STATISTICAL MACHINE LEARNING (WS2018) SEMINAR 7

Assignment 1. Let $s_{0}, s_{2}, \ldots, s_{n-1}$ be K-valued random variables, where K is a finite set. Their joint probability distribution is a Markov model on a cycle

$$
p(s)=\frac{1}{Z} \prod_{i=0}^{n-1} g_{i}\left(s_{i}, s_{i+1}\right)
$$

where indices $i+1$ are considered modulo n. The functions $g_{i}: K^{2} \rightarrow \mathbb{R}_{+}$are given and Z is a normalisation constant. Find an algorithm for searching the most probable realisation

$$
s^{*}=\underset{s \in K^{n}}{\arg \max } p(s) .
$$

What complexity has it?
Assignment 2. Consider the class of (min,+)-problems on graphs, which require to find the labelling

$$
\begin{equation*}
s^{*}=\underset{s \in K^{V}}{\arg \min } \sum_{i \in V} u_{i}\left(s_{i}\right)+\sum_{\{i, j\} \in E} u_{i j}\left(s_{i}, s_{j}\right), \tag{1}
\end{equation*}
$$

where (V, E) is an undirected graph, K is a finite label set, $s: V \rightarrow K$ is labelling of the nodes and $u_{i}: K \rightarrow \mathbb{R}$ and $u_{i j}: K^{2} \rightarrow \mathbb{R}$ are given functions.
a) Prove that this class is NP-complete by reducing the maximum clique problem to it. Hint: Suppose that the graph $\left(V^{\prime}, E^{\prime}\right)$ is an input instance for the maximum clique problem. Consider the graph (V, E) with $V=V^{\prime}, E=\overline{E^{\prime}}$ and the label set $K=\{0,1\}$. Find functions u_{i} and $u_{i j}$ such that a labelling s is optimal if and only if it "encodes" a maximum clique.
b) Show that a (min, +)-problem (1) can be solved approximately by α-expansions if the pairwise functions $u_{i j}$ have the form

$$
u_{i j}\left(k, k^{\prime}\right)=\beta_{i j} \mathbf{1}\left\{k \neq k^{\prime}\right\} \text { with } \beta_{i j} \geqslant 0 .
$$

Assignment 3. Consider a linear classifier $h: \mathcal{X} \times \mathcal{X} \rightarrow \mathcal{Y} \times \mathcal{Y}$ predicting a pair of labels $\left(y_{1}, y_{2}\right) \in \mathcal{Y} \times \mathcal{Y}$ from a pair of inputs $\left(x_{1}, x_{2}\right) \in \mathcal{X} \times \mathcal{X}$ based on the rule

$$
\begin{equation*}
h\left(x_{1}, x_{2} ; \boldsymbol{\theta}\right)=\underset{y_{1} \in \mathcal{Y}, y_{2} \in \mathcal{Y}}{\arg \max }\left(\left\langle\boldsymbol{\phi}\left(x_{1}\right), \boldsymbol{w}_{y_{1}}\right\rangle+\left\langle\boldsymbol{\phi}\left(x_{1}\right), \boldsymbol{w}_{y_{1}}\right\rangle+g\left(y_{1}, y_{2}\right)\right) \tag{2}
\end{equation*}
$$

where $\phi: \mathcal{X} \rightarrow \mathbb{R}^{n}$ is a feature map, $\boldsymbol{w}_{y} \in \mathbb{R}^{n}, y \in \mathcal{Y}$, are vectors and $g: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ is a function. The vector $\boldsymbol{\theta} \in \mathbb{R}^{n|\mathcal{Y}|+|\mathcal{Y}|^{2}}$ encapsulates all parameters of the classifier, that is, the vectors $\left\{\boldsymbol{w}_{y} \in \mathbb{R}^{n} \mid y \in \mathcal{Y}\right\}$ and the function values $\left\{g\left(y, y^{\prime}\right) \in \mathbb{R} \mid y \in \mathcal{Y}, y^{\prime} \in\right.$ $\mathcal{Y}\}$.

Let $\mathcal{T}^{m}=\left\{\left(x_{1}^{j}, x_{2}^{j}, y_{1}^{j}, y_{2}^{j}\right) \in(\mathcal{X} \times \mathcal{X} \times \mathcal{Y} \times \mathcal{Y}) \mid j=1, \ldots, m\right\}$ be a set of training examples. Describe a variant of the Perceptron algorithm that finds the parameters $\boldsymbol{\theta}$ such that the classifier (2) predicts all examples from \mathcal{T}^{m} correctly, provided such parameters exist.

