STATISTICAL MACHINE LEARNING (WS2018)
SEMINAR 5

Assignment 1. Consider the following parameter estimation task. You are given i.i.d. train-
ingdata 7™ = {x; € R |i=1,2,...,m} generated from the normal distribution
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and the task is to estimate its unknown mean 4.
a) Prove that the expected log-likelihood
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has a unique global maximum at .

b) Show that the maximum likelihood estimator is given by the arithmetic mean of the
training data, i.e.
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Prove that this estimator is unbiased.
¢) Compute the variance of the maximum likelihood estimator, i.e.

B, [(110 — earn (T™))7].

How does it depend on 1y and m?

Assignment 2. Consider the exponential family,
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where u € RF is a parameter vector, ¢(x) € R* is a feature map, r € X and
Z(u) = >, exp(¢(x),u) is a normalising factor. This defines a parametrised class
of probability distributions. (Show that the class of univariate normal distributions is an
particular example of such a family.)

a) Prove that each model in this class is identifiable, provided that the affine hull of
the set of vectors {qb(x) | re X } is the entire space R¥ (or, equivalently, there is no

hyperplane containing all vectors).
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b) Derive the formula for the log-likelihood of given training data 7™ = {(z%) | i =
1,2,...,m}. Prove that the logarithm of the probability

log pu(z) = (¢(2),u) —log Z(u)
is a concave function of w by verifying the following steps.
(1) Prove that the gradient of log Z(u) is

Valog Z(u) =Y pu(r)¢(z) = Eu(e).
(2) Prove that the second derivative of log Z(u) is

Volog Z(u) =) pu()g(r) ® ¢(z) — Bu(¢p) @ Eu(¢) =
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— Eu[(¢ — Eu(®)) ® (¢ — Eu(6))]

(3) Deduce that the second derivative is a positive semi-definite matrix and conclude
that log Z(w) is convex.

¢) Suppose that the parameter vectors are bounded by ||u| < R and assume that the
components of the vectors ¢(z) are bounded in some interval [a,b]. Prove the Uni-
form Law of Large Numbers for the Maximum Likelihood Estimator by performing the
following steps

(1) Denote the log-likelihood of the training data 7" by L(w,7™™) and the expected
log-likelihood by L(u) = E,L(u, T™), where v € R* is the true but unknown
model.

(2) Deduce that

L(“’a Tm) - L(’U,) - <]E7—m¢ - E’u<¢)7 ’U,>
holds, where E7m¢ denotes the arithmetic mean of the vectors ¢(x) on the
training data and [E, (¢) denotes their expectation w.r.t. the true model.
(3) Prove that
max |L(u, T™) — L(u)| = [[Ern¢ — Ey(9)[| R

[ull<R

holds.
(4) Conclude the ULLN for MLE-s in this model class.



