STATISTICAL MACHINE LEARNING (WS2017)
SEMINAR 4

Assignment 1. Define backward messages for the following layers.
Note that all outputs of these layers are computed independently so
we can omit subscripts, i.e., y(x) = y;(x) for each layer output j.

a) Sigmoid:
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Express the backward message y'(x) using the forward message y(x).
b) Hyperbolic tangent:
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Express the backward message y'(x) using the forward message y(x).

c) Rectified Linear Unit (ReLU):
y(x) = max(0, z). 3)

Assignment 2. Use backpropagation to compute gradient of loss func-
tion with respect to parameters for logistic regression considering a

single sample, i.e., give g—f) where:
Uy, 9) = —[ylog(9) + (1 —y) log(1 — 7)), (4)
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s = (@, w) (6)

Assignment 3. a) Give the backward message for the multinomial
cross entropy layer for a single dataset sample:

((t,p) = th log(p;) (7)

where p = (pl, - ,pK)T is an input vector and t a one-hot encoded
target vector (for the target class k € {1,..., K} we have t; = 1 and
tl:Oforl%k).

b) Give the backward message for the softmax layer:

m(s)zﬁ, je{l,.. K} (3)
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c) Give the backward message for the linear layer:
N
Sj(ﬂJ,W) :Zwijxi, j S {1,,K} (9)
i=1

where x = (xl, - ,xN)T is an input vector and w;; a weight of the
connection between input ¢ and output j. Give also the parameter
message g)u‘jfj.

d) Combine all layers to form the logistic regression model:

((t, p(s(z, W))) (10)

and use the previous results to get its gradient with respect to the
parameters:
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ie{l,....,N}, je{l,...,K} (11)

Assignment 4. Consider the following neural network:
M N
yp(z, W W) = Zwﬁ) tanh (Z wl(jl)xl) ; (12)
j=1 i=1

having outputs denoted k € {1,..., K'}. Draw the network. Swapping
positions of any two neurons in the first linear layer will not change the
output of the network. Similarly changing sign of all input and output
connection weights of a neuron in the same layer will not change the
network’s output (because tanh(—x) = —tanh(z)). Such configura-
tions are called the weight-space symmetries. Compute the maximum
number of networks preserving output for the same input based on the
defined weight-space symmetries.

Assignment 5. a) Recall the negative log likelihood for the linear
regression:

L(w) = % log (2m0?) + (y — Xw)" (y — Xw) (13)
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where:
1 211 ... T xt
X=(1 ¢ - 1 ]=1: (14)
1 Zpi oo Zom xl

is the input matrix (input dimension n, the number of data samples
m),

Yy = (yh ey y’m)Ty Yi € R™ (15)

the target vector and

w = (wm R wn)T, w; € R™ (16)



is the weight vector. Prove that the MLE solution is:
w* = (X"X) " XTy (17)

b) When L2 regularization is involved we get the following loss func-
tion:

L(w)=(y—Xw) (y—Xw)+ I w w, A>0 (18)
Prove that the MLE solution is now:
w' = (XTX + ) X"y (19)

Hint: use matrix calculus identities for differentiation to simplify your
computations.



