STATISTICAL MACHINE LEARNING (WS2017)
SEMINAR 3

Assignment 1. ' There have been 58 US presidential elections. Let us see each county’s
voting outcome as a predictor h: X — Y, where X = {1,2,...} is the set of election
indices and ) is a set of all presidential candidates. Assume that the sequence of elected
presidents { "George Washington", "George Washington", . . . , “Barack Obama", "Don-
ald Trump" } is a realization of i.i.d. random variables with unknown distribution p(y).
There are || = 3100 US counties. Suppose there is a county 4’ which has always cor-
rectly predicted the elected US president. What is the probability that this county will
not predict the correct president in the future elections with confidence at least 95%?

Assignment 2.  Let us consider the space of all linear classifiers mapping © € R? to
{—1,+1}, that is

H = {h(z;w,b) = sign((w,z) +b) | (w,b) € (R xR)} .
Show that the VC dimension of H is d + 1.
Assignment 3. Consider a hypothesis space of classifiers
H = {h(x;a) = sign(sin(az)) | a € R} .

That is, each h € H is determined by a single parameter a € R and it maps real valued
input = € R to a set of hidden labels {+1, —1} based on the sign of the score sin(za).
Show that the VC dimension of A is infinite.

Hint: Show that for arbitrary set of labels {y* € {+1,—1} | i = 1,...,m} the inputs
{z' =107"| i =1,...,m} can be predicted correctly by h(x;a) with

a= 7r<1 + % iu — yi)10i>

=1

Assignment 4. Assume we are given a training set of examples 7™ = {(z2¢,y%) €
(X x {+1,—1}) | i = 1,...,m} which is known to be linearly separable with respect
to a feature map ¢: X — R". In this case, we can find parameters (w,b) € R"*! of a
linear classifier h(x; w,b) = sign({¢(x), w) + b) which has zero training error by the
Perceptron algorithm:

(D) w<+0,b+0

(2) Find an example (z“,y*) € T™ whose label is incorrectly predicted by the

current classifier, that is h(z"; w, b) # y".

! Adopted from Xiaojin Zhu http://pages.cs.wisc.edu/~jerryzhu/teaching.html
’This assignment is relatively complicated. You may skip it you find it too difficult.
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(3) If all examples are classified correctly exit the algorithm. Otherwise update the
parameters by

w— w+ y'op(z") and b« b+y"

and go to Step 2.

Assume that you cannot evaluate the feature map ¢(z) because it is either unknown
or its evaluation is expensive. However, you know how to cheaply evaluate a kernel
function k: X x X — R such that k(x,2") = (¢(z), p(2)), Vo,2’ € X. Show that
you can still use the Perceptron algorithm to find a linear classifier with zero training
error and that you can evaluate this classifier on any x € X.

Assignment 5. Let the input observation be a vector € R?. Let us consider a feature
map ¢,: RY — R", n = d? whose entries are all possible g-th degree ordered products
of the entries of . For example, if £ = (1, 79, 23)7 € R3 and ¢ = 2 then
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a) Show that for any x, ' € R? we can compute the dot product between ¢,(x) and
¢,(x') as
(Pq(x), D)) = (z, 2)
that is, as the dot product of the original vectors x and &’ powered to q.
b) Consider a slightly different feature map ¢’ : R¢ — R44+1)/2 whose entries are

d'(x) = ( 23 V2mime, V2mix3, ..., V21124
ZIJ%, \/55521’3, ey \/§£L’2.Td,

vy ),
so that the features correspond to all possible products of unordered pairs of entries

from «, and the products of different entries are multiplied by a constant factor v/2. For
example, if © = (21, 79, 23)7 € R3 then

&' (x) = (22, V21129, V21123, 13,V 2w0w3, 22) T

This feature map defines a kernel k(x, ') = (¢'(x), ¢'(x')) referred to as the homo-
geneous polynomial kernel of degree 2. Show that the kernel value equals to the square



of the dot product of the input vectors, that is prove the identity
k(x,x') = (¢ (x), ¢ (z)) = (x,x')?, Ve, ' ¢ R?.

Hint: Exploit the relation between ¢(x) and ¢'(x).



