
STATISTICAL MACHINE LEARNING (WS2018)
SEMINAR 5

Assignment 1. Consider the following parameter estimation task. You are given i.i.d. train-
ing data T m = {xi ∈ R | i = 1, 2, . . . ,m} generated from the normal distribution

pµ0(x) =
1√
2π
e−

(x−µ0)
2

2

and the task is to estimate its unknown mean µ0.
a) Prove that the expected log-likelihood

L(µ) =

∫ ∞
−∞
pµ0(x) log pµ(x) dx

has a unique global maximum at µ0.
b) Show that the maximum likelihood estimator is given by the arithmetic mean of the
training data, i.e.

µ∗ = eML(T m) =
1

m

m∑
i=1

xi,

where

eML(T m) = argmax
µ

1

m

m∑
i=1

log pµ(x).

Prove that this estimator is unbiased.
c) Compute the variance of the maximum likelihood estimator, i.e.

Eµ0
[
(µ0 − eML(T m))2

]
.

How does it depend on µ0 and m?

Assignment 2. Consider the exponential family,

pu(x) =
1

Z(u)
exp 〈φ(x),u〉

where u ∈ Rk is a parameter vector, φ(x) ∈ Rk is a feature map, x ∈ X and
Z(u) =

∑
x exp 〈φ(x),u〉 is a normalising factor. This defines a parametrised class

of probability distributions. (Show that the class of univariate normal distributions is an
particular example of such a family.)
a) Prove that each model in this class is identifiable, provided that the affine hull of
the set of vectors

{
φ(x)

∣∣ x ∈ X} is the entire space Rk (or, equivalently, there is no
hyperplane containing all vectors).

1



2

b) Derive the formula for the log-likelihood of given training data T m = {(xi) | i =
1, 2, . . . ,m}. Prove that the logarithm of the probability

log pu(x) = 〈φ(x),u〉 − logZ(u)

is a concave function of u by verifying the following steps.
(1) Prove that the gradient of logZ(u) is

∇u logZ(u) =
∑
x

pu(x)φ(x) = Eu(φ).

(2) Prove that the second derivative of logZ(u) is

∇2
u logZ(u) =

∑
x

pu(x)φ(x)⊗ φ(x)− Eu(φ)⊗ Eu(φ) =

= Eu

[
(φ− Eu(φ))⊗ (φ− Eu(φ))

]
(3) Deduce that the second derivative is a positive semi-definite matrix and conclude

that logZ(u) is convex.

c) Suppose that the parameter vectors are bounded by ‖u‖ 6 R and assume that the
components of the vectors φ(x) are bounded in some interval [a, b]. Prove the Uni-
form Law of Large Numbers for the Maximum Likelihood Estimator by performing the
following steps

(1) Denote the log-likelihood of the training data T m by L(u, T m) and the expected
log-likelihood by L(u) = EvL(u, T m), where v ∈ Rk is the true but unknown
model.

(2) Deduce that

L(u, T m)− L(u) = 〈ET mφ− Ev(φ),u〉
holds, where ET mφ denotes the arithmetic mean of the vectors φ(x) on the
training data and Ev(φ) denotes their expectation w.r.t. the true model.

(3) Prove that

max
‖u‖6R

|L(u, T m)− L(u)| = ‖ET mφ− Ev(φ)‖R

holds.
(4) Conclude the ULLN for MLE-s in this model class.


