
STATISTICAL MACHINE LEARNING (SML2016)

4. COMPUTER LAB

Reinforcement Learning

Jan Drchal

1 Overview

Your task for this computer lab is to implement and perform experiments with several rein-
forcement learning methods. In all cases the methods will search for an optimal action-value
function q∗(s, a):

q∗(s, a) = max
π

qπ(s, a) (1)

where the action-value function qπ(s, a) is the expected return of starting in state s, taking
action a and following policy π:

qπ(s, a) = Eπ (Gt | St = s,At = a) . (2)

The methods will be:

1. Value iteration: a dynamic programming approach requiring knowledge of Markov De-
cision Process (MDP) state transition probabilities Pass′ = P (St+1 = s′ | St = s,At = a)
and reward function Ra

s = E (Rt+1 | St = s,At = a).

2. Policy Iteration: an alternative to the value iteration. The implementation of this
method is a bonus task.

3. SARSA: an on-policy method based on Temporal-Difference (TD(0)).

4. Q-learning: an off-policy method based on TD(0).

To evaluate the methods you will run experiments on the windy gridworld as defined in [1]1.
The gridworld is depicted and described in Figure 1.

You will evaluate the convergence of SARSA and Q-learning with respect to optimal action-
value function obtained by means of the value iteration method. Use mean-squared error to
assess quality of the action-value function approximation q(s, a):

E =
1

|S| · |A|
∑
s∈S

∑
a∈A

[q∗(s, a)− q(s, a)]2 . (3)

2 Download

Download an archive from the following link:
https://cw.fel.cvut.cz/wiki/_media/courses/be4m33ssu/rl_data.zip

1Better download a draft to the second edition here: https://webdocs.cs.ualberta.ca/~sutton/book/

bookdraft2016sep.pdf.

1

https://cw.fel.cvut.cz/wiki/_media/courses/be4m33ssu/rl_data.zip
https://webdocs.cs.ualberta.ca/~sutton/book/bookdraft2016sep.pdf
https://webdocs.cs.ualberta.ca/~sutton/book/bookdraft2016sep.pdf

6.4. SARSA: ON-POLICY TD CONTROL 139

0 1000 2000 3000 4000 5000 6000 7000 8000

0

50

100

150

170

Episodes

Time steps

S G

0 0 0 01 1 1 12 2

Actions

Figure 6.4: Results of Sarsa applied to a gridworld (shown inset) in which movement is
altered by a location-dependent, upward “wind.” A trajectory under the optimal policy is
also shown.

about 17 steps, two more than the minimum of 15. Note that Monte Carlo methods
cannot easily be used on this task because termination is not guaranteed for all
policies. If a policy was ever found that caused the agent to stay in the same state,
then the next episode would never end. Step-by-step learning methods such as Sarsa
do not have this problem because they quickly learn during the episode that such
policies are poor, and switch to something else.

Exercise 6.7: Windy Gridworld with King’s Moves Re-solve the windy
gridworld task assuming eight possible actions, including the diagonal moves, rather
than the usual four. How much better can you do with the extra actions? Can you
do even better by including a ninth action that causes no movement at all other than
that caused by the wind?

Exercise 6.8: Stochastic Wind Re-solve the windy gridworld task with King’s
moves, assuming that the e↵ect of the wind, if there is any, is stochastic, sometimes
varying by 1 from the mean values given for each column. That is, a third of the
time you move exactly according to these values, as in the previous exercise, but also
a third of the time you move one cell above that, and another third of the time you
move one cell below that. For example, if you are one cell to the right of the goal
and you move left, then one-third of the time you move one cell above the goal,
one-third of the time you move two cells above the goal, and one-third of the time
you move to the goal.

Figure 1: Windy gridworld. The task is to navigate an agent from the starting state (S) to
the goal state (G). The possible actions are left, right, up and down. The results of actions
are deterministic and work as expected, however, wind will move agent upward by the number
of steps determined by the wind strength values of which are shown below the grid. Moves
leading agent out of the grid will be always truncated to keep him inside. The rewards are
also deterministic: −1 for each step until the goal state is reached. Use undiscounted rewards
(γ = 1) in all cases. Figure was taken from [1].

The zip file contains a single Python source file snippets.py. It defines the Windy gridworld
MDP as well as other useful functions including visualization. The functions are commented. If
you are not into Python a translation to other programming language should be straightforward
using this source code as a reference.

3 Task assignment

Assignment 1 (3 points) Implement the value iteration method for action-value function.
Note that the lecture slides as well as the book [1] give a version of the algorithm for the state-
value function. Your implementation should work directly with action-value function, do not
convert between the two representations. Give:

• The number of iterations needed to find an optimal action-value function. Start with the
q0(s, a) = 0 for all states s and actions a.

• The optimal action-value function as a list of four matrices, one per each available action.

Assignment 2 (4 points) Implement the SARSA algorithm using ε-greedy policy. Decide for
reasonable three settings of the ε as well as three settings for the step-size parameter α to
demonstrate their influence on the convergence. Measure the error using mean-squared error
(MSE) with respect to the optimal action-value function obtained in the Assignment 1. Give:

• Plots showing convergence for all 3 × 3 = 9 parameter combinations. Repeat computa-
tions for each parameter combination and show averages only. The plots will show MSE
evaluated every 100 steps (state transitions). The maximum number of steps (and hence
episodes) is up to you.

• Minimum average error achieved for each parameter combination.

• Shortly discuss the results.

Assignment 3 (3 points) Implement the Q-learning algorithm using ε-greedy policy. Give
exactly the same type of outputs as in the case of SARSA.

2

Assignment 4 (2 bonus points) Implement the policy iteration algorithm working natively
with action-value function as does the value iteration in the Assignment 1. Both algorithms
converge quickly to the exact optimum. Which one is faster?

References

[1] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1.
MIT press Cambridge, 1998.

3

	Overview
	Download
	Task assignment

