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Example 1: ImageNet (visual object classification)

� Training set: T m =
{
(xi,yi) ∈ X ×Y | i= 1, . . . ,m

}
, where:

• X are images from ImageNet,

• Y is a set of output classes (ILSVRC 2012 defines |Y|= 1000 of them).

http://cmp.felk.cvut.cz
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Example 1: ImageNet (visual object classification)
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� Class of prediction strategies: VGGNet (Zisserman, et al., 2014), i.e. a convolutional
neural network with fixed structure. Note that a convolutional neural network with p
layers is a function composition hθ(x) = (fpθp ◦f

p−1
θp−1
◦ . . .◦f 1

θ1
)(x). Its outputs are

interpreted as class probabilities.
� Loss function: negative log-likelihood of class probabilities (a.k.a. cross entropy)

`(yi,h(xi)) =−
∑
c∈Y

I
{
yi = c

}
log(hc(x

i)).

� Learning approach: empirical risk minimisation, gradient descent

RT m(θ) =
1

m

m∑
i=1

`(yi,hθ(x
i))→min

θ

http://cmp.felk.cvut.cz
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Example 1: ImageNet (visual object classification)

� Results by VGGNet

� More details in lectures on deep learning

http://cmp.felk.cvut.cz
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Example 1: ImageNet (visual object classification)

A “spin-off”: a fully convolutional network for semantic segmentation

Fully Convolutional Networks for Semantic Segmentation

Jonathan Long⇤ Evan Shelhamer⇤ Trevor Darrell
UC Berkeley

{jonlong,shelhamer,trevor}@cs.berkeley.edu

Abstract

Convolutional networks are powerful visual models that
yield hierarchies of features. We show that convolu-
tional networks by themselves, trained end-to-end, pixels-
to-pixels, exceed the state-of-the-art in semantic segmen-
tation. Our key insight is to build “fully convolutional”
networks that take input of arbitrary size and produce
correspondingly-sized output with efficient inference and
learning. We define and detail the space of fully convolu-
tional networks, explain their application to spatially dense
prediction tasks, and draw connections to prior models. We
adapt contemporary classification networks (AlexNet [19],
the VGG net [31], and GoogLeNet [32]) into fully convolu-
tional networks and transfer their learned representations
by fine-tuning [4] to the segmentation task. We then de-
fine a novel architecture that combines semantic informa-
tion from a deep, coarse layer with appearance information
from a shallow, fine layer to produce accurate and detailed
segmentations. Our fully convolutional network achieves
state-of-the-art segmentation of PASCAL VOC (20% rela-
tive improvement to 62.2% mean IU on 2012), NYUDv2,
and SIFT Flow, while inference takes less than one fifth of a
second for a typical image.

1. Introduction

Convolutional networks are driving advances in recog-
nition. Convnets are not only improving for whole-image
classification [19, 31, 32], but also making progress on lo-
cal tasks with structured output. These include advances in
bounding box object detection [29, 12, 17], part and key-
point prediction [39, 24], and local correspondence [24, 9].

The natural next step in the progression from coarse to
fine inference is to make a prediction at every pixel. Prior
approaches have used convnets for semantic segmentation
[27, 2, 8, 28, 16, 14, 11], in which each pixel is labeled with
the class of its enclosing object or region, but with short-
comings that this work addresses.

⇤Authors contributed equally
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Figure 1. Fully convolutional networks can efficiently learn to
make dense predictions for per-pixel tasks like semantic segmen-
tation.

We show that a fully convolutional network (FCN),
trained end-to-end, pixels-to-pixels on semantic segmen-
tation exceeds the state-of-the-art without further machin-
ery. To our knowledge, this is the first work to train FCNs
end-to-end (1) for pixelwise prediction and (2) from super-
vised pre-training. Fully convolutional versions of existing
networks predict dense outputs from arbitrary-sized inputs.
Both learning and inference are performed whole-image-at-
a-time by dense feedforward computation and backpropa-
gation. In-network upsampling layers enable pixelwise pre-
diction and learning in nets with subsampled pooling.

This method is efficient, both asymptotically and abso-
lutely, and precludes the need for the complications in other
works. Patchwise training is common [27, 2, 8, 28, 11], but
lacks the efficiency of fully convolutional training. Our ap-
proach does not make use of pre- and post-processing com-
plications, including superpixels [8, 16], proposals [16, 14],
or post-hoc refinement by random fields or local classifiers
[8, 16]. Our model transfers recent success in classifica-
tion [19, 31, 32] to dense prediction by reinterpreting clas-
sification nets as fully convolutional and fine-tuning from
their learned representations. In contrast, previous works
have applied small convnets without supervised pre-training
[8, 28, 27].

Semantic segmentation faces an inherent tension be-
tween semantics and location: global information resolves
what while local information resolves where. Deep feature
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� uses transposed convolutions for up-sampling

� uses “transfer learning” from VGGNet

http://cmp.felk.cvut.cz
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Example 2: licence plate recognition

Online app estimating the Travel Time for cars in Prague based on the number plate
recognition: https://unicam.camea.cz/Discoverer/TravelTime3/map

http://cmp.felk.cvut.cz
https://youtu.be/up6PytHAQvM
https://youtu.be/O55jeHAxFE0
https://unicam.camea.cz/Discoverer/TravelTime3/map
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Example 2: licence plate recognition

Input image x ∈ X of size [H×W ]

Model of synthetic license plate images
A set of templates w = (wa|a ∈ A) for each character from A

0 1 9 A ZB... ...
A segmentation y = (s1, . . . ,sL) ∈ Y(x), where s= (a,k), a ∈ A is a character code and
k ∈ {1, . . . ,W} is a character position, together with templates w defines a synthetic image:

����U L K 6 8 3 9
An admissible segmentation y ∈ Y(x) ensures that the templates are not overlapping and

that the synthetic image has the same width as the input image x:

k(s1) = 1 , W = k(sL)+ω(sL)−1 , and k(si) = k(si−1)+ω(si−1) , ∀i > 1

where ω : A→N are widths of the templates.

http://cmp.felk.cvut.cz
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Example 2: licence plate recognition

� We want a classifier which outputs the segmentations y ∈ Y(x) defining a synthetic
image most similar (measured by correlation) to the input image x:

ŷ = h(x;w) = argmax
(s1,...,sL)∈Y(x)

L(y)∑
i=1

ω(a(si))∑
j=1

〈
col
(
x,j+k(si)−1

)
,col

(
wa(si), j

)〉
︸ ︷︷ ︸

� Problem: How to construct the templates w = {wa|a ∈ A} so that the classifier
h(x;w) predicts a segmentation with small Hamming distance to the correct one ?

� Solution: Select the templates w so that the classifier h(x;w) performs well on a
training set {(x1,y1), . . . ,(xm,ym)} and simultaneously control the over-fitting.

� More details during the lecture on the Structured Output Support Vector Machines.

http://cmp.felk.cvut.cz
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Example 3: Joint segmentation & registration

Given: set of images, each containing an object instance, and a shape model

. . .,

. . .,

Task: segment & register each image to the reference frame (shape model)

� image x = {xi ∈ R3 | i ∈D′}, binary segmentation y = {yi ∈ {0,1} | i ∈D}

� shape model p(y) =
∏
i∈D pi(yi), with binomial distributions pi(yi = 0,1).

� appearance model pθ
(
xj | (Ty)j), j ∈D′, where

• T is an affine transformation,

• pθ0(xj | y′j = 0), pθ1(xj | y′j = 1) are two mixtures of Gaussians.

http://cmp.felk.cvut.cz
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� loss function `(y,y′) =
∑
i∈D I{yi 6= y′i}, i.e. Hamming distance

(1) Segmentation for known T and θ: minimise expected Hamming distance between true
and estimated segmentation ⇒

y = hT,θ(x) = {hi(x) | i ∈D}

hi(x) = argmax
yi=0,1

pθ
(
(T−1x)i | yi

)
·pi(yi)

(2) How to estimate unknown T and θ? See lecture on the EM-Algorithm.

http://cmp.felk.cvut.cz
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