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Overview

Topics covered in the lecture:

� Decision trees for classification and regression

� Combining models by means of bagging

� Random forests

http://cmp.felk.cvut.cz
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Resources

� Hastie, Tibshirani and Friedman: The Elements of Statistical Learning,
2009

� Duda, Hart and Stork: Pattern Classification, 2000

� Criminisi et al.: Decision Forests for Classification, Regression, Density
Estimation, Manifold Learning and Semi-Supervised Learning , 2011

� Gilles Louppe: Understanding Random Forests: From Theory to
Practice, 2014

http://cmp.felk.cvut.cz
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Decision Tree

� Supervised machine learning model

� Interpretable

� Supports both classification and regression (regression trees)

� Binary/multi-valued/continuous inputs

� Can deal with missing values

� Fast training and prediction

http://cmp.felk.cvut.cz


Example and figures by Victor Lavrenko

5/45
Decision Tree Example

� Will John play tennis?

IAML:&Decision&Trees&

Victor&Lavrenko&and&Charles&Su;on&
School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
D4 & &Rain& & &High& & &Weak &Yes&
D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
D11 & &Sunny & &Normal & &Strong &Yes&
D12 & &Overcast & &High& & &Strong &Yes&
D13 & &Overcast & &Normal & &Weak &Yes&
D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Outlook $Humid $Wind$
D1 &Sunny &High& &Weak&
D2 &Sunny &High& &Strong&
D8 &Sunny &High& &Weak&
D9 &Sunny &Normal &Weak&
D11 &Sunny &Normal &Strong&

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

9$yes$/$5$no$

2$yes$/$3$no$
split$further$

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Copyright © 2011 Victor Lavrenko 

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

9$yes$/$5$no$

http://cmp.felk.cvut.cz


IAML:&Decision&Trees&

Victor&Lavrenko&and&Charles&Su;on&
School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
D4 & &Rain& & &High& & &Weak &Yes&
D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
D11 & &Sunny & &Normal & &Strong &Yes&
D12 & &Overcast & &High& & &Strong &Yes&
D13 & &Overcast & &Normal & &Weak &Yes&
D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Outlook $Humid $Wind$
D1 &Sunny &High& &Weak&
D2 &Sunny &High& &Strong&
D8 &Sunny &High& &Weak&
D9 &Sunny &Normal &Weak&
D11 &Sunny &Normal &Strong&

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

9$yes$/$5$no$

2$yes$/$3$no$
split$further$

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&
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Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

9$yes$/$5$no$
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Decision Tree Example (2)
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IAML:&Decision&Trees&

Victor&Lavrenko&and&Charles&Su;on&
School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
D4 & &Rain& & &High& & &Weak &Yes&
D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
D11 & &Sunny & &Normal & &Strong &Yes&
D12 & &Overcast & &High& & &Strong &Yes&
D13 & &Overcast & &Normal & &Weak &Yes&
D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Outlook $Humid $Wind$
D1 &Sunny &High& &Weak&
D2 &Sunny &High& &Strong&
D8 &Sunny &High& &Weak&
D9 &Sunny &Normal &Weak&
D11 &Sunny &Normal &Strong&

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

9$yes$/$5$no$

2$yes$/$3$no$
split$further$

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&
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Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

9$yes$/$5$no$
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Decision Tree Example (3)
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Humid $Wind$
D4 &High& &Weak&
D5 &Normal &Weak&
D10 &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Wind&

Weak& Strong&

Day $Humid $Wind$
D6 &Normal &Strong&
D14 &High& &Strong&

Copyright © 2011 Victor Lavrenko 

9$yes$/$5$no$

Outlook&

Sunny& Rain&

Overcast&

Humidity&

High& Normal&

Wind&

Weak& Strong&

no$

yes$

yes$ yes$ no$
New&data:& &Day $Outlook $Humid $Wind&

& & &D15 &&Rain& &High& &Weak&

9$/$5$

2$/$3$ 3$/$2$

4$/$0$

0$/$3$ 2$/$0$ 3$/$0$ 0/$2$

&Yes&
Copyright © 2011 Victor Lavrenko 

ID3&algorithm&
•  Split&(node,&{examples}&):&

1.  A&&the&best&a;ribute&for&spli`ng&the&{examples}&

2.  Decision&a;ribute&for&this&node&&A&
3.  For&each&value&of&A,&create&new&child&node&
4.  Split&training&{examples}&to&child&nodes&

5.  If&examples&perfectly&classified:&STOP&
else:&iterate&over&new&child&nodes&
& &Split&(child_node,&{subset&of&examples}&)&

•  Ross&Quinlan&(ID3:&1986),&(C4.5:&1993)&

•  Breimanetal&(CaRT:&1984)&from&sta>s>cs&
Copyright © 2011 Victor Lavrenko 

Which&a;ribute&to&split&on?&

•  Want&to&measure&“purity”&of&the&split&
– more&certain&about&Yes/No&aier&the&split&

•  pure&set&(4&yes&/&0&no)&=>&completely&certain&(100%)&
•  impure&(3&yes&/&3&no)&=>&completely&uncertain&(50%)&

– can’t&use&P(“yes”&|&set):&
•  must&be&symmetric:&4&yes&/&0&no&as&pure&as&0&yes&/&4&no&

Wind&

Weak& Strong&

9$yes$/$5$no$

6$yes$/$2$no$ 3$yes$/$3$no$

Outlook&

Sunny& Rain&Overcast&

9$yes$/$5$no$

2$yes$/$3$no$ 3$yes$/$2$no$4$yes$/$0$no$

Copyright © 2011 Victor Lavrenko 

8/45
Decision Tree Example (4)
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Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Humid $Wind$
D4 &High& &Weak&
D5 &Normal &Weak&
D10 &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Wind&

Weak& Strong&

Day $Humid $Wind$
D6 &Normal &Strong&
D14 &High& &Strong&

Copyright © 2011 Victor Lavrenko 

9$yes$/$5$no$

Outlook&

Sunny& Rain&

Overcast&

Humidity&

High& Normal&

Wind&

Weak& Strong&

no$

yes$

yes$ yes$ no$
New&data:& &Day $Outlook $Humid $Wind&

& & &D15 &&Rain& &High& &Weak&

9$/$5$

2$/$3$ 3$/$2$

4$/$0$

0$/$3$ 2$/$0$ 3$/$0$ 0/$2$

&Yes&
Copyright © 2011 Victor Lavrenko 

ID3&algorithm&
•  Split&(node,&{examples}&):&

1.  A&&the&best&a;ribute&for&spli`ng&the&{examples}&

2.  Decision&a;ribute&for&this&node&&A&
3.  For&each&value&of&A,&create&new&child&node&
4.  Split&training&{examples}&to&child&nodes&

5.  If&examples&perfectly&classified:&STOP&
else:&iterate&over&new&child&nodes&
& &Split&(child_node,&{subset&of&examples}&)&

•  Ross&Quinlan&(ID3:&1986),&(C4.5:&1993)&

•  Breimanetal&(CaRT:&1984)&from&sta>s>cs&
Copyright © 2011 Victor Lavrenko 

Which&a;ribute&to&split&on?&

•  Want&to&measure&“purity”&of&the&split&
– more&certain&about&Yes/No&aier&the&split&

•  pure&set&(4&yes&/&0&no)&=>&completely&certain&(100%)&
•  impure&(3&yes&/&3&no)&=>&completely&uncertain&(50%)&

– can’t&use&P(“yes”&|&set):&
•  must&be&symmetric:&4&yes&/&0&no&as&pure&as&0&yes&/&4&no&

Wind&

Weak& Strong&

9$yes$/$5$no$

6$yes$/$2$no$ 3$yes$/$3$no$

Outlook&

Sunny& Rain&Overcast&

9$yes$/$5$no$

2$yes$/$3$no$ 3$yes$/$2$no$4$yes$/$0$no$

Copyright © 2011 Victor Lavrenko 
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Decision Tree Example (5)
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Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Observations

• Any boolean function can be represented by a decision tree.

• not good for all functions, e.g.:

- parity function: return 1 iff an even number of inputs are 1

- majority function: return 1 if more than half inputs are 1

• best when a small number of attributes provide a lot of information

• Note: finding optimal tree for arbitrary data is NP-hard.

11

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Decision trees with continuous values

12

years at 
current job

# missed 
payments

defaulted?

7 0 N

0.75 0 Y

3 0 N

9 0 N

4 2 Y

0.25 0 N

5 1 N

8 4 Y

1.0 0 N

1.75 0 N

Predicting credit risk

• Now tree corresponds to order and placement of boundaries

• General case: 

- arbitrary number of attributes: binary, multi-valued, or continuous

- output: binary, multi-valued (decision or axis-aligned classification trees), or
           continuous (regression trees) 

years at current job

#
 m

is
se

d
 p

ay
m

en
ts

!

"

!

!" """

"

""

>1.5

!1

Example and figure by Michael S. Lewicki
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Continuous Inputs

http://cmp.felk.cvut.cz


306 9. Additive Models, Trees, and Related Methods

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.

306 9. Additive Models, Trees, and Related Methods

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
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responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.

Hastie et al.: The Elements of Statistical Learning, 2009
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Regression Trees
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Regression Trees (contd.)

� Training set: T = {(xi, yi) | i = 1, . . . ,m}, xi = (xi1, xi2, . . . , xip)

� Input space split into regions defined in leaves: Rr, r ∈ {1, . . . ,M}
� We can model region responses by constants cr, r ∈ {1, . . . ,M} but
other possibilities, e.g., linear regression are possible

� Prediction:

h(x) =

M∑
r=1

crI{x ∈ Rr}

� For sum of squares loss function
∑m
i=1(yi − h(xi))2 we set the

responses to be the averages over regions:

ĉr =
1

|Sr|
∑

xi∈Rr

yi (see seminar)

where we define samples per region sets :
Sr = {(xi, yi) : (xi, yi) ∈ T ∧ xi ∈ Rr}

http://cmp.felk.cvut.cz


22 Classification forests

Fig. 3.1: Classification: training data and tree training. (a) In-
put data points. The ground-truth label of training points is denoted
with di↵erent colours. Grey circles indicate unlabelled, previously un-
seen test data. (b) A binary classification tree. During training a set of
labelled training points {v} is used to optimize the parameters of the
tree. In a classification tree the entropy of the class distributions asso-
ciated with di↵erent nodes decreases (the confidence increases) when
going from the root towards the leaves.

Given a labelled training set learn a general mapping which as-

sociates previously unseen test data with their correct classes.

The need for a general rule that can be applied to “not-yet-
available” test data is typical of inductive tasks.1 In classification the
desired output is of discrete, categorical, unordered type. Consequently,
so is the nature of the training labels. In fig. 3.1a data points are de-
noted with circles, with di↵erent colours indicating di↵erent training
labels. Testing points (not available during training) are indicated in
grey.

More formally, during testing we are given an input test data v
and we wish to infer a class label c such that c 2 C, with C = {c

k

}.
More generally we wish to compute the whole distribution p(c|v). As

1
As opposed to transductive tasks. The distinction will become clearer later.

Criminisi et al.: Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning , 2011

13/45
Output Empirical Distribution

� We can output whole distribution instead of just the prevalent class

http://cmp.felk.cvut.cz


4.2. Specializing the decision forest model for regression 49

Fig. 4.1:Regression: training data and tree training. (a) Training
data points are shown as dark circles. The associated ground truth
label is denoted by their position along the y coordinate. The input
feature space here is one-dimensional in this example (v = (x)). x is
the independent input and y is the dependent variable. A previously
unseen test input is indicated with a light gray circle. (b) A binary
regression tree. During training a set of labelled training points {v}
is used to optimize the parameters of the tree. In a regression tree
the entropy of the continuous densities associated with di↵erent nodes
decreases (their confidence increases) when going from the root towards
the leaves.

Given a labelled training set learn a general mapping which asso-

ciates previously unseen independent test data with their correct

continuous prediction.

Like classification the regression task is inductive, with the main
di↵erence being the continuous nature of the output. Figure 4.1a pro-
vides an illustrative example of training data and associated continuous
ground-truth labels. A previously unseen test input (unavailable during
training) is shown as a light grey circle on the x axis.

Formally, given a multi-variate input v we wish to associate a con-
tinuous multi-variate label y 2 Y ✓ Rn. More generally, we wish
to estimate the probability density function p(y|v). As usual the

Criminisi et al.: Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning , 2011
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Continuous Output Empirical Distribution

� Same can be applied for continuous outputs

http://cmp.felk.cvut.cz
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Number of Splits

� Number of splits = branching factor B

� Many decision tree training algorithms use binary trees (B = 2 for all
internal nodes)

• any tree using B > 2 can be transformed into a binary tree

• easier decision of what to split (see in a moment)

• multiway splits may fragment data too early leaving insufficient
data at the next level

� ⇒ we consider binary trees in the following

http://cmp.felk.cvut.cz
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Why Greedy Learning?

� How many distinct decision trees with n Boolean attributes for binary
classification?
• at least as many as boolean functions of n attributes
• = number of distinct truth tables with 2n rows: 22n

• For 6 Boolean attributes at least
18,446,744,073,709,551,616 trees!

� Learning is NP-complete: [Hyafil and Rivest 1976]
� ⇒ we need heuristics ⇒ greedy approach
� Recursively choose the "most important" attribute to find a small tree
consistent with the training data

� Split points:
• nominal attribute: try all possibilities
• ordinal/continuous attribute: try attribute values based on all

training data samples or their subset

http://cmp.felk.cvut.cz
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Regression Trees: Which Attribute to Split?

� The "most important" attribute for regression trees would be the one
which will reduce the loss (sum of squared errors) by the greatest
amount

� We have:

h(x) =

R∑
r=1

crI{x ∈ Rr}

� Consider splitting attribute j and split point s, we split an original region
R into a pair of half-planes for an ordinal (e.g., continuous) attribute:

RL(j, s) = {x|x ∈ R ∧ xj ≤ s} and RR(j, s) = {x|x ∈ R ∧ xj > s}

similarly for a nominal attribute:

RL(j, s) = {x|x ∈ R ∧ xj = s} and RR(j, s) = {x|x ∈ R ∧ xj 6= s}

http://cmp.felk.cvut.cz
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Regression Trees: Which Attribute to Split? (contd.)

� We seek for an attribute j and a split point s which minimize:

min
cL

∑
xi∈RL(j,s)

(yi − cL)2 +min
cR

∑
xi∈RR(j,s)

(yi − cR)2

for (xi, yi) ∈ S ⊆ T (S = T for the root node)

� Inner minimizations (region response values) are solved by averaging
tree outputs per region:

ĉL =
1

|SL(j, s)|
∑

xi∈RL(j,s)

yi and ĉR =
1

|SR(j, s)|
∑

xi∈RR(j,s)

yi

where Sk(j, s) = {(xi, yi) | (xi, yi) ∈ T ∧ xi ∈ Rk(j, s)}

http://cmp.felk.cvut.cz
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Entropy

� Measure of unpredictability used by information theory

� Lossless compression ⇒ compressed information has more entropy per
character

� Entropy of a random variable Y with possible values {y1, y2, . . . , yn}:

H(Y ) = −
n∑
i=1

P(Y = yi) log2 P(Y = yi)

� Tossing a fair coin:

H(Y ) = −P(head) log2 P(head)− P(tail) log2 P(tail)

= −1
2
log2

1

2
− 1

2
log2

1

2
= 1 bit

� Two-heads coin: H(Y ) = 0 bits
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Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.
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• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813

Example and figure by Michael S. Lewicki
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Classification Entropy

� We can use entropy as an impurity measure

� P(def = Y) = 3
10

� P(def = N) = 7
10

� Entropy:
H(def) = −

n∑
y∈{Y,N}

P(def = y) log2 P(def = y) =

= − 3

10
log2

3

10
− 7

10
log2

7

10
≈ 0.8813

� We get zero entropy for a pure dataset

http://cmp.felk.cvut.cz
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Conditional Entropy

� Conditional entropy is the amount of uncertainty remaining about Y
after X is known

� We first define the specific conditional entropy :

H(Y |X = x) = −
∑
y

P(Y = y|X = x) logP(Y = y|X = x)

� The conditional entropy is then:

H(Y |X) = Ex(H(Y |X = x)) =
∑
x

P(X = x) H(Y |X = x)

http://cmp.felk.cvut.cz
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Mutual Information (Information Gain)

� Mutual information is a symmetric measure:

I(Y ;X) =
∑
y

∑
x

P(X = x, Y = y) log

(
P(X = x, Y = y)

P(X = x)P(Y = y)

)
= H(X)−H(X|Y ) = H(Y )−H(Y |X)

� It quantifies an information gain for a random variable when other
random variable gets involved

http://cmp.felk.cvut.cz
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Maximizing Information Gain

� Consider the splitting attribute j and the split point s, we get a pair of
half-planes RL(j, s) and RR(j, s)

� We seek for j and s maximizing the information gain:

Is(Y ;Xj) = H(Y )−Hs(Y |Xj)

where for ordinal attributes we have:

Hs(Y |Xj) = P(Xj ≤ s) H(Y |Xj ≤ s) + P(Xj > s) H(Y |Xj > s)

while for the nominal attributes:

Hs(Y |Xj) = P(Xj = s) H(Y |Xj = s) + P(Xj 6= s) H(Y |Xj 6= s)

http://cmp.felk.cvut.cz
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Decision Tree Learning Algorithm

BUILD-TREE(S)

1 i = IMPURITY(S) // H(Y ) on S
2 ĝ, ĵ, ŝ, ŜL, ŜR = 0, 0, 0, ∅, ∅ // current best kept in these
3 for j ∈ {1, . . . , p} // iterate over attributes X1, X2, . . . , Xp

4 for s ∈ SPLIT-POINTS(S, j) // iterate over all split points of Xj in S
5 SL, SR = SPLIT(S, j, s) // SL = {(xi, yi) : (xi, yi) ∈ S ∧ xij = s}
6 iL = IMPURITY(SL) // H(Y |Xj = s)
7 iR = IMPURITY(SR) // H(Y |Xj 6= s)

8 g = i− |SL||S| iL −
|SR|
|S| iR // Is(Y ;Xj)

9 if g > ĝ and |SL| > 0 and |SR| > 0

10 ĝ, ĵ, ŝ, ŜL, ŜR = g, j, s, SL, SR
11 if ĝ > 0

12 NL = BUILD-TREE(ŜL)

13 NR = BUILD-TREE(ŜR)

14 return DECISION-NODE(ĵ, ŝ, NL, NR)
15 else return LEAF-NODE(S)
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Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.
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• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813

Example and figure by Michael S. Lewicki
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Maximizing Information Gain Example

� H(def|<2yrs = Y) = −1
4
log2

1

4
− 3

4
log2

3

4
≈ 0.8113

� H(def|<2yrs = N) = −2
6
log2

2

6
− 4

6
log2

4

6
≈ 0.9183

� H(def|<2yrs) ≈ 4

10
× 0.8113 +

6

10
× 0.9183 ≈ 0.8755

� H(def|miss = Y) = −2
3
log2

2

3
− 1

3
log2

1

3
≈ 0.9183

� H(def|miss = N) = −6
7
log2

6

7
− 1

7
log2

1

7
≈ 0.5917

� H(def|miss) ≈ 3

10
× 0.9183 +

7

10
× 0.5917 ≈ 0.69

� H(def)−H(def|<2yrs) ≈ 0.8813− 0.8755 = 0.0058

� H(def)−H(def|miss) ≈ 0.8813− 0.69 = 0.1913
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bad: 3
good: 7

missed 
payments?N Y

bad: 2
good: 1

bad: 1
good: 6

<2 years 
at current 

job?

N Y

bad: 0
good: 3

bad: 1
good: 3

Missed payments are the 
most informative attribute 

about defaulting.

H(defaulted) � H(defaulted|< 2 years)
0.8813 � 0.8763 = 0.0050

H(defaulted) � H(defaulted|missed)
0.8813 � 0.6897 = 0.1916

Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Example (from Andrew Moore): Predicting miles per gallon

28

16

Copyright © Andrew W. Moore Slide 31

A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

40 
Records

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe

Copyright © Andrew W. Moore Slide 32

Look at all 
the 

information 
gains…

Suppose we want to 
predict MPG.

http://www.autonlab.org/tutorials/dtree.html
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Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.
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• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813

Example and figures by Michael S. Lewicki
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Maximizing Information Gain Example (contd.)

� I(def;<2yrs) = H(def)−H(def|<2yrs) ≈ 0.0058

� I(def;miss) = H(def)−H(def|miss) ≈ 0.1913
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General&Structure&

•  Task:$classifica>on,&discrimina>ve&
•  Model$structure:$decision&tree&

•  Score$funcFon$
–  informa>on&gain&at&each&node&
– preference&for&short&trees&
– preference&for&highpgain&a;ributes&near&the&root&

•  OpFmizaFon$/$search$method&
– greedy&search&from&simple&to&complex&
– guided&by&informa>on&gain&

Copyright © 2011 Victor Lavrenko 

Problems&with&Informa>on&Gain&

•  Biased&towards&&
a;ributes&with&&
many&values&

•  Won’t&work&&
for&new&data:&D15&Rain&High&Weak&

•  Use&GainRa>o:&

€ 

SplitEntropy(S,A) = −
SV
S
log

SV
SV∈Values(A )

∑
A  … candidate attribute 
V  … possible values of A 
S  … set of examples {X} 
Sv … subset where XA = V 

Day&

D2&

9$yes$/$5$no$

0$/$1$

D3& D4& D5& D14&D1&

0$/$1$ 1$/$0$ 1$/$0$ 1$/$0$ 0$/$1$

all subsets perfectly pure => optimal split 

€ 

GainRatio(S,A) =
Gain(S,A)

SplitEntropy(S,A)
penalizes attributes  
with many values 

Copyright © 2011 Victor Lavrenko 

Trees&are&interpretable&

•  Read&rules&off&the&tree&
– concise&descrip>on&
of&what&makes&an&
item&posi>ve&

•  No&“black&box”&
–  important&
for&users&

(Outlook = Overcast) � 
(Outlook = Rain    � Wind = Weak) � 
(Outlook = Sunny � Humidity = Normal)   

Rule: 

Copyright © 2011 Victor Lavrenko 

Con>nuous&A;ributes&
•  Dealing with continuous-valued attributes: 

•  create a split: (Temperature > 72.3) = True,False 
•  Threshold can be optimized (WF 6.1) 

IAML:&Decision&Trees&

Victor&Lavrenko&and&Charles&Su;on&
School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
D4 & &Rain& & &High& & &Weak &Yes&
D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
D11 & &Sunny & &Normal & &Strong &Yes&
D12 & &Overcast & &High& & &Strong &Yes&
D13 & &Overcast & &Normal & &Weak &Yes&
D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Outlook $Humid $Wind$
D1 &Sunny &High& &Weak&
D2 &Sunny &High& &Strong&
D8 &Sunny &High& &Weak&
D9 &Sunny &Normal &Weak&
D11 &Sunny &Normal &Strong&

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

9$yes$/$5$no$

2$yes$/$3$no$
split$further$

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Copyright © 2011 Victor Lavrenko 

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

9$yes$/$5$no$

Example and figures by Victor Lavrenko
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Information Gain for Multiway Splits

� For multiway splits we have:

H(Y |Xj) =
∑

s∈Values(Xj)

P(Xj = s) H(Y |Xj = s)

� Biases towards attributes with many values!

� Extreme case: sample ID (day)
H(play|day) = 0

� Maximizes information gain:
I(play; day) = H(play)−H(play|day) = H(play)
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for&new&data:&D15&Rain&High&Weak&
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SV
S
log

SV
SV∈Values(A )

∑
A  … candidate attribute 
V  … possible values of A 
S  … set of examples {X} 
Sv … subset where XA = V 

Day&

D2&

9$yes$/$5$no$

0$/$1$

D3& D4& D5& D14&D1&

0$/$1$ 1$/$0$ 1$/$0$ 1$/$0$ 0$/$1$

all subsets perfectly pure => optimal split 
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GainRatio(S,A) =
Gain(S,A)

SplitEntropy(S,A)
penalizes attributes  
with many values 
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Trees&are&interpretable&

•  Read&rules&off&the&tree&
– concise&descrip>on&
of&what&makes&an&
item&posi>ve&

•  No&“black&box”&
–  important&
for&users&

(Outlook = Overcast) � 
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Con>nuous&A;ributes&
•  Dealing with continuous-valued attributes: 

•  create a split: (Temperature > 72.3) = True,False 
•  Threshold can be optimized (WF 6.1) 
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Multiway Splits: Information Gain Ratio

� Use information gain ratio instead:

GainRatio(Y ;Xj) =
I(Y ;Xj)

SplitEntropy(Y ;Xj)

where
SplitEntropy(Y ;Xj) =

∑
s∈Values(Xj)

|Ss|
|S|

log
|Ss|
|S|

� High SplitEntropy: partitions have more or less the same size (uniform)

� Low SplitEntropy: few partitions hold most of the tuples (peaks)
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FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

impurity measure Qm(T ) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

∑

xi∈Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = argmaxk p̂mk, the majority class in
node m. Different measures Qm(T ) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi ̸= k(m)) = 1− p̂mk(m).

Gini index:
∑

k ̸=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1− p̂mk).

Cross-entropy or deviance: −
∑K

k=1 p̂mk log p̂mk.
(9.17)

For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1− p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL

and NmR
of

observations in the two child nodes created by splitting node m.
In addition, cross-entropy and the Gini index are more sensitive to changes

in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while

two classes, proportions p and 1− p
entropy scaled to pass through (0.5, 0.5)

Hastie et al.: The Elements of Statistical Learning, 2009
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Other Impurity Measures

� Gini impurity (expected error rate if the classification is picked according
to the class distribution):

Gini(Y ) =
∑
i 6=j

P(Y = yi)P(Y = yj) = 1−
∑
i

P(Y = yi)
2

� Misclassification measure (minimum probability of misclassification):

Mis(Y ) = 1−max
i

P(Y = yi)

http://cmp.felk.cvut.cz
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When to Stop Splitting?

� Split while impurity decreases

• no assurance of zero impurity at leafs (e.g., for two samples
xi = xj, yi 6= yj)

• when all leaves are pure then tree becomes a lookup table ⇒
overfitting!

� Check generalization error using validation set, stop when validation
error starts to increase

� Use threshold β: stop splitting when maximum possible gain drops
below β

• uses all training data unlike the previous approach

• leaves at different depths: adapts to complexity in input distribution

• drawback: hard to set β

http://cmp.felk.cvut.cz
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When to Stop Splitting? (contd.)

� Stop when the node represents less than n (e.g., 10) samples or less
then a percentage of total samples (e.g., 5%)

� Trade complexity for test accuracy, minimize:

α · size+
∑

l∈leaves

IMPURITY(Sl)

where α > 0 and size can be the number of tree nodes or links

� Check statistical significance of the impurity reduction, e.g. using
chi-squared test:

• when a candidate split does not reduce the impurity significantly,
splitting is stopped

• does a candidate split significantly differ from a random split?

http://cmp.felk.cvut.cz
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Pruning

� The previously stopping methods may stop tree growth prematurely due
to the greedy approach

� Pruning: reduce a fully grown tree starting at leaves

� All pairs of sibling leaf nodes are considered for merge

� Any pair whose elimination yields a satisfactory (small) increase in
impurity is eliminated

� Computationally costly but preferred for smaller problems

� Rule pruning: simplifying rules defined by conjunction of tests on a way
from the root to leaves ⇒ better interpretability

http://cmp.felk.cvut.cz
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Decision Tree Methods

� CART (Classification And Regression Trees): described in previous slides
(some extensions beyond were shown)

� ID3 (Interactive Dichotomizer 3)
• Quinlan: Induction of Decision Trees, 1986
• nominal (unordered inputs), uses binning for continuous variables
• multiway
• depth ≤ number of input variables
• no pruning originally

� C4.5 (Quinlan)
• multiway for nominal data
• pruning based on statistical significance tests
• missing features different that CART p. 412
• rule-based prunning

� C5.0 (Quinlan): patented, faster, less memory, boosting support
� CHAID (CHi-square Automatic Interaction Detector)

http://cmp.felk.cvut.cz
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Bias-Variance Decomposition

� Consider a regression problem with data generated as follows:

y = f(x) + ε

where ε is noise: E(ε) = 0 and Var(ε) = σ2

� Let h(x; T , θ) be a model trained on data generated from p(x, y) using
algorithm with hyper-parameters θ (e.g., a random seed)

� Such definition allows randomized training algorithms generating
different models for the same T

� To assess performance of the particular learning algorithm on T and θ
we can evaluate expected value of a square loss for samples from p(x, y):

ErrT ,θ(x) = Ey|x
(
[y − h(x; T , θ)]2 | T , θ

)
� Expected test error at x is then:

Err(x) = ET ,θ(ErrT ,θ(x)) = E
(
[y − h(x)]2

)
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Bias-Variance Decomposition (contd.)

� Use E(y) = E(f(x)) = f(x), Var(y) = σ2 and
E(yh(x)) = E((f(x) + ε)h(x)) = f(x)E(h(x)) = E(y)E(h(x)):

Err(x) = E
(
[y − h(x)]2

)
= E(y2)− 2E(yh(x)) + E(h(x)2) =

= Var(y) + E(y)2 − 2E(y)E(h(x)) + Var(h(x)) + E(h(x))2 =

= σ2 + [E(y)− E(h(x))]2 +Var(h(x)) =

= σ2︸︷︷︸
noise(x)

+E(f(x)− h(x))2︸ ︷︷ ︸
bias2(x)

+Var(h(x))︸ ︷︷ ︸
var(x)

� The error splits into three terms
• noise(x): irreducible determined by data,
• bias2(x): error of approximation
• var(x): measures sensitivity to particular dataset

� We have to find the right balance to minimize the loss
⇒ bias-variance tradeoff

http://cmp.felk.cvut.cz


58 random forests

x

y

Degree = 1

x

error(x)

bias2 (x)

var(x)

noise(x)

x

y

Degree = 5

x

x

y

Degree = 15

x

Figure 4.2: Bias-variance decomposition of the expected generalization error
for polynomials of degree 1, 5 and 15.

Also, because of low complexity, none of them really fits the trend of
the training points, even approximately, which implies that the aver-
age model is far from approximating the Bayes model. This results in
high bias. On the other hand, polynomials of degree 15 (right) suffer
from overfitting. In terms of bias and variance, the situation is the
opposite. Predictions have low bias but high variance, as shown in
the lower right plot of Figure 4.2. The variability of the predictions is
large because the high degree of the polynomials (i.e., the high model
complexity) captures noise in the learning set. Indeed, compare the
gray line with the blue dots – they almost all intersect. Put other-
wise, small changes in the learning set result in large changes in the
obtained model and therefore in its predictions. By contrast, the av-
erage model is now quite close from the Bayes model, which results
in low bias1. Finally, polynomials of degree 5 (middle) are neither too
simple nor too complex. In terms of bias and variance, the trade-off is
well-balanced between the two extreme situations. Bias and variance
are neither too low nor too large.

4.1.2 Classification

In direct analogy with the bias-variance decomposition for the squared
error loss, similar decompositions have been proposed in the litera-
ture for the expected generalization error based on the zero-one loss,
i.e., for EL{EY|X=x{1('L(x) 6= Y)}} = PL,Y|X=x('L(x) 6= Y). Most no-

1 Note however the Gibbs-like phenomenon resulting in both high variance and high
bias at the boundaries of X.

Gilles Louppe: Understanding Random Forests: From Theory to Practice, 2014
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Bias-Variance: Model Complexity

� Polynomial regression with a varying degree of polynomial
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Bias and Variance of Decision Trees

� Small changes of training data lead to big differences in final trees

� Decision trees grown deep enough have typically:

• low bias

• high variance

⇒ overfitting

� Idea: average multiple models to reduce variance while (happily) not
increasing bias much
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Averaging Models

� Define model b as an average of M models:

b(x) =
1

M

M∑
i=1

hi(x)

� Noise is given by data and does not change

� Bias remains unchanged when compared to a single model:

bias(x) = f(x)− E(b(x)) = f(x)− E

(
1

M

M∑
i=1

hi(x)

)

= f(x)− 1

M

M∑
i=1

E (hi(x)) = f(x)− E(h(x))

� The last step is due to Ti and θi used to train hi(x) are i.i.d.
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Averaging Models: Variance

� For uncorrelated component models hi(x):

var(x) = Var(b(x)) = Var

(
1

M

M∑
i=1

hi(x)

)
=

=
1

M2

M∑
i=1

Var(hi(x)) =
1

M
Var(h(x))

which is a great improvement based on the strong assumption
� There is no improvement for maximum correlation, i.e., all component
models are same (hm(x) = h(x) for m = 1, . . . ,M) we get:

var(x) = Var

(
1

M

M∑
i=1

h(x)

)
= Var(h(x))

⇒ we need to train uncorrelated (diverse) component models while
keeping their bias reasonably low
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Bootstrapping

� In practice we have only a single training dataset T

� Bootstrapping is a method producing datasets Ti for i = 1, . . .M by
sampling T uniformly with replacement

� Bootstrap datasets have the same size as the original dataset |Ti| = |T |

� Ti is expected to have the fraction 1− 1
e ≈ 63.2% of unique samples

from T , others are duplicates (see seminar)
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Bagging

� Bagging = Bootstrap AGGregating [Breiman 1994]:
1. Use bootstrapping to generate M datasets
2. Train a model hi on each dataset Ti
3. Average the models

� When decision trees are used as the models ⇒ random forests

� Low bias is achieved by growing the trees to maximal depth

� Trees are decorrelated by:

• training each tree on a different bootstrap dataset

• randomization of split attribute selection
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Random Forest Algorithm

1. For i = 1 . . .M :

(a) draw a bootstrap dataset Ti from T , |Ti| = |T |
(b) grow a tree hi(x) using Ti by recursively repeating the following until

the minimum node size nmin is reached:
i. select k attributes at random from the p attributes
ii. pick the best variable and split-point among the k
iii. split the node into two daughter nodes

2. Output ensemble of trees b(x) averaging hi(x) (regression) or selecting a
majority vote (classification)

� Node size = the number of dataset samples associated with the node
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Out-of-Bag (OOB) Error

� "Cheap" way of generalization error assessment for bagging

� Bagging produces bootstrapped sets T1, T2, . . . TB

� For each (xi, yi) ∈ T select only trees which were not trained on this
sample: Hi = {hj | (xi, yi) /∈ Tj}

� Average only the OOB trees in Hi when evaluating error for (xi, yi)

� Replacement for K-fold cross-validation
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Feature Importance

� Random forests allow easy evaluation of feature importances

� Mean Decrease Impurity (MDI):

• set fj = 0 for all attributes j = 1, . . . , p

• traverse all trees processing all internal nodes

• for each node having a split attribute j add its impurity decrease
multiplied by the proportion of the node size to fj

� Mean Decrease Accuracy (MDA), permutaion importance:

• evaluate the forest using OOB data

• do the same with permuted values of an attribute j

• watch decrease in accuracy: low decrease means unimportant
feature
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Random Forest Summary

� Easy to use method: robust w.r.t. parameter settings (M , node size)

� While consistency is proven for decision trees (both regression and
classification) we have only proofs for simplified versions of random
forests [Breiman, 1984]

� Related methods: boosted trees
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School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
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D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
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D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$
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ID3&algorithm&
•  Split&(node,&{examples}&):&

1.  A&&the&best&a;ribute&for&spli`ng&the&{examples}&

2.  Decision&a;ribute&for&this&node&&A&
3.  For&each&value&of&A,&create&new&child&node&
4.  Split&training&{examples}&to&child&nodes&

5.  If&examples&perfectly&classified:&STOP&
else:&iterate&over&new&child&nodes&
& &Split&(child_node,&{subset&of&examples}&)&

•  Ross&Quinlan&(ID3:&1986),&(C4.5:&1993)&

•  Breimanetal&(CaRT:&1984)&from&sta>s>cs&
Copyright © 2011 Victor Lavrenko 
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Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Observations

• Any boolean function can be represented by a decision tree.

• not good for all functions, e.g.:

- parity function: return 1 iff an even number of inputs are 1

- majority function: return 1 if more than half inputs are 1

• best when a small number of attributes provide a lot of information

• Note: finding optimal tree for arbitrary data is NP-hard.
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Michael S. Lewicki ! Carnegie MellonArtificial Intelligence: Learning and Decision Trees

Decision trees with continuous values

12

years at 
current job

# missed 
payments

defaulted?

7 0 N

0.75 0 Y

3 0 N

9 0 N

4 2 Y

0.25 0 N

5 1 N

8 4 Y

1.0 0 N

1.75 0 N

Predicting credit risk

• Now tree corresponds to order and placement of boundaries

• General case: 

- arbitrary number of attributes: binary, multi-valued, or continuous

- output: binary, multi-valued (decision or axis-aligned classification trees), or
           continuous (regression trees) 
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306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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prediction surface appears in the bottom right panel.
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Fig. 3.1: Classification: training data and tree training. (a) In-
put data points. The ground-truth label of training points is denoted
with di↵erent colours. Grey circles indicate unlabelled, previously un-
seen test data. (b) A binary classification tree. During training a set of
labelled training points {v} is used to optimize the parameters of the
tree. In a classification tree the entropy of the class distributions asso-
ciated with di↵erent nodes decreases (the confidence increases) when
going from the root towards the leaves.

Given a labelled training set learn a general mapping which as-

sociates previously unseen test data with their correct classes.

The need for a general rule that can be applied to “not-yet-
available” test data is typical of inductive tasks.1 In classification the
desired output is of discrete, categorical, unordered type. Consequently,
so is the nature of the training labels. In fig. 3.1a data points are de-
noted with circles, with di↵erent colours indicating di↵erent training
labels. Testing points (not available during training) are indicated in
grey.

More formally, during testing we are given an input test data v
and we wish to infer a class label c such that c 2 C, with C = {c

k

}.
More generally we wish to compute the whole distribution p(c|v). As

1
As opposed to transductive tasks. The distinction will become clearer later.
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Fig. 4.1:Regression: training data and tree training. (a) Training
data points are shown as dark circles. The associated ground truth
label is denoted by their position along the y coordinate. The input
feature space here is one-dimensional in this example (v = (x)). x is
the independent input and y is the dependent variable. A previously
unseen test input is indicated with a light gray circle. (b) A binary
regression tree. During training a set of labelled training points {v}
is used to optimize the parameters of the tree. In a regression tree
the entropy of the continuous densities associated with di↵erent nodes
decreases (their confidence increases) when going from the root towards
the leaves.

Given a labelled training set learn a general mapping which asso-

ciates previously unseen independent test data with their correct

continuous prediction.

Like classification the regression task is inductive, with the main
di↵erence being the continuous nature of the output. Figure 4.1a pro-
vides an illustrative example of training data and associated continuous
ground-truth labels. A previously unseen test input (unavailable during
training) is shown as a light grey circle on the x axis.

Formally, given a multi-variate input v we wish to associate a con-
tinuous multi-variate label y 2 Y ✓ Rn. More generally, we wish
to estimate the probability density function p(y|v). As usual the
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Example of symbols in english: A-Z and space

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 12

A fourth order approximation

Note that as the order is increased:

• entropy decreases: H0 = 4.76 bits, H1 = 4.03 bits, and H4 = 2.8 bits/char
• variables, i.e. P (ci|ci�1, ci�2, . . . , ci�k), specify more specific structure
• generated samples look more like real English

This is an example of the relationship between e�cient coding and representation
of signal structure.

Computational Perception and Scene Analysis: Visual Coding 2 / Michael S. Lewicki, CMU !! !

!

? 13

•  
•  
•

H1 = 4.76 bits/char

H2 = 4.03 bits/char

H2 = 2.8 bits/char

The entropy increases as the data become less ordered.
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• How many bits does it take to specify 
the attribute of ‘defaulted?’

- P(defaulted = Y) = 3/10

- P(defaulted = N) = 7/10

• How much can we reduce the entropy 
(or uncertainty) of ‘defaulted’ by 
knowing the other attributes?

• Ideally, we could reduce it to zero, in 
which case we classify perfectly.

<2 years at 
current job?

missed 
payments?

defaulted?

N N N

Y N Y

N N N

N N N

N Y Y

Y N N

N Y N

N Y Y

Y N N

Y N N

Predicting credit risk

H(Y ) = �
�

i=Y,N

P (Y = yi) log2 P (Y = yi)

= �0.3 log2 0.3� 0.7 log2 0.7
= 0.8813
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bad: 3
good: 7

missed 
payments?N Y

bad: 2
good: 1

bad: 1
good: 6

<2 years 
at current 

job?

N Y

bad: 0
good: 3

bad: 1
good: 3

Missed payments are the 
most informative attribute 

about defaulting.

H(defaulted) � H(defaulted|< 2 years)
0.8813 � 0.8763 = 0.0050

H(defaulted) � H(defaulted|missed)
0.8813 � 0.6897 = 0.1916
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Example (from Andrew Moore): Predicting miles per gallon

28

16

Copyright © Andrew W. Moore Slide 31

A small dataset: Miles Per Gallon

From the UCI repository (thanks to Ross Quinlan)

40 
Records

mpg cylinders displacement horsepower weight acceleration modelyear maker

good 4 low low low high 75to78 asia

bad 6 medium medium medium medium 70to74 america

bad 4 medium medium medium low 75to78 europe

bad 8 high high high low 70to74 america

bad 6 medium medium medium medium 70to74 america

bad 4 low medium low medium 70to74 asia

bad 4 low medium low low 70to74 asia

bad 8 high high high low 75to78 america

: : : : : : : :

: : : : : : : :

: : : : : : : :

bad 8 high high high low 70to74 america

good 8 high medium high high 79to83 america

bad 8 high high high low 75to78 america

good 4 low low low low 79to83 america

bad 6 medium medium medium high 75to78 america

good 4 medium low low low 79to83 america

good 4 low low medium high 79to83 america

bad 8 high high high low 70to74 america

good 4 low medium low medium 75to78 europe

bad 5 medium medium medium medium 75to78 europe

Copyright © Andrew W. Moore Slide 32

Look at all 
the 

information 
gains…

Suppose we want to 
predict MPG.

http://www.autonlab.org/tutorials/dtree.html
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General&Structure&

•  Task:$classifica>on,&discrimina>ve&
•  Model$structure:$decision&tree&

•  Score$funcFon$
–  informa>on&gain&at&each&node&
– preference&for&short&trees&
– preference&for&highpgain&a;ributes&near&the&root&

•  OpFmizaFon$/$search$method&
– greedy&search&from&simple&to&complex&
– guided&by&informa>on&gain&

Copyright © 2011 Victor Lavrenko 

Problems&with&Informa>on&Gain&

•  Biased&towards&&
a;ributes&with&&
many&values&

•  Won’t&work&&
for&new&data:&D15&Rain&High&Weak&

•  Use&GainRa>o:&

€ 

SplitEntropy(S,A) = −
SV
S
log

SV
SV∈Values(A )

∑
A  … candidate attribute 
V  … possible values of A 
S  … set of examples {X} 
Sv … subset where XA = V 

Day&

D2&

9$yes$/$5$no$

0$/$1$

D3& D4& D5& D14&D1&

0$/$1$ 1$/$0$ 1$/$0$ 1$/$0$ 0$/$1$

all subsets perfectly pure => optimal split 

€ 

GainRatio(S,A) =
Gain(S,A)

SplitEntropy(S,A)
penalizes attributes  
with many values 

Copyright © 2011 Victor Lavrenko 

Trees&are&interpretable&

•  Read&rules&off&the&tree&
– concise&descrip>on&
of&what&makes&an&
item&posi>ve&

•  No&“black&box”&
–  important&
for&users&

(Outlook = Overcast) � 
(Outlook = Rain    � Wind = Weak) � 
(Outlook = Sunny � Humidity = Normal)   

Rule: 

Copyright © 2011 Victor Lavrenko 

Con>nuous&A;ributes&
•  Dealing with continuous-valued attributes: 

•  create a split: (Temperature > 72.3) = True,False 
•  Threshold can be optimized (WF 6.1) 



IAML:&Decision&Trees&

Victor&Lavrenko&and&Charles&Su;on&
School&of&Informa>cs&

Semester&1&

Predict&if&John&will&play&tennis&

•  Hard&to&guess&
•  Divide&&&conquer:&

– split&into&subsets&
– are&they&pure?&
(all&yes&or&all&no)&

–  if&yes:&stop&
–  if&not:&repeat&

•  See&which&subset&
new&data&falls&into&

Day $ $Outlook $ $Humidity$ $Wind $Play$
D1 & &Sunny & &High& & &Weak &No&
D2 & &Sunny & &High& & &Strong &No&
D3 & &Overcast & &High& & &Weak &Yes&
D4 & &Rain& & &High& & &Weak &Yes&
D5 & &Rain& & &Normal & &Weak &Yes&
D6 & &Rain& & &Normal & &Strong &No&
D7 & &Overcast & &Normal & &Strong &Yes&
D8 & &Sunny & &High& & &Weak &No&
D9 & &Sunny & &Normal & &Weak &Yes&
D10 & &Rain& & &Normal & &Weak &Yes&
D11 & &Sunny & &Normal & &Strong &Yes&
D12 & &Overcast & &High& & &Strong &Yes&
D13 & &Overcast & &Normal & &Weak &Yes&
D14 & &Rain& & &High& & &Strong &No&

Training&examples:&

New&data:&
D15 & &Rain& & &High& & &Weak &?&

9$yes$/$5$no$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Day $Outlook $Humid $Wind$
D1 &Sunny &High& &Weak&
D2 &Sunny &High& &Strong&
D8 &Sunny &High& &Weak&
D9 &Sunny &Normal &Weak&
D11 &Sunny &Normal &Strong&

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

9$yes$/$5$no$

2$yes$/$3$no$
split$further$

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

Copyright © 2011 Victor Lavrenko 

Outlook&

Sunny& Rain&

Overcast&

Day $Outlook $Humid $Wind$
D3 &Overcast &High& &Weak&
D7 &Overcast &Normal &Strong&
D12 &Overcast &High& &Strong&
D13 &Overcast &Normal &Weak&

Humidity&

High& Normal&

Day $Humid $Wind$
D1 &High& &Weak&
D2 &High& &Strong&
D8 &High& &Weak&

Day $Humid $Wind$
D9 &Normal &Weak&
D11 &Normal &Strong&

Copyright © 2011 Victor Lavrenko 

Day $Outlook $Humid $Wind$
D4 &Rain& &High& &Weak&
D5 &Rain& &Normal &Weak&
D6 &Rain& &Normal &Strong&
D10 &Rain& &Normal &Weak&
D14 &Rain& &High& &Strong&

3$yes$/$2$no$
split$further$

4$yes$/$0$no$
pure$subset$

9$yes$/$5$no$
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FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5, 0.5).

impurity measure Qm(T ) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region Rm with Nm observations,
let

p̂mk =
1

Nm

∑

xi∈Rm

I(yi = k),

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = argmaxk p̂mk, the majority class in
node m. Different measures Qm(T ) of node impurity include the following:

Misclassification error: 1
Nm

∑
i∈Rm

I(yi ̸= k(m)) = 1− p̂mk(m).

Gini index:
∑

k ̸=k′ p̂mkp̂mk′ =
∑K

k=1 p̂mk(1− p̂mk).

Cross-entropy or deviance: −
∑K

k=1 p̂mk log p̂mk.
(9.17)

For two classes, if p is the proportion in the second class, these three mea-
sures are 1 − max(p, 1 − p), 2p(1 − p) and −p log p − (1 − p) log (1− p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization. Comparing (9.13) and (9.15), we see that we need
to weight the node impurity measures by the number NmL

and NmR
of

observations in the two child nodes created by splitting node m.
In addition, cross-entropy and the Gini index are more sensitive to changes

in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400, 400)), suppose one split created nodes (300, 100) and (100, 300), while
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Figure 4.2: Bias-variance decomposition of the expected generalization error
for polynomials of degree 1, 5 and 15.

Also, because of low complexity, none of them really fits the trend of
the training points, even approximately, which implies that the aver-
age model is far from approximating the Bayes model. This results in
high bias. On the other hand, polynomials of degree 15 (right) suffer
from overfitting. In terms of bias and variance, the situation is the
opposite. Predictions have low bias but high variance, as shown in
the lower right plot of Figure 4.2. The variability of the predictions is
large because the high degree of the polynomials (i.e., the high model
complexity) captures noise in the learning set. Indeed, compare the
gray line with the blue dots – they almost all intersect. Put other-
wise, small changes in the learning set result in large changes in the
obtained model and therefore in its predictions. By contrast, the av-
erage model is now quite close from the Bayes model, which results
in low bias1. Finally, polynomials of degree 5 (middle) are neither too
simple nor too complex. In terms of bias and variance, the trade-off is
well-balanced between the two extreme situations. Bias and variance
are neither too low nor too large.

4.1.2 Classification

In direct analogy with the bias-variance decomposition for the squared
error loss, similar decompositions have been proposed in the litera-
ture for the expected generalization error based on the zero-one loss,
i.e., for EL{EY|X=x{1('L(x) 6= Y)}} = PL,Y|X=x('L(x) 6= Y). Most no-

1 Note however the Gibbs-like phenomenon resulting in both high variance and high
bias at the boundaries of X.
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