## STATISTICAL MACHINE LEARNING (WS2017) SEMINAR 3

Assignment 1. ${ }^{1}$ There have been 58 US presidential elections. Let us see each county's voting outcome as a predictor $h: \mathcal{X} \rightarrow \mathcal{Y}$, where $\mathcal{X}=\{1,2, \ldots\}$ is the set of election indices and $\mathcal{Y}$ is a set of all presidential candidates. Assume that the sequence of elected presidents \{ "George Washington", "George Washington", . . . "Barack Obama", "Donald Trump" $\}$ is a realization of i.i.d. random variables with unknown distribution $p(y)$. There are $|\mathcal{H}|=3100$ US counties. Suppose there is a county $h^{\prime}$ which has always correctly predicted the elected US president. What is the probability that this county will not predict the correct president in the future elections with confidence at least $95 \%$ ?
Assignment 2. ${ }^{2}$ Let us consider the space of all linear classifiers mapping $\boldsymbol{x} \in \mathbb{R}^{d}$ to $\{-1,+1\}$, that is

$$
\mathcal{H}=\left\{h(\boldsymbol{x} ; \boldsymbol{w}, b)=\operatorname{sign}(\langle\boldsymbol{w}, \boldsymbol{x}\rangle+b) \mid(\boldsymbol{w}, b) \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)\right\} .
$$

Show that the VC dimension of $\mathcal{H}$ is $d+1$.
Assignment 3. Consider a hypothesis space of classifiers

$$
\mathcal{H}=\{h(x ; a)=\operatorname{sign}(\sin (a x)) \mid a \in \mathbb{R}\} .
$$

That is, each $h \in \mathcal{H}$ is determined by a single parameter $a \in \mathbb{R}$ and it maps real valued input $x \in \mathbb{R}$ to a set of hidden labels $\{+1,-1\}$ based on the sign of the score $\sin (x a)$. Show that the VC dimension of $\mathcal{H}$ is infinite.
Hint: Show that for arbitrary set of labels $\left\{y^{i} \in\{+1,-1\} \mid i=1, \ldots, m\right\}$ the inputs $\left\{x^{i}=10^{-i} \mid i=1, \ldots, m\right\}$ can be predicted correctly by $h(x ; a)$ with

$$
a=\pi\left(1+\frac{1}{2} \sum_{i=1}^{m}\left(1-y^{i}\right) 10^{i}\right)
$$

Assignment 4. Assume we are given a training set of examples $\mathcal{T}^{m}=\left\{\left(x^{i}, y^{i}\right) \in\right.$ $(\mathcal{X} \times\{+1,-1\}) \mid i=1, \ldots, m\}$ which is known to be linearly separable with respect to a feature map $\phi: \mathcal{X} \rightarrow \mathbb{R}^{n}$. In this case, we can find parameters $(\boldsymbol{w}, b) \in \mathbb{R}^{n+1}$ of a linear classifier $h(x ; \boldsymbol{w}, b)=\operatorname{sign}(\langle\boldsymbol{\phi}(x), \boldsymbol{w}\rangle+b)$ which has zero training error by the Perceptron algorithm:
(1) $\boldsymbol{w} \leftarrow 0, b \leftarrow 0$
(2) Find an example $\left(x^{u}, y^{u}\right) \in \mathcal{T}^{m}$ whose label is incorrectly predicted by the current classifier, that is $h\left(x^{u} ; \boldsymbol{w}, b\right) \neq y^{u}$.

[^0](3) If all examples are classified correctly exit the algorithm. Otherwise update the parameters by
$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y^{u} \boldsymbol{\phi}\left(x^{u}\right) \quad \text { and } \quad b \leftarrow b+y^{u}
$$
and go to Step 2.
Assume that you cannot evaluate the feature map $\phi(x)$ because it is either unknown or its evaluation is expensive. However, you know how to cheaply evaluate a kernel function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ such that $k\left(x, x^{\prime}\right)=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle, \forall x, x^{\prime} \in \mathcal{X}$. Show that you can still use the Perceptron algorithm to find a linear classifier with zero training error and that you can evaluate this classifier on any $x \in \mathcal{X}$.

Assignment 5. Let the input observation be a vector $\boldsymbol{x} \in \mathbb{R}^{d}$. Let us consider a feature $\operatorname{map} \phi_{q}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}, n=d^{q}$, whose entries are all possible $q$-th degree ordered products of the entries of $\boldsymbol{x}$. For example, if $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3}$ and $q=2$ then

$$
\boldsymbol{\phi}_{q}(\boldsymbol{x})=\left(\begin{array}{c}
x_{1} x_{1} \\
x_{2} x_{1} \\
x_{3} x_{1} \\
x_{1} x_{2} \\
x_{2} x_{2} \\
x_{3} x_{2} \\
x_{1} x_{3} \\
x_{2} x_{3} \\
x_{3} x_{3}
\end{array}\right)
$$

a) Show that for any $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{d}$ we can compute the dot product between $\boldsymbol{\phi}_{q}(\boldsymbol{x})$ and $\boldsymbol{\phi}_{q}\left(\boldsymbol{x}^{\prime}\right)$ as

$$
\left\langle\boldsymbol{\phi}_{q}(\boldsymbol{x}), \boldsymbol{\phi}_{q}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle^{q}
$$

that is, as the dot product of the original vectors $\boldsymbol{x}$ and $\boldsymbol{x}^{\prime}$ powered to $q$.
b) Consider a slightly different feature map $\phi^{\prime}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d(d+1) / 2}$ whose entries are

$$
\begin{array}{ccccc}
\boldsymbol{\phi}^{\prime}(\boldsymbol{x})=\left(\begin{array}{cccc}
x_{1}^{2}, & \sqrt{2} x_{1} x_{2}, & \sqrt{2} x_{1} x_{3}, & \ldots, \\
x_{2}^{2}, & \sqrt{2} x_{1} x_{d} \\
& \sqrt{2} x_{2} x_{3}, & \ldots, & \sqrt{2} x_{2} x_{d} \\
& & & \vdots \\
& & & x_{d}^{2}
\end{array}\right)^{T}
\end{array}
$$

so that the features correspond to all possible products of unordered pairs of entries from $\boldsymbol{x}$, and the products of different entries are multiplied by a constant factor $\sqrt{2}$. For example, if $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3}$ then

$$
\phi^{\prime}(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1} x_{3}, x_{2}^{2}, \sqrt{2} x_{2} x_{3}, x_{3}^{2}\right)^{T}
$$

This feature map defines a kernel $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\boldsymbol{\phi}^{\prime}(\boldsymbol{x}), \boldsymbol{\phi}^{\prime}\left(\boldsymbol{x}^{\prime}\right)\right\rangle$ referred to as the homogeneous polynomial kernel of degree 2 . Show that the kernel value equals to the square
of the dot product of the input vectors, that is prove the identity

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\phi^{\prime}(\boldsymbol{x}), \phi^{\prime}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle^{2}, \quad \forall \boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{d}
$$

Hint: Exploit the relation between $\boldsymbol{\phi}(\boldsymbol{x})$ and $\boldsymbol{\phi}^{\prime}(\boldsymbol{x})$.


[^0]:    ${ }^{1}$ Adopted from Xiaojin Zhu http://pages.cs.wisc.edu/~jerryzhu/teaching.html
    ${ }^{2}$ This assignment is relatively complicated. You may skip it you find it too difficult.

