
STATISTICAL MACHINE LEARNING (WS2017)
SEMINAR 7

Assignment 1. Let s0, s2, . . . , sn−1 be K-valued random variables, where K is a finite
set. Their joint probability distribution is a Markov model on a cycle

p(s) =
1

Z

n−1∏
i=0

gi(si, si+1)

where indices i + 1 are considered modulo n. The functions gi : K2 → R+ are given
and Z is a normalisation constant. Find an algorithm for searching the most probable
realisation

s∗ = argmax
s∈Kn

p(s).

What complexity has it?

Assignment 2. Suppose your task is to automatically determine the thickness of the
epidermis layer in OCT images (Optical Coherence Tomography) of skin . The epi-
dermis is the topmost skin layer followed by the dermis. The boundary between them
is called epidermis-dermis junction (see Figure). Propose an approach that combines a
Deep Network with a Hidden Markov Model for sequences. Discuss how to learn the
parameters of the respective model parts provided you are given annotated training data.

Assignment 3. Consider the class of (min,+)-problems on graphs, which require to
find the labelling

s∗ = argmin
s∈KV

∑
i∈V

ui(si) +
∑
{i,j}∈E

uij(si, sj),
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where (V,E) is an undirected graph, K is a finite label set and ui : K → R and
uij : K

2 → R are given functions. Prove that this class is NP-hard by reducing the
maximum clique problem to it.
Hint: Suppose that the graph (V ′, E ′) is an input instance for the maximum clique
problem. Consider the graph (V,E) with V = V ′, E = E ′ and the label setK = {0, 1}.
Find functions ui and uij such that a labelling s is optimal if and only if it “encodes” a
maximum clique.

Assignment 4. Let X ⊆ Rd be a set of input observations and Y = {+1,−1} a set of
hidden states. A two-class linear classifier is defined as

h(x;v, b) =

{
+1 if 〈v,x〉+ b ≥ 0
−1 if 〈v,x〉+ b < 0

where (v, b) ∈ Rd+1 denote its parameters. The parameters (v, b) can be learned from
examples T m = {(xi, yi) ∈ X × Y | i = 1, . . . ,m} by the SVM algorithm which
minimizes the average of the hinge loss

F (v, b) =
1

m

m∑
i=1

max{0, 1− yi(〈xi,v〉+ b)} .

A generic linear classifier is defined as

h′(x;w) = argmax
y∈Y

〈w,φ(x, y)〉 (1)

wherew ∈ Rn are parameters and φ : X ×Y → Rn is a joint feature map. The param-
etersw can be learned from examples T m by the SO-SVM algorithm which minimizes
the average of the margin re-scaling loss

F ′(w) =
1

m

m∑
i=1

max{0, max
y∈Y\{yi}

(`(yi, y) + 〈w,φ(xi, y)〉 − 〈w,φ(xi, yi)〉} (2)

where ` : Y × Y → R+ is some target loss depending on the application at hand.

Your task is to show that the standard SVM is a special case of the SO-SVM algorithm.
To this end, define the joint feature map φ and the target loss ` such that the two-
class classifier h(x;v, b) is equivalent to the generic linear classifier h′(x;w) and the
objectives of the standard SVM and the SO-SVM are equivalent as well. In other words,
you need to define φ and ` such that

h(x;v, b) = h′(x; (v, b)), ∀x ∈ X , and F (v, b) = F ′((v, b)) ,∀v ∈ Rd, b ∈ R ,

where (v, b) ∈ Rd+1 denotes a vector obtained by concatenating v and b.

Assignment 5. Let X ⊆ Rd be a set of input observations and Y = {1, . . . , Y } a set of
hidden states. The linear multi-class classifier is defined as

h(x;W , b) = argmax
y∈Y

(〈wy,x〉+ by) (3)
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where W = (w1, . . . ,wY ) ∈ Rd×Y is a matrix whose columns are the class templates
and b = (b1, . . . , bY ) ∈ RY is a vector of the class biases.

a) Define the joint feature map φ : X ×Y → Rn and the corresponding joint parameter
vector w ∈ Rn composed of W and b such that the generic linear classifier (1) and the
multi-class classifier (3) are equivalent, that is, h′(x;w) = h(x;W , b), ∀x ∈ X .

b) Given a training set T m = {(xi, yi) ∈ X × Y | i = 1, . . . ,m}, the SO-SVM
algorithm learns the parameters of the generic linear classifier (1) by solving a convex
problem

w∗ = argmin
w∈Rn

(
λ

2
‖w‖2 + F ′(w)

)
(4)

where λ > 0 is a regularization constant and the empirical risk proxy F ′(w) is defined
by (2). Use φ derived in point a) to instantiate the problem (4) for the multi-class linear
classifier (3) and the 0/1-loss l(y, y′) = [[y 6= y′]].

c) Rewrite the convex program from point b) as an equivalent quadratic programming
task. What is the number of linear constraints of the quadratic program ?


