Coalitional Games – Exercises for Multiagent Systems Tomáš Kroupa

1. Consider a coalitional game $v: \mathcal{P}(N) \to \mathbb{R}$ over the player set $N = \{1, 2, 3\}$ such that

$$v(A) = \begin{cases} 0 & A = \emptyset, \\ 1 & A = \{1\}, \{2\}, \\ 2 & A = \{3\}, \\ 4 & |A| = 2, \\ 5 & A = N. \end{cases}$$

Is v superadditive? What is its core?

Solution: Game v is superadditive, if the inequality $v(A \cup B) \ge v(A) + v(B)$ holds for all $A, B \subseteq N, A \cap B = \emptyset$. Since $v(N) < v(\{1, 2\} + v(\{3\}), \text{ game } v \text{ is not superadditive. It is easy to see that } \mathcal{C}(v) \text{ is empty. Indeed, every vector } x \in \mathcal{C}(v) \text{ must satisfy the conditions } x_1 + x_2 + x_3 = 5, x_1 + x_2 \ge 4, \text{ and } x_3 \ge 2$. But adding the last two inequalities yields $5 = x_1 + x_2 + x_3 \ge 6$, a contradiction.

2. Describe the core of a coalitional game v over the player set $N = \{1, 2, 3\}$, where

$$v(A) = \begin{cases} 0 & A = \emptyset, \\ |A| - 1 & A \neq \emptyset. \end{cases}$$

Solution: Using the identity $|A \cup B| = |A| + |B| - |A \cap B|$ we can easily verify that v is supermodular, that is, $v(A \cup B) + v(A \cap B) \ge v(A) + v(B)$. This implies that its core C(v) coincides with the convex hull of its marginal vectors x^{π} , where π is a permutation on N. For example, the permutation $\pi(1) = 2$, $\pi(2) = 3$, $\pi(3) = 1$ determines a marginal vector x^{π} whose coordinates are

$$\begin{split} & x_2^{\pi} = v(\{2\}) - v(\emptyset) = 0, \\ & x_3^{\pi} = v(\{2,3\}) - v(\{2\}) = 1, \\ & x_1^{\pi} = v(\{1,2,3\}) - v(\{2,3\}) = 1 \end{split}$$

The remaining marginal vectors are computed analogously. This shows that the core is a triangle with vertices (0, 1, 1), (1, 0, 1), and (1, 1, 0), which is located in the plane given by the equation $x_1 + x_2 + x_3 = 2$.

3. Prove that the Shapley value $\varphi^{S}(v)$ of a supermodular game v belongs to its core: $\varphi^{S}(v) \in \mathcal{C}(v)$.

Coalitional Games – Exercises for Multiagent Systems

Solution: Let $N = \{1, ..., n\}$ and v be a supermodular game over N. By supermodularity, the core of v is the convex hull of its marginal vectors,

$$\mathcal{C}(v) = \operatorname{conv} \{ x^{\pi} \mid \pi \in \Pi \},\$$

where Π is the set of all permutations over N. Hence, it suffices to show that $\varphi^S(v)$ can be written as $\varphi^S(v) = \sum_{\pi \in \Pi} c_{\pi} \cdot x^{\pi}$, where $c_{\pi} \ge 0$ and $\sum_{\pi \in \Pi} c_{\pi} = 1$. But one of the formulas for Shapley value of player $i \in N$ is

$$\varphi_i^S(v) = \sum_{\pi \in \Pi} \frac{1}{n!} \cdot \left(v(A_{\pi^{-1}(i)}^{\pi}) - v(A_{\pi^{-1}(i)-1}^{\pi}) \right).$$

Since marginal vector x^{π} has coordinates

$$x_i^{\pi} = v(A_{\pi^{-1}(i)}^{\pi}) - v(A_{\pi^{-1}(i)-1}^{\pi}),$$

is is enough to put $c_{\pi} \coloneqq \frac{1}{n!}$ for each $\pi \in \Pi$. Note that we have even proved that $\varphi^{S}(v) \in \mathcal{C}(v)$ is a center of gravity of $\mathcal{C}(v)$.

4. A company has 3 shareholders whose shares are distributed in the following way. The first has 50 % shares and the remaining two have 25 % shares each. The three shareholders vote by using a weighted majority of votes. Describe precisely the resulting coalitional game. Compute the Shapley-Shubik index using the random order approach and then calculate the normalized Banzhaf index.

Solution: The player set is $N = \{1, 2, 3\}$. The coalitional game is v:

$$v(A) = \begin{cases} 1 & A = N, \{1, 2\}, \{1, 3\}, \\ 0 & \text{otherwise,} \end{cases} \qquad A \subseteq N.$$

For the calculation of Shapley-Shubik index of i we enumerate all the permutations such that i makes the preceding coalition winning:

Thus,

$$\varphi_1^S(v) = \frac{2}{3}, \quad \varphi_2^S(v) = \varphi_3^S(v) = \frac{1}{6}$$

In order to compute the normalized Banzhaf index $\beta(v)$, we enumerate the number of swings for each player:

Hence, $s_1(v) = 3$, $s_2(v) = s_3(v) = 1$. These numbers are divided by the total number of swings:

$$\beta_1(v) = \frac{3}{5}, \quad \beta_1(v) = \beta_1(v) = \frac{1}{5}$$

Coalitional Games – Exercises for Multiagent Systems

5. Consider a solution mapping $\psi \colon \Gamma \to \mathbb{R}^n$ over the set of all *n*-player coalitional games Γ defined by

$$\psi_i(v) = v(\{1, \dots, i\}) - v(\{1, \dots, i-1\}), \quad i \in N.$$

Show that ψ is efficient, additive, has the null player property, but fails symmetry.

Solution: First, we check efficiency:

$$\sum_{i \in N} \psi_i(v) = \sum_{i \in N} (v(\{1, \dots, i\}) - v(\{1, \dots, i-1\})) = v(N) - v(\emptyset) = v(N).$$

Additivity: for all $v, w \in \Gamma$ we get

$$\begin{split} \psi_i(v+w) &= (v+w)(\{1,\ldots,i\}) - (v+w)(\{1,\ldots,i-1\}) \\ &= (v(\{1,\ldots,i\}) - v(\{1,\ldots,i-1\})) + (w(\{1,\ldots,i\}) - w(\{1,\ldots,i-1\})) \\ &= \psi_i(v) + \psi_i(w). \end{split}$$

Null player property: let $i \in N$ be the null player. This means that $v(A \cup \{i\}) = v(A)$ for each coalition $A \subseteq N$. Then putting $A = \{1, \ldots, i-1\}$ yields $\psi_i(v) = 0$.

We show that ψ fails symmetry. Letting $N = \{1, 2, 3\}$ we define a game

$$v(A) = \begin{cases} 1 & A = \{2, 3\}, N \\ 0 & \text{otherwise,} \end{cases} \quad A \subseteq N.$$

Then $\psi(v) = (0, 0, 1)$. However, players 2 and 3 are symmetric in this game since $v(\{1, 2\}) = v(\{1, 3\})$. This implies that ψ fails symmetry.

6. Spanning tree game. The costs of connecting the cities denoted as 1, 2, and 3 to the supplier of energy 0 are depicted in Figure 1. Construct the associated minimum cost spanning tree game and show that its core is nonempty.

Solution: We can easily find using Prim's algorithm that the corresponding cost game v with the player set $N = \{1, 2, 3\}$ is

$$v(A) = \begin{cases} 0 & A = \emptyset, \\ 20 & A = \{1\}, \\ 30 & A = \{3\}, \\ 50 & A = N, \\ 40 & \text{otherwise.} \end{cases}$$

Since the numbers v(A) are intepreted as costs, the core of v is precisely the set of allocations $x \in \mathbb{R}^3$ such that x(N) = 50 and

 $x_1 \le 20, x_3 \le 30, x(A) \le 40,$ for all $A \in \{\{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}\}.$

Figure 1: Graph from Example 6

It is easily shown that the core of v is nonempty. It suffices to take the minimum spanning tree associated with the grand coalition N together with the costs for the connection of individual cities in the resulting minimum spanning tree. For example,

$$x_1 \coloneqq 20, \quad x_2 \coloneqq 20, \quad x_3 \coloneqq 10.$$

Then $x = (x_1, x_2, x_3)$ belongs to the core of v.

- 7. A simple game is a coalitional game $v: \mathcal{P}(N) \to \{0, 1\}$ that is monotone and v(N) = 1. We call a player $i \in N$ in a simple game v a veto player, if for each coalition $A \subseteq N$ holds $v(A \setminus \{i\}) = 0$. Show that the following hold for any simple game v:
 - (a) Player *i* is veto if and only if $v(N \setminus \{i\}) = 0$.
 - (b) $\mathcal{C}(v) \neq \emptyset$ if and only if v has a veto player.
 - (c) If the set of veto players $W \subseteq N$ is nonempty, then the core is

$$\mathcal{C}(v) = \{ x \in \mathbb{R}^n \mid x(W) = 1, \, x_i \ge 0 \text{ pro } i \in W \text{ a } x_j = 0 \text{ pro } j \in N \setminus W \}.$$
(1)

Solution: (a) Necessity is obvious. Assume $v(N \setminus \{i\}) = 0$. Then monotonicity gives $v(A \setminus \{i\}) = 0$ for each coalition A.

(b) Let $k \in N$ be a veto player. We define an allocation vector $x \in \mathbb{R}^n$ as follows:

$$x_i = \begin{cases} 1 & i = k, \\ 0 & i \neq k. \end{cases}$$

Since v is non-constant, $v(N) = 1 = \sum_{i \in N} x_i = x(N)$. Choose $A \subseteq N$. If $k \in A$, then $x(A) = 1 \ge v(A)$. If $k \notin A$, then x(A) = 0 = v(A), since k is veto. We have shown that $x \in \mathcal{C}(v)$.

Coalitional Games – Exercises for Multiagent Systems

Conversely, assume that v has no veto players. We want to conclude that v has empty core. By way of contradiction, let $x \in \mathcal{C}(v)$. Then the condition x(N) = 1 implies that there exists $i \in N$ such that $x_i > 0$, hence $x(N \setminus \{i\}) = 1 - x_i < 1$. Since i is not veto, $v(N \setminus \{i\}) = 1 > x(N \setminus \{i\})$, which contradicts our assumption $x \in \mathcal{C}(v)$.

(c) Observe that if $A \subseteq N$ is winning (v(A) = 1), then $A \supseteq W$. Let x meet the condition on the right-hand side of (1). Obviously, x(N) = x(W) = 1. If $A \subseteq N$ is loosing (v(A) = 0), then $x(A) \ge 0$. Let v(A) = 1. Then $A \supseteq W$, which gives

$$x(A) \ge x(W) = 1 = v(A).$$

Thus, $x \in \mathcal{C}(v)$.

Conversely, let $x \in \mathcal{C}(v)$. Then $x_i \geq 0$ for all $i \in N$ and x(N) = 1. We need to show that $x_i = 0$ for all $i \in N \setminus W$. Pick $i \in N \setminus W$. Player *i* is not veto and hence

$$1 = x(N) \ge x(N \setminus \{i\}) \ge v(N \setminus \{i\}) = 1,$$

which implies $x(N) = x(N \setminus \{i\})$, so that $x_i = 0$.

8. Decide if the assertions below are true or false.

- (a) If the core is nonempty, it contains the Shapley value.
- (b) If marginal contributions of players i and j to every coalition are the same, then their Shapley values coincides.
- (c) The core of every monotone coalitional game is nonempty.
- (d) Nucleolus satisfies the properties of efficiency, symmetry, and null player property.
- (e) Nucleolus is an additive solution concept.
- (f) Shapley value $\varphi^{S}(v) = (\varphi_{1}^{S}(v), \dots, \varphi_{n}^{S}(v))$ of every *n*-player coalitional game *v* is uniquely determined by the (n-1)-tuple $(\varphi_{1}^{S}(v), \dots, \varphi_{n-1}^{S}(v))$.
- (g) Shapley value is individually rational, that is, $\varphi_i^S(v) \ge v(\{i\})$.
- (h) The nucleolus is individually rational.

Solution:

- (a) False. For example, the Shapley value of the 3-player glove game is not an element of its core.
- (b) True. This is exactly the symmetry of Shapley value.
- (c) False. For example, take a two-player game v(1) = v(2) = v(12) = 1.
- (d) True.

- (e) False. Shapley value is the only single-valued solution satisfying these four properties: efficiency, symmetry, null player property, and additivity. Since the nucleolus has the first three properties and it is different from the Shapley value, it cannot be additive.
- (f) True. By efficiency of Shapley value, $\varphi_n^S(v) = v(N) \sum_{i=1}^{n-1} \varphi_i^S(v)$.
- (g) False. Consider a 2-player game v that is not superadditive. Such a game satisfies the inequality v(12) < v(1) + v(2), which implies $\varphi_1(v) < v(1)$.
- (h) The nucleolus is an imputation, hence individual rationality.

References

- J. González-Díaz, I. García-Jurado, and M. G. Fiestras-Janeiro. An Introductory Course on Mathematical Game Theory, volume 115 of Graduate Studies in Mathematics. American Mathematical Society, 2010.
- [2] M. Maschler, E. Solan, and S. Zamir. *Game Theory*. Cambridge University Press, 2013.
- [3] G. Owen. *Game theory*. Academic Press Inc., San Diego, CA, third edition, 1995.