approx 0.0019$.
If $1 \leq j \leq 5$, we can proceed as follows:
$\varphi_{j}^{S}(v)=\frac{1}{5}\left(1-10 \varphi_{i}^{S}(v)\right) \approx 0.1963$.

Power Indices for Voting

- The number of swings for player i in a simple game v is

$$
s_{i}(v):=|\{A \subseteq N \mid v(A \cup\{i\})-v(A)=1\}|
$$

- The Shapley-Shubik index uses the probability of a swing A proportional to its size, but there are alternative choices

Definition

Normalized Banzhaf index of player i is

$$
\beta_{i}(v)=\frac{s_{i}(v)}{\sum_{i \in N} s_{i}(v)}
$$

and Banzhaf index of player i is

$$
\varphi_{i}^{B}(v)=\frac{s_{i}(v)}{2^{n-1}}
$$

Example - UN Security Council

Old and new voting system with 5 permanent members
O 11 members, approval by at least 7 votes
N 15 members, approval by at least 9 votes

Shapley-Shubik indices:
$0 \varphi_{1}^{S}(v)=0.1974, \varphi_{6}^{S}(v)=0.0022 \quad$ ratio $90: 1$
$N \varphi_{1}^{S}(v)=0.1963, \varphi_{6}^{S}(v)=0.0019 \quad$ ratio $100: 1$
Normalized Banzhaf indices:

$$
\begin{aligned}
& \mathrm{O} \beta_{1}(v)=\frac{19}{105}, \beta_{6}(v)=\frac{1}{63} \\
& \mathrm{~N} \beta_{1}(v)=\frac{106}{635}, \beta_{6}(v)=\frac{21}{1270}
\end{aligned}
$$

$$
\text { ratio } 10: 1
$$

Random Order Approach

Let Π be the set of all permutations π of the player set N. Each number $\ell \in N$ is a ranking of player $\pi(\ell) \in N$.

Definition

- For each $\pi \in \Pi$ define

$$
A_{0}^{\pi}:=\emptyset, \quad A_{\ell}^{\pi}:=\{\pi(1), \ldots, \pi(\ell)\}, \quad \ell \in N
$$

- Marginal vector for a game v and a permutation π is an allocation vector $x^{\pi} \in \mathbb{R}^{n}$ with coordinates

$$
x_{i}^{\pi}:=v\left(A_{\pi^{-1}(i)}^{\pi}\right)-v\left(A_{\pi^{-1}(i)-1}^{\pi}\right), \quad i \in N .
$$

Shapley Value From Random Order

$$
\varphi_{i}^{S}(v)=\sum_{\pi \in \Pi} \frac{1}{n!} \cdot x_{i}^{\pi}
$$

- The Shapley value $\varphi_{i}^{S}(v)$ of player i is an expected value of the marginal vectors of player i
- All the orders of players are equiprobable
- This formula becomes important for the approximate computation of Shapley value based on sampling

Estimation of the Shapley Value

Algorithm

Input: Coalitional game v and player i

1. Determine the size of the random sample $m \leq n$!
2. Sample (with replacement) permutations $\left(\pi_{1}, \ldots, \pi_{m}\right)$ from Π with uniform probability $\frac{1}{n!}$
3. Estimate the Shapley value by

$$
\widehat{\varphi_{i}^{S}}(v):=\frac{1}{m} \sum_{k=1}^{m} x_{i}^{\pi_{k}}
$$

The algorithm is polynomial, if the worth $v(A)$ of each coalition A can be calculated in polynomial time.

Core

Core

Definition

Core of a game v is the set of all efficient and coalitionally rational allocation vectors,

$$
\mathcal{C}(v):=\left\{x \in \mathbb{R}^{n} \mid x(N)=v(N), x(A) \geq v(A), A \subseteq N\right\} .
$$

The core of a game is convex polytope of dimension at most $n-1$.

Core - Example

Glove Game

Alice has a left glove. Bob and Cyril have one glove each.
The number of pairs of gloves collected by a coalition is its worth.
$N=\{1,2,3\}$

$$
v(A)= \begin{cases}1 & A=\{\{1,2\},\{1,3\}, N\} \\ 0 & \text { otherwise }\end{cases}
$$

Game v is monotone and superadditive, but not supermodular. The core of v is

$$
\mathcal{C}(v)=\{(1,0,0)\} .
$$

Games With Empty Cores

Majority voting

Three players vote by majority. This determines a game with the player set $N=\{1,2,3\}$, where

$$
v(A)= \begin{cases}1 & |A| \geq 2 \\ 0 & \text { otherwise }\end{cases}
$$

There is no stable allocation in this game, $\mathcal{C}(v)=\emptyset$.

Core of Supermodular Games

Proposition

Let $v \in \Gamma$. These assertions are equivalent.

1. v is supermodular
2. $x^{\pi} \in \mathcal{C}(v)$ for all $\pi \in \Pi$
3. $\mathcal{C}(v)=\operatorname{conv}\left\{x^{\pi} \mid \pi \in \Pi\right\}$

$$
v(A)=\left\{\begin{array}{ll}
0 & |A|=1, \\
1 & |A|=2, \\
3 & |A|=3 .
\end{array} \quad(2,0,1)\right.
$$

