STATISTICAL MACHINE LEARNING (WS2019) SEMINAR 4

Assignment 1. Let us consider the space of linear classifiers mapping $\boldsymbol{x} \in \mathbb{R}^{n}$ to $\{-1,+1\}$, that is

$$
\mathcal{H}=\left\{h(\boldsymbol{x} ; \boldsymbol{w}, b)=\operatorname{sign}(\langle\boldsymbol{w}, \boldsymbol{x}\rangle+b) \mid(\boldsymbol{w}, b) \in\left(\mathbb{R}^{d} \times \mathbb{R}\right)\right\}
$$

Show that the VC dimension of \mathcal{H} is $n+1$.
Hint: The proof has two steps:
(1) Show that the VC dimension is at least $n+1$ by constructing $n+1$ points that are shatted by \mathcal{H}.
(2) Show that the VC dimension is less than $n+2$ by proving that $n+2$ points cannot be shattered by \mathcal{H}.
The step 1 should be easy. If you find step 2 difficult, skip it for sake of other assignments.
Assignment 2. Let $\mathcal{T}^{m}=\left\{\left(x^{i}, y^{i}\right) \in \mathbb{R}^{n} \times\{-1,+1\} \mid i=1, \ldots, m\right\}$ be a training set of linearly separable examples. The SVM algorithm for linearly separable examples finds parameters $\left(\boldsymbol{w}^{*}, b^{*}\right) \in \mathbb{R}^{n+1}$ of a linear classifier

$$
h\left(x ; \boldsymbol{w}^{*}, b^{*}\right)=\operatorname{sign}\left(\left\langle\boldsymbol{w}^{*}, \boldsymbol{x}\right\rangle+b^{*}\right)
$$

by solving a convex quadratic program

$$
\begin{equation*}
\left(\boldsymbol{w}^{*}, b^{*}\right) \in \underset{(\boldsymbol{w}, b) \in \mathbb{R}^{n+1}}{\operatorname{Arg} \min } \frac{1}{2}\|\boldsymbol{w}\|^{2} \quad \text { s.t. } \quad\left\langle\boldsymbol{w}, \boldsymbol{x}^{i}\right\rangle+b \geq 1, \quad i \in \mathcal{I}_{+} \tag{1}
\end{equation*}
$$

where $\mathcal{I}_{+}=\left\{i \in\{1, \ldots, m\} \mid y^{i}=+1\right\}$ and $\mathcal{I}_{-}=\left\{i \in\{1, \ldots, m\} \mid y^{i}=-1\right\}$ are indices of examples of the positive and the negative class, respectively.
a) For a given $(\boldsymbol{w}, b) \in \mathbb{R}^{n+1}$ such that $\boldsymbol{w} \neq 0$, we can define so called margin

$$
d(\boldsymbol{w}, b)=\min _{i \in\{1, \ldots, m\}} \frac{y^{i}\left(\left\langle\boldsymbol{w}, \boldsymbol{x}^{i}\right\rangle+b\right)}{\|\boldsymbol{w}\|}
$$

which is a signed distance between the hyperplane $\langle\boldsymbol{w}, \boldsymbol{x}\rangle+b=0$ and the closest examples in \mathcal{T}^{m}. Show that the hyperplane $\left\langle\boldsymbol{w}^{*}, x\right\rangle+b^{*}=0$ found by SVM algorithm (1) maximizes the margin, i.e. it holds that

$$
d\left(\boldsymbol{w}^{*}, b^{*}\right)=\max _{\substack{\boldsymbol{w} \in \mathbb{R}^{n}\left\{\mathbb{R}^{\prime 0\}}\right.}} d(\boldsymbol{w}, b) .
$$

b) How can you compute the value of the maximal margin $d\left(\boldsymbol{w}^{*}, b^{*}\right)$ from the solution $\left(\boldsymbol{w}^{*}, b^{*}\right)$.

Assignment 3. Assume we are given a training set of examples $\mathcal{T}^{m}=\left\{\left(x^{i}, y^{i}\right) \in\right.$ $(\mathcal{X} \times\{+1,-1\}) \mid i=1, \ldots, m\}$ which is known to be linearly separable with respect to a feature map $\phi: \mathcal{X} \rightarrow \mathbb{R}^{n}$. In this case, we can find parameters $(\boldsymbol{w}, b) \in \mathbb{R}^{n+1}$ of a linear classifier $h(x ; \boldsymbol{w}, b)=\operatorname{sign}(\langle\boldsymbol{\phi}(x), \boldsymbol{w}\rangle+b)$ which has zero training error by the Perceptron algorithm:
(1) $\boldsymbol{w} \leftarrow 0, b \leftarrow 0$
(2) Find an example $\left(x^{u}, y^{u}\right) \in \mathcal{T}^{m}$ whose label is incorrectly predicted by the current classifier, that is $h\left(x^{u} ; \boldsymbol{w}, b\right) \neq y^{u}$.
(3) If all examples are classified correctly exit the algorithm. Otherwise update the parameters by

$$
\boldsymbol{w} \leftarrow \boldsymbol{w}+y^{u} \boldsymbol{\phi}\left(x^{u}\right) \quad \text { and } \quad b \leftarrow b+y^{u}
$$

and go to Step 2.
Assume that you cannot evaluate the feature map $\phi(x)$ because it is either unknown or its evaluation is expensive. However, you know how to cheaply evaluate a kernel function $k: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ such that $k\left(x, x^{\prime}\right)=\left\langle\boldsymbol{\phi}(x), \boldsymbol{\phi}\left(x^{\prime}\right)\right\rangle, \forall x, x^{\prime} \in \mathcal{X}$. Show that you can still use the Perceptron algorithm to find a linear classifier with zero training error and that you can evaluate this classifier on any $x \in \mathcal{X}$.

Assignment 4. Let the input observation be a vector $\boldsymbol{x} \in \mathbb{R}^{d}$. Let us consider a feature $\operatorname{map} \phi_{q}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}, n=d^{q}$, whose entries are all possible q-th degree ordered products of the entries of \boldsymbol{x}. For example, if $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3}$ and $q=2$ then

$$
\boldsymbol{\phi}_{q}(\boldsymbol{x})=\left(\begin{array}{c}
x_{1} x_{1} \\
x_{2} x_{1} \\
x_{3} x_{1} \\
x_{1} x_{2} \\
x_{2} x_{2} \\
x_{3} x_{2} \\
x_{1} x_{3} \\
x_{2} x_{3} \\
x_{3} x_{3}
\end{array}\right)
$$

a) Show that for any $\boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{d}$ we can compute the dot product between $\phi_{q}(\boldsymbol{x})$ and $\boldsymbol{\phi}_{q}\left(\boldsymbol{x}^{\prime}\right)$ as

$$
\left\langle\boldsymbol{\phi}_{q}(\boldsymbol{x}), \boldsymbol{\phi}_{q}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle^{q},
$$

that is, as the dot product of the original vectors \boldsymbol{x} and \boldsymbol{x}^{\prime} powered to q.
b) Consider a slightly different feature map $\phi^{\prime}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d(d+1) / 2}$ whose entries are

$$
\begin{array}{ccccc}
\phi^{\prime}(\boldsymbol{x})=\left(\begin{array}{cccc}
x_{1}^{2}, & \sqrt{2} x_{1} x_{2}, & \sqrt{2} x_{1} x_{3}, & \ldots, \\
& \sqrt{2} x_{1} x_{d}, \\
x_{2}^{2}, & \sqrt{2} x_{2} x_{3}, & \ldots, & \sqrt{2} x_{2} x_{d}, \\
& & & \vdots \\
& & & \\
& & x_{d}^{2}
\end{array}\right)^{T},
\end{array}
$$

so that the features correspond to all possible products of unordered pairs of entries from x, and the products of different entries are multiplied by a constant factor $\sqrt{2}$. For example, if $\boldsymbol{x}=\left(x_{1}, x_{2}, x_{3}\right)^{T} \in \mathbb{R}^{3}$ then

$$
\phi^{\prime}(x)=\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1} x_{3}, x_{2}^{2}, \sqrt{2} x_{2} x_{3}, x_{3}^{2}\right)^{T} .
$$

This feature map defines a kernel $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\boldsymbol{\phi}^{\prime}(\boldsymbol{x}), \boldsymbol{\phi}^{\prime}\left(\boldsymbol{x}^{\prime}\right)\right\rangle$ referred to as the homogeneous polynomial kernel of degree 2 . Show that the kernel value equals to the square of the dot product of the input vectors, that is prove the identity

$$
k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\langle\boldsymbol{\phi}^{\prime}(\boldsymbol{x}), \boldsymbol{\phi}^{\prime}\left(\boldsymbol{x}^{\prime}\right)\right\rangle=\left\langle\boldsymbol{x}, \boldsymbol{x}^{\prime}\right\rangle^{2}, \quad \forall \boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathbb{R}^{d} .
$$

Hint: Exploit the relation between $\boldsymbol{\phi}(\boldsymbol{x})$ and $\boldsymbol{\phi}^{\prime}(\boldsymbol{x})$.

