STATISTICAL MACHINE LEARNING (WS2017) SEMINAR 2

Assignment 1. Consider a prediction problem when the set of input observations is $\mathcal{X}=\mathbb{R}$, the set of hidden states is $\mathcal{Y}=\{+1,-1\}$, the loss function is $\ell\left(y, y^{\prime}\right)=0$ if $y=y^{\prime}$ and $\ell\left(y, y^{\prime}\right)=1$ if $y \neq y$, and the joint distribution reads

$$
p(x, y)=p(y) \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{\left(x-\mu_{y}\right)^{2}}{2 \sigma^{2}}}
$$

where $p(y), y \in \mathcal{Y}$, are the prior probabilities and $\mu_{+1} \in \mathbb{R}, \mu_{-1} \in \mathbb{R}, \sigma \in \mathbb{R}_{++}$, are some parameters such that $\mu_{+1}>\mu_{-1}$.
a) Show that optimal prediction rule minimizing the expected risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x))$ is of the form

$$
h(x)=\left\{\begin{array}{lll}
+1 & \text { if } & x \geq \theta \tag{1}\\
-1 & \text { if } & x<\theta
\end{array}\right.
$$

where θ is a constant. Derive an explicit formula to compute θ from the parameters.
b) Show that the expected risk of the thresholding rule (1) reads

$$
R(h)=\int_{-\infty}^{\theta} p(x,+1) \mathrm{d} x+\int_{\theta}^{\infty} p(x,-1) \mathrm{d} x .
$$

Assignment 2. Consider the task of age estimation based on visual cues. Let us denote the visual features by $x \in \mathcal{X}$ and the unknown age by $y \in \mathbb{N}$. The statistical relation between the two random variables is known and given by their joint distribution $p(x, y)$.
a) Deduce the optimal prediction rule for the loss function $\ell\left(y, y^{\prime}\right)=\left|y-y^{\prime}\right|^{2}$.
b) Same for the loss function $\ell\left(y, y^{\prime}\right)=\left|y-y^{\prime}\right|$.

Assignment 3. We are given a prediction rule $h: \mathcal{X} \rightarrow\{-1,+1\}$. The task is to estimate the probability of misclassification $R(h)=\mathbb{E}_{(x, y) \sim p}(\llbracket y \neq h(x) \rrbracket)$ by computing the (empirical) test error

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l} \sum_{i=1}^{l} \llbracket y^{j} \neq h\left(x^{j}\right) \rrbracket
$$

where $\mathcal{S}^{l}=\left\{\left(x^{i}, y^{i}\right) \in(\mathcal{X} \times \mathcal{Y}) \mid i=1, \ldots, l\right\}$ is a set of examples drawn from i.i.d. random variables with the distribution $p(x, y)$.
What is the minimal number of test examples l we need to collect in order to have a guarantee that the probability of misclassification $R(h)$ is in the interval $\left(R_{\mathcal{S}_{l}}(h)-\right.$ $\left.0.01, R_{\mathcal{S}^{l}}(h)+0.01\right)$ with probability $90 \%, 95 \%$ and 99% ?

Assignment 4. Let \mathcal{H} be a hypothesis space containing all linear prediction rules assigning input observation $x \in \mathcal{X}$ to two hidden states $y \in \mathcal{Y}=\{+1,-1\}$ so that

$$
h(x)=\left\{\begin{array}{lll}
+1 & \text { if } & \langle\boldsymbol{w}, \boldsymbol{\phi}(x)\rangle+b \geq 0, \\
-1 & \text { if } & \langle\boldsymbol{w}, \boldsymbol{\phi}(x)\rangle+b<0,
\end{array}\right.
$$

where $\boldsymbol{w} \in \mathbb{R}^{n}, b \in \mathbb{R}$, are parameters and $\phi: \mathcal{X} \rightarrow \mathbb{R}^{n}$ is a map which returns a n-dimensional feature vector for each $x \in \mathcal{X}$.

Let $R(h)=\mathbb{E}_{(x, y) \sim p}(\llbracket y \neq h(x) \rrbracket)$ denote the expectation of 0/1-loss function w.r.t some distribution $p(x, y)$, let $R^{*}=\inf _{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ be the best attainable risk and $h_{\mathcal{H}} \in$ $\operatorname{Arg} \min _{h \in \mathcal{H}} R(h)$ the best (if not unique then one of the best) predictor in \mathcal{H}.
Try to find examples of triplets $\mathcal{X}, p(x, y)$ and $\boldsymbol{\phi}(x)$ such that using the hypothesis space containing all linear predictors implies zero approximation error $R\left(h_{\mathcal{H}}\right)-R^{*}$.

