STATISTICAL MACHINE LEARNING (WS2017) SEMINAR 8

Assignment 1. Consider regression with training datasets \mathcal{T}^m of size m generated as:

$$y = f(x) + \epsilon, \tag{1}$$

where ϵ is the noise having $\mathbb{E}(\epsilon) = 0$ and $\operatorname{Var}(\epsilon) = \sigma^2$. Derive biasvariance decomposition for k-nearest-neighbor regression. The response of the k-NN regressor is defined as:

$$h_m(x) = \frac{1}{k} \sum_{i=1}^k y_{n(x,i)} = \frac{1}{k} \sum_{i=1}^k f(x_{n(x,i)}) + \epsilon,$$
 (2)

where n(x, i) gives the index of *i*-th nearest neighbor of x in \mathcal{T}^m . For simplicity assume that all x_i are the same for all training datasets \mathcal{T}^m in consideration, hence, the randomness arises from the noise ϵ , only. Give bias²:

$$\mathbb{E}_x \left[\left(g_m(x) - f(x) \right)^2 \right] = \mathbb{E}_x \left[\left(\mathbb{E}_{\mathcal{T}^m} \left(h_m(x) \right) - f(x) \right)^2 \right]$$
 (3)

and variance:

$$\operatorname{Var}_{x,\mathcal{T}^m}\Big(h_m(x)\Big).$$
 (4)

Assignment 2. The output of a regression tree is defined as:

$$h(\boldsymbol{x}) = \sum_{r=1}^{M} c_r \mathbb{I}\{\boldsymbol{x} \in R_r\}$$
 (5)

where R_r is an input space region defined by the r-th tree leaf and $c_r \in \mathbb{R}$ the corresponding region's response. The tree is trained using set $\mathcal{T}^m = \{(\boldsymbol{x}_i, y_i) \mid i = 1, \dots, m\}$. Show that the sum of squares loss function $\sum_{i=1}^m (y_i - h(\boldsymbol{x}_i))^2$ is minimized by choosing the following region responses:

$$c_r = \frac{1}{|S_r|} \sum_{\boldsymbol{x}_i \in R_r} y_i \tag{6}$$

where $S_r = \{(\boldsymbol{x}_i, y_i) : (\boldsymbol{x}_i, y_i) \in \mathcal{T}^m \land \boldsymbol{x}_i \in R_r\}.$

Assignment 3. What is an optimal value of c_r when the sum of absolute deviations $\sum_{i=1}^{m} |y_i - h(x_i)|$ is used instead of the squared loss?

Assignment 4. Bootstrapping is a method which produces K datasets \mathcal{T}_i^m for $i=1,\ldots,K$ by uniformly sampling the original dataset \mathcal{T}^m with replacement. Bootstrap datasets have the same size as the original dataset $|\mathcal{T}_i^m| = |\mathcal{T}^m| = m$. Show that as $m \to \infty$ the fraction of unique samples in \mathcal{T}_i^m approaches $1 - \frac{1}{e} \approx 63.2\%$. Hint: apply exponential of a logarithm to a limit which emerges in

a last step in order to solve it.

Assignment 5. Consider the Huber loss:

$$\ell(y, h(x)) = \begin{cases} (y - h(x))^2 & \text{for } |y - h(x)| \le \delta \\ 2\delta |y - h(x)| - \delta^2 & \text{otherwise.} \end{cases}$$
 (7)

Define Gradient Boosting Machine using the Huber loss and discuss differences to the squared loss GBM.