Agent architectures

BE4M36MAS - Multiagent systems

Organization

Branislav Bošanský (branislav.bosansky@aic.fel.cvut.cz) Karel Horák (karel.horak@aic.fel.cvut.cz) Michal Šustr (michal.sustr@aic.fel.cvut.cz) Petr Tomášek (petr.tomasek@aic.fel.cvut.cz) José Ananías Hilario Reyes (jose.reyes@aic.fel.cvut.cz) Website: https://cw.fel.cvut.cz/wiki/courses/be4m36mas/start Attendance: voluntary (but tracked)

Assessment – 3 assignments:

- 1. Agent programming (max 11 pts)
- 2. Competitive game theory (max 17 pts)
- 3. Cooperative game theory (max 12 pts)

Plagiarism is strictly forbidden

(Strong punishments would be applied)

Agent architectures

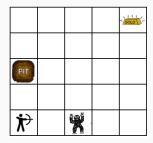
Actions (A)

Ways for the agent to influence the environment

Percepts (P)

Observations about the state of the world

Decision making $(d : P^* \rightarrow A)$


Mapping perception history to actions

- 1. Reflex (reactive) Agent
- 2. Model-based Reflex Agent
- 3. Model-based Goal-based Agent
- 4. Model-based Utility-based Agent
- 5. Learning-based Agent

(Russell and Norvig)

Wumpus' World

- Grid world environment
- Agent has to find the gold brick and carry it to the bottom left square
- Problem: Entering a square occupied by Wumpus or containing a pit costs agent his life (Wumpus does not move)

Wumpus' World — Percepts

- *Breeze* whenever agent stands next to a pit
- *Stench* whenever agent stands next to Wumpus
- Gold when agent carries a gold brick

		GOLD
PIT		
ҟ	X	

Wumpus' World — Actions

 Going to any neighboring square (only vertically and horizontally)

		GOLD
PIT		
₹	¥.	

Agent conditions his decision solely on his **current** percepts. (e.g. on the facts he can currently sense)

Task: Implement a reflex agent for Wumpus world. Beware, do not use any kind of memory or smarter reasoning ;-)

Agent uses percepts to gradually build a **model** of the environment.

Decisions are based on the expected state of the world according to his model.

		GOLD
PIT		
$\mathbf{\dot{\lambda}}$	X	

Question: Does this approach allow us to overcome this issue?

Agent uses percepts to gradually build a **model** of the environment.

Decisions are based on the expected state of the world according to his model.

		GOLD
PIT		
ট	X	

Question: Does this approach allow us to overcome this issue? Task: Implement a model-based agent and reach the gold!

Question: Is the behaviour of the agent rational?

Question: Is the behaviour of the agent rational? Definitely not!

Agent just exploits the model to stay alive. He does not intentionally pursue his goal.

Actions are chosen in order to reach a **declaratively** specified **goal**. Techniques:

- 1. Planning Planning in Al
- 2. Belief-Desire-Intention Architecture

Planning in Al this course

Question: What does it mean for an agent in Wumpus' world?

Not all ways to reach the goal are equally plausible. Some ways to reach the goal **should be prefered** against others.

(e.g. cheaper or less risky ones)

Utility driven sequential decision making:

- Non–adversarial: MDPs, POMDPs
- Adversarial: Sequential games

Planning in Al this course Agent **does not fully know** the task he is facing. (what his action does, what is his goal etc.)

He **learns** the task on the go — strategy reflecting these finds cannot be fixed in advance.

Learning **both** model and strategy.

Next tutorial

• Belief-Desire-Intention architecture