
STATISTICAL MACHINE LEARNING (WS2019)
SEMINAR 7

Assignment 1. Let s0, s2, . . . , sn−1 be K-valued random variables, where K is a finite
set. Their joint probability distribution is a Markov model on a cycle

p(s) =
1

Z

n−1∏
i=0

gi(si, si+1)

where indices i + 1 are considered modulo n. The functions gi : K
2 → R+ are given

and Z is a normalisation constant. Find an algorithm for searching the most probable
realisation

s∗ = argmax
s∈Kn

p(s).

What complexity has it?
Hint: Consider to use dynamic programing restricted to a single starting state.

Assignment 2. Consider a hidden Markov model

p(x, s) = p(s1)
n∏

i=2

p(si | si−1)
n∏

i=1

p(xi | si),

where x = (x1, . . . , xn) is a sequence of features and s = (s1, . . . , sn) is a sequence of
hidden states, with values si from a finite set K. Given a sequence of of features x we
want to predict the sequence of hidden states that has generated x.
a) Suppose we use the simple 0/1-loss `(s, s′) = 1{s 6≡ s′}. Prove that the optimal
predictor h(x) that minimises the expected loss

R(x, h) =
∑
s∈Kn

p(x, s)`(s, h(x)),

is given by
h(x) = argmax

s∈Kn

p(x, s).

b) Let us consider a more suitable loss – the Hamming distance between sequences s
and s′

`(s, s′) =
n∑

i=1

1{si 6= s′i}.

Show that the optimal predictor for this loss is given by

s∗i = argmax
k∈K

p(si = k, x),

i.e. predicting the sequence of most probable states.
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Hint: Consider the expected loss for the Hamming distance, move the sum over the
positions i outside of the summation over the sequences and analyse the resulting terms.
Notice that the derivations in a) and b) are generic and do not presume that the model
p(x, s) for the sequences x, s is an HMM.
c∗) The predictor in b) requires to compute the marginal probabilities p(si = k, x) for
all positions i and all states k ∈ K. Show that for an HMM they can be efficiently
computed by performing dynamic matrix-vector multiplications from left to right and
from right to left and combining the results.

Assignment 3. Consider a linear classifier h : X × X → Y × Y predicting a pair of
labels (y1, y2) ∈ Y × Y from a pair of inputs (x1, x2) ∈ X × X based on the rule

h(x1, x2;θ) = argmax
y1∈Y,y2∈Y

(〈φ(x1),wy1〉+ 〈φ(x1),wy1〉+ g(y1, y2)) (1)

where φ : X → Rn is a feature map,wy ∈ Rn, y ∈ Y , are vectors and g : Y×Y → R is
a function. The vector θ ∈ Rn|Y|+|Y|2 encapsulates all parameters of the classifier, that
is, the vectors {wy ∈ Rn | y ∈ Y} and the function values {g(y, y′) ∈ R | y ∈ Y , y′ ∈
Y}.

Let T m = {(xj
1, x

j
2, y

j
1, y

j
2) ∈ (X × X × Y × Y) | j = 1, . . . ,m} be a set of training

examples. Describe a variant of the Perceptron algorithm that finds the parameters
θ such that the classifier (1) predicts all examples from T m correctly, provided such
parameters exist.
Hint: Try to express the condition under which the classifier (1) correctly predicts an
example from the training data in terms of a system of linear inequalities.


