STATISTICAL MACHINE LEARNING (WS2017) SEMINAR 7

Assignment 1. Let $s_{0}, s_{2}, \ldots, s_{n-1}$ be K-valued random variables, where K is a finite set. Their joint probability distribution is a Markov model on a cycle

$$
p(s)=\frac{1}{Z} \prod_{i=0}^{n-1} g_{i}\left(s_{i}, s_{i+1}\right)
$$

where indices $i+1$ are considered modulo n. The functions $g_{i}: K^{2} \rightarrow \mathbb{R}_{+}$are given and Z is a normalisation constant. Find an algorithm for searching the most probable realisation

$$
s^{*}=\underset{s \in K^{n}}{\arg \max } p(s) .
$$

What complexity has it?
Assignment 2. Suppose your task is to automatically determine the thickness of the epidermis layer in OCT images (Optical Coherence Tomography) of skin. The epidermis is the topmost skin layer followed by the dermis. The boundary between them is called epidermis-dermis junction (see Figure). Propose an approach that combines a Deep Network with a Hidden Markov Model for sequences. Discuss how to learn the parameters of the respective model parts provided you are given annotated training data.

Assignment 3. Consider the class of (min, +)-problems on graphs, which require to find the labelling

$$
\boldsymbol{s}^{*}=\underset{s \in K^{V}}{\arg \min } \sum_{i \in V} u_{i}\left(s_{i}\right)+\sum_{\{i, j\} \in E} u_{i j}\left(s_{i}, s_{j}\right)
$$

where (V, E) is an undirected graph, K is a finite label set and $u_{i}: K \rightarrow \mathbb{R}$ and $u_{i j}: K^{2} \rightarrow \mathbb{R}$ are given functions. Prove that this class is NP-hard by reducing the maximum clique problem to it.
Hint: Suppose that the graph $\left(V^{\prime}, E^{\prime}\right)$ is an input instance for the maximum clique problem. Consider the graph (V, E) with $V=V^{\prime}, E=\overline{E^{\prime}}$ and the label set $K=\{0,1\}$. Find functions u_{i} and $u_{i j}$ such that a labelling s is optimal if and only if it "encodes" a maximum clique.

Assignment 4. Let $\mathcal{X} \subseteq \mathbb{R}^{d}$ be a set of input observations and $\mathcal{Y}=\{+1,-1\}$ a set of hidden states. A two-class linear classifier is defined as

$$
h(\boldsymbol{x} ; \boldsymbol{v}, b)= \begin{cases}+1 & \text { if } \quad\langle\boldsymbol{v}, \boldsymbol{x}\rangle+b \geq 0 \\ -1 & \text { if } \quad\langle\boldsymbol{v}, \boldsymbol{x}\rangle+b<0\end{cases}
$$

where $(\boldsymbol{v}, b) \in \mathbb{R}^{d+1}$ denote its parameters. The parameters (\boldsymbol{v}, b) can be learned from examples $\mathcal{T}^{m}=\left\{\left(\boldsymbol{x}^{i}, y^{i}\right) \in \mathcal{X} \times \mathcal{Y} \mid i=1, \ldots, m\right\}$ by the SVM algorithm which minimizes the average of the hinge loss

$$
F(\boldsymbol{v}, b)=\frac{1}{m} \sum_{i=1}^{m} \max \left\{0,1-y^{i}\left(\left\langle\boldsymbol{x}^{i}, \boldsymbol{v}\right\rangle+b\right)\right\}
$$

A generic linear classifier is defined as

$$
\begin{equation*}
h^{\prime}(\boldsymbol{x} ; \boldsymbol{w})=\underset{y \in \mathcal{Y}}{\arg \max }\langle\boldsymbol{w}, \phi(\boldsymbol{x}, y)\rangle \tag{1}
\end{equation*}
$$

where $\boldsymbol{w} \in \mathbb{R}^{n}$ are parameters and $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{n}$ is a joint feature map. The parameters \boldsymbol{w} can be learned from examples \mathcal{T}^{m} by the SO-SVM algorithm which minimizes the average of the margin re-scaling loss

$$
\begin{equation*}
F^{\prime}(\boldsymbol{w})=\frac{1}{m} \sum_{i=1}^{m} \max \left\{0, \max _{y \in \mathcal{Y} \backslash\left\{y^{i}\right\}}\left(\ell\left(y^{i}, y\right)+\left\langle\boldsymbol{w}, \boldsymbol{\phi}\left(\boldsymbol{x}^{i}, y\right)\right\rangle-\left\langle\boldsymbol{w}, \boldsymbol{\phi}\left(\boldsymbol{x}^{i}, y^{i}\right)\right\rangle\right\}\right. \tag{2}
\end{equation*}
$$

where $\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{+}$is some target loss depending on the application at hand.
Your task is to show that the standard SVM is a special case of the SO-SVM algorithm. To this end, define the joint feature map ϕ and the target loss ℓ such that the twoclass classifier $h(\boldsymbol{x} ; \boldsymbol{v}, b)$ is equivalent to the generic linear classifier $h^{\prime}(\boldsymbol{x} ; \boldsymbol{w})$ and the objectives of the standard SVM and the SO-SVM are equivalent as well. In other words, you need to define ϕ and ℓ such that

$$
h(\boldsymbol{x} ; \boldsymbol{v}, b)=h^{\prime}(\boldsymbol{x} ;(\boldsymbol{v}, b)), \forall \boldsymbol{x} \in \mathcal{X}, \quad \text { and } \quad F(\boldsymbol{v}, b)=F^{\prime}((\boldsymbol{v}, b)), \forall \boldsymbol{v} \in \mathbb{R}^{d}, b \in \mathbb{R}
$$

where $(\boldsymbol{v}, b) \in \mathbb{R}^{d+1}$ denotes a vector obtained by concatenating \boldsymbol{v} and b.
Assignment 5. Let $\mathcal{X} \subseteq \mathbb{R}^{d}$ be a set of input observations and $\mathcal{Y}=\{1, \ldots, Y\}$ a set of hidden states. The linear multi-class classifier is defined as

$$
\begin{equation*}
h(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{b})=\underset{y \in \mathcal{Y}}{\arg \max }\left(\left\langle\boldsymbol{w}_{y}, \boldsymbol{x}\right\rangle+b_{y}\right) \tag{3}
\end{equation*}
$$

where $\boldsymbol{W}=\left(\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{Y}\right) \in \mathbb{R}^{d \times Y}$ is a matrix whose columns are the class templates and $\boldsymbol{b}=\left(b_{1}, \ldots, b_{Y}\right) \in \mathbb{R}^{Y}$ is a vector of the class biases.
a) Define the joint feature map $\phi: \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}^{n}$ and the corresponding joint parameter vector $\boldsymbol{w} \in \mathbb{R}^{n}$ composed of \boldsymbol{W} and \boldsymbol{b} such that the generic linear classifier (1) and the multi-class classifier (3) are equivalent, that is, $h^{\prime}(\boldsymbol{x} ; \boldsymbol{w})=h(\boldsymbol{x} ; \boldsymbol{W}, \boldsymbol{b}), \forall \boldsymbol{x} \in \mathcal{X}$.
b) Given a training set $\mathcal{T}^{m}=\left\{\left(\boldsymbol{x}^{i}, y^{i}\right) \in \mathcal{X} \times \mathcal{Y} \mid i=1, \ldots, m\right\}$, the SO-SVM algorithm learns the parameters of the generic linear classifier (1) by solving a convex problem

$$
\begin{equation*}
\boldsymbol{w}^{*}=\underset{\boldsymbol{w} \in \mathbb{R}^{n}}{\arg \min }\left(\frac{\lambda}{2}\|\boldsymbol{w}\|^{2}+F^{\prime}(\boldsymbol{w})\right) \tag{4}
\end{equation*}
$$

where $\lambda>0$ is a regularization constant and the empirical risk proxy $F^{\prime}(\boldsymbol{w})$ is defined by (2). Use ϕ derived in point \mathbf{a}) to instantiate the problem (4) for the multi-class linear classifier (3) and the $0 / 1$-loss $l\left(y, y^{\prime}\right)=\llbracket y \neq y^{\prime} \rrbracket$.
c) Rewrite the convex program from point \mathbf{b}) as an equivalent quadratic programming task. What is the number of linear constraints of the quadratic program?

