
STATISTICAL MACHINE LEARNING (WS2019)
SEMINAR 3

Assignment 1. Let the observation x ∈ X = Rn and the hidden state y ∈ Y =
{+1,−1} be generated by a multivariate normal distribution
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where µy ∈ Rn, y ∈ Y , are mean vectors, Cy ∈ Rn×n, y ∈ Y , are covariance matrices
and p(y) is a prior probability. Assume that the model parameters are unknown and we
want to learn a strategy h ∈ X → Y which minimizes the probability of misclassifica-
tion. To this end we use a learning algorithm A : ∪∞m=1 (X ×Y)m → H which returns a
strategy h from the class H = {h(x) = sign(〈w,x〉+ b) | w ∈ Rn, b ∈ R} containing
all linear classifers.

a) What is the approximation error in case that C+ = C− ?

b) Is the approximation error going to increase or decrease if C+ 6= C− ?

Assignment 2. We are given a set H = {hi : X → {1, . . . , 100} | i = 1, . . . , 1000}
containing 1000 strategies each predicting a biological age y ∈ {1, . . . , 100} from an
image x ∈ X capturing a human face. The quality of a single strategy is measured by
the expected absolute deviation between the predicted age and the true age

RMAE(h) = E(x,y)∼p(|y − h(x)|) ,

where the expectation is computed w.r.t. an unknown distribution p(x, y). The empirical
estimate of RMAE(h) reads

RT m(h) =
1
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where T m = {(xi, yi) ∈ (X ×Y) | i = 1, . . . ,m} is a set of examples drawn from i.i.d.
random variables with the same unknown p(x, y). Let hm ∈ Argminh∈HRT m(h) be a
strategy with the minimal empirical risk.

a) What is the minimal ε > 0 which allows you to claim that the expected riskRMAE(hm)
is in the interval (RT m(hm)− ε, RT m(hm) + ε) with probability 95% at least ?
b) What is the minimal number of the training examples m which guarantees that
RMAE(hm) is in the interval (RT m(hm) − 1, RT m(hm) + 1) with probability 95% at
least ?



2

Assignment 3. Assume we want to learn a strategy h : X → Y minimizing the ex-
pectation R(h) = E(x,y)∼p`(y, h(x)) of a loss ` : Y × Y → [a, b] w.r.t. to some dis-
tribution p(x, y). We use the ERM algorithm to select hm ∈ Argminh∈HRT m(h)
from the class H = {hi : X → Y | i = 1, . . . , H} containing H strategies. Let
hH ∈ argmini=1,...,H R(hi) be the best strategy in the classH. Let ε > 0 and γ ∈ (0, 1)
be fixed.

Derive a formula to compute the minimal number of training examples m such that

P
(
R(hm)−R(hH) < ε

)
≥ γ ,

i.e. probability of having the estimation error R(hm)−R(hH) less than ε is at least γ.

Hint: use the results from Slides 8 and 10 of Lecture 3.

Assignment 4. Let H ⊆ {+1,−1}X be a hypothesis class with VC dimension d < ∞
and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X×Y)m a training set drawn from i.i.d. random
variables with distribution p(x, y). Then, the following inequality holds for any ε > 0,
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where R0/1(h) = E(x,y)∼p([[y 6= h(x)]]) and R0/1
T m(h) = 1

m

∑m
i=1[[y

i 6= h(xi)]].

Show that this implies the ULLN for the class of strategiesH.


