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Topics covered in the lecture:

Decision trees for classification and regression
Combining models by means of bagging

Random forests
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Hastie, Tibshirani and Friedman: The Elements of Statistical Learning,
2009

Duda, Hart and Stork: Pattern Classification, 2000

Criminisi et al.: Decision Forests for Classification, Regression, Density
Estimation, Manifold Learning and Semi-Supervised Learning , 2011

Gilles Louppe: Understanding Random Forests: From Theory to
Practice, 2014
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Supervised machine learning model

Interpretable

Supports both classification and regression (regression trees)
Binary /multi-valued /continuous inputs

Can deal with missing values

Fast training and prediction
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¢ Will John play tennis?

Training examples: 9 yes / 5 no

—————————

4

Day ! Outlook\i
D1 iSunny i
D2 Sunny |
D3 iOvercasti
D4 iRain i
D5 \Rain |
D6 iRain i
D7 {Overcast;
D8 i1Sunny i
D9 iSunny !
D10 \Rain |
D11 iSunny !
D12 {Overcast
D13 iOvercasti
D14 iRain i
New data:™™™""™"™" ,
D15 Rain

Decision Tree Example

Humidity

High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

High

Example and figures by Victor Lavrenko

Wind
Weak
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Strong

Weak

Play
No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes

Yes
No

?
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Decision Tree Example (2)

——————————

D1 Sunny i High
D2 Sunny ! High
D8 Sunny
D9 Sunny 1 Normal'!
D11 Sunny E\Normal

——————————

2yes /3 no
split further

Wind
Weak
Strong
Weak
Weak

Strong

9vyes/5no

Day Outlook Humid
D3 Overcast High
D7 Overcast Normal

D12 Overcast High
D13 Overcast Normal

4 yes /0 no
pure subset

Wind

Weak
Strong

Strong
Weak

Day Outlook Humid Wind

D4 Rain
D5 Rain
D6 Rain
D10 Rain
D14 Rain

High Weak
Normal Weak
Normal Strong
Normal Weak
High Strong
3yes/2no

split further

6/45
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Decision Tree Example (3)

9yes/5no

Day Outlook Humid Wind
D3 Overcast High Weak

D7 Overcast Normal Strong
D12 Overcast High Strong
D13 Overcast Normal Weak

4 yes /0 no
pure subset

Day Humid

D1
D2

D8

High
High
High

Wind Day Humid Wind
Weak D9 Normal Weak
Strong D11 Normal Strong
Weak

Day Outlook Humid ‘

D4 Rain
D5 Rain
D6 Rain
D10 Rain
D14 Rain

----------

{ Wind

High i Weak

Normal i Weak

Normali Strong

Normali Weak

High i\ Strong
3yes/2no

split further

——eeeeeeeeeeaeaaaaael

7/45



http://cmp.felk.cvut.cz

Day Humid

D1
D2
D8

High
High
High

Decision Tree Example (4)

9vyes /5 no

utloo

Day Outlook Humid Wind
D3 Overcast High Weak

D7 Overcast Normal Strong
D12 Overcast High Strong
D13 Overcast Normal Weak

um||ty

Wind
Weak
Strong
Weak

Day Humid Wind Day Humid

D9 Normal Weak D4 High
D11 Normal Strong D5 Normal
D10 Normal

Wind
Weak
Weak
Weak

€«
<

Day Humid
D6 Normal
D14 High

Wind
Strong
Strong

8/45
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Decision Tree Example (5) @ S
9/45

9/5
<
Outlook

4/0

es
2/3 y 3/2
< _
Humidity Wind
0/3 2/0 3/0 0/ 2
no yes yes no

New data: Day Outlook Humid Wind
D15 Rain High Weak =» Yes
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Continuous Inputs

Predicting credit risk

cuy;ae':t aj;c)b fa;::ses:i defaulted?
7 0 N
0.75 0 Y
3 0 N
9 0 N
4 ’) Y
0.25 0 N
5 | N
8 4 Y
1.0 0 N
1.75 0 N

# missed payments

VXYW v

v

v/

<|  Yyears at current job

Example and figure by Michael S. Lewicki

10/45

>1.5
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Regression Trees

"
R
0
(XX
——————4
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R4

t3

R3
X1

t1

Ry
Ry

to

¢

, 2009

ing

The Elements of Statistical Learni

Hastie et al.
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Training set: 7 = {(x;, ;) |t =1,...,m}, x; = (41, Ti2y - - -, Tip)
Input space split into regions defined in leaves: R,., r € {1,..., M}
We can model region responses by constants ¢,., r € {1,..., M} but

other possibilities, e.g., linear regression are possible

Prediction:
M

h(z) = cl{z € R}

r=1
For sum of squares loss function .~ . (y; — h(x;))* we set the
responses to be the averages over regions:

& =

1
rl

S Z Y (see seminar)

where we define samples per region sets :
Sr={(s,v:) : (i, ;) €T Ny € R, }
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Output Empirical Distribution @
13/45

® We can output whole distribution instead of just the prevalent class

A Data in feature space Classification tree {V } =
X9 training l %
?

Criminisi et al.: Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning , 2011
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Continuous Output Empirical Distribution @
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¢ Same can be applied for continuous outputs

Regression tree
training
A ..
Training data
Y
e
°
e
° «
°
o E
° - . e .
e - o
e ' =
° i‘;f
° ) :
a Ly b =

Criminisi et al.: Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning , 2011
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Number of splits = branching factor B

Many decision tree training algorithms use binary trees (B = 2 for all
internal nodes)

e any tree using B > 2 can be transformed into a binary tree
e casier decision of what to split (see in a moment)

e multiway splits may fragment data too early leaving insufficient
data at the next level

= we consider binary trees in the following
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How many distinct decision trees with n Boolean attributes for binary
classification?

e at least as many as boolean functions of n attributes
e = number of distinct truth tables with 2" rows: 22"

e For 6 Boolean attributes at least
18,446,744,073,709,551,616 trees!

Learning is NP-complete: [Hyafil and Rivest 1976]
= we need heuristics = greedy approach

Recursively choose the "most important” attribute to find a small tree
consistent with the training data

Split points:
e nominal attribute: try all possibilities

e ordinal/continuous attribute: try attribute values based on all
training data samples or their subset
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i
Regression Trees: Which Attribute to Split?
17/45

The "most important” attribute for regression trees would be the one
which will reduce the loss (sum of squared errors) by the greatest
amount

We have:
R

h(z) = cl{z € R}

r=1

Consider splitting attribute 5 and split point s, we split an original region
R into a pair of half-planes for an ordinal (e.g., continuous) attribute:

Ri(j3,s) ={x|lr €« RANx; < s} and Rr(j,s) ={x|x € RAz; > s}
similarly for a nominal attribute:

Rr(j,8) ={x|x € RANx; = s} and Rg(j,s) ={x|x € RN x; # s}
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Regression Trees: Which Attribute to Split? (contd.) C
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® We seek for an attribute j and a split point s which minimize:

min Z (y; — CL)2 -+ min Z (yi — CR)2

CL , CR :
CU@ERL(j,S) QLLERR('],S)

for (x;,y;) € S CT (S =T for the root node)

¢ Inner minimizations (region response values) are solved by averaging
tree outputs per region:

1 1
cr, = . y; and  Cp= , Y;
"8G 9] 2 " SR>, 5)] 2

wiERL(j7S> mZERR(j,S)

where Si(7,s) = {(x;,v;) | (xi,y;) € T ANx; € Ri(4,s)}
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Measure of unpredictability used by information theory

Lossless compression = compressed information has more entropy per
character

Entropy of a random variable Y with possible values {y1,¥y2,...,yn}:
Z P(Y = y;)logo P(Y = ;)

Tossing a fair coin:

H(Y) = —P(head) log, P(head) — P(tail) log, P(tail)
1 I 1 1

Two-heads coin: H(Y) = 0 bits
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We can use entropy as an impurity measure

P(def =Y) = =
P(def = N) = &
Entropy:
H (def) = — z”: P(def = y) log, P(def = y) =
ye{Y,N}
_ _13_01og2 1% - 1—7010g2 1_70 ~ 0.8813

We get zero entropy for a pure dataset

© i
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Predicting credit risk

c<qu r?leenirjsoall:? Pan;ri:s:nils? defaulted?
N N N
Y N Y
N N N
N N N
N Y Y
Y N N
N Y N
N Y Y
Y N N
Y N N

Example and figure by Michael S. Lewicki
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°
Conditional Entropy
21/45

¢ Conditional entropy is the amount of uncertainty remaining about Y
after X is known

¢ We first define the specific conditional entropy:

HY|X =z) = ZIP’ = y|X = z)logP(Y = y|X = z)

® The conditional entropy is then:

HY|X)=E,(H(Y|X = z) Z]P HY|X =)
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Mutual Information (Information Gain) C
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¢ Mutual information is a symmetric measure:

P(X =2z,Y =
:ZZP(X:x,Y:y)lOg (IP’(( z)P(Y :y,?);)>

— H(X) — H(X|Y) = H(Y) — HY|X)

¢ It quantifies an information gain for a random variable when other
random variable gets involved
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°
Maximizing Information Gain
23/45

¢ Consider the splitting attribute j and the split point s, we get a pair of
half-planes Ry (j,s) and Rg(J,s)

® We seek for j and s maximizing the information gain:
I(Y; X;) = HY) — Hy(Y|Xj)
where for ordinal attributes we have:
Hy(Y|X,;)=P(X,;, <s) HY|X,; <s)+P(X,;, >s) HY|X, > s)
while for the nominal attributes:

Hy(Y]X;) = P(X; = s) HY|X; = s) + P(X; # s) HY|X; # 5)
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°
Decision Tree Learning Algorithm

BUILD-TREE(S)

O NO O PN B+~

O

—_
= O

e e
B W DN

i = IMPURITY(S)
3,7.8,50,52=0,0,0,0,0
for j € {1,...,p}
for s € SPLIT-POINTS(S, j)
S, Sr = SPLIT(S, j, s)
iz = IMPURITY(S;)

ir = IMPURITY(SR)

. ISLl: 1S&l:
=17 757 T T3 'R

if g>¢ and |Sp| >0 and |Sg]
§757 <§7 SL: gR — gaj7 S, SL) SR
if §>0
Np, = BUILD-TREE(S},)
Ni = BUILD-TREE(SR)

24/45

/ H(Y)onS

// current best kept in these

// iterate over attributes Xy, Xo,..., X,
// iterate over all split points of X; in §
# St ={(®i,yi) : (xi,y:) € S Nxyy = s}
/ HY|X;=5s)

# H(Y|X; #s)

>0

return DECISION-NODE(y, §, N1, Ng)

else return LEAF-NODE(S)
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°
Maximizing Information Gain Example

25/45
1 1 3 3
H(def|<2yrs =Y) = —-1 — — —log, — ~ 0.811
(def|<2yrs ) ;10827 — log, 7 0.8113
9 9 4 4 - o
H(deﬂ<2yrs _ N) __= 10g2 < = 10g2 2 ~0.9183 Predicting credit risk
6 6 6 6 o o
4 8 curr')leenatzr;oall:? par;rl::;ts? defaulted?
H (def|<2yrs) ~ — x 0.8113 + — x 0.9183 =~ 0.8755
10 10 N N R
Y N Y
_ 2 2 1 1
H (def|jmiss =Y) = —3 log, 3~ §10g2 3 ~ 0.9183 N N N
6 6 1. 1 " N N
H (def|miss = N) = —?10g2 7 ?10g2 & 0.5917 N Y Y
3 7 Y N N
H (def|miss) ~ 10 x 0.9183 + 10 x 0.5917 ~ 0.69 N » N
N Y Y
H (def) — H (def|<2yrs) ~ 0.8813 — 0.8755 = 0.0058 Y N N
H (def) — H (def|miss) ~ 0.8813 — 0.69 = 0.1913 Y N N

Example and figure by Michael S. Lewicki
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Maximizing Information Gain Example (contd.)

¢ I(def; <2yrs) = H(def) — H(def|<2yrs) ~ 0.0058
¢ I(def; miss) = H(def) — H(def|miss) ~ 0.1913

© i

bad: 3
good: 7

Missed payments are the
most informative attribute
about defaulting.

missed
payments!

bad: | bad: 2
good: 6 good: |

<2 years
at current

job?
bad: 0 bad: |
good: 3 good: 3

26/45
Predicting credit risk
c<uzrryeenatr;oall)t? par;ri::;?cls? defaulted?
N N N
Y N Y
N N N
N N N
N Y Y
Y N N
N Y N
N Y Y
Y N N
Y N N

Example and figures by Michael S. Lewicki
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Information Gain for Multiway Splits

¢ For multiway splits we have:

HY|X;)= >  PX;=s) HY|X; =s)

s€Values(X ;)

Biases towards attributes with many values!

Extreme case: sample ID (day)

___________

Day g0utlook\§

H(play\day) =0 D1 iSunny i

D2 iSunny |

L . . . D3 iOvercasti

¢ Maximizes mformatlon gain: D4 {Rain -

D5 iRain |

I(play;day) = H(play) — H(play|day) = H(play) b6  [Rain |

D7 {Overcasti

D8 iSunny |

9yes/5no D9 iSunny :

- D10 [Rain |

D11 iSunny |

D12 iOvercasti

D13 {Overcast!

o1 o o Cou ) (o5 ene o

0o/1 o/1 1/0 1/0 1/0 0/1 New data:™™"""""
D15 Rain

all subsets perfectly pure => optimal split

Example and figures by Victor Lavrenko

Training examples: 9 yes / 5 no

Humidity
High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

High

Wind
Weak
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Strong

Weak

27/45

Play
No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No

?
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Multiway Splits: Information Gain Ratio @
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¢ Use information gain ratio instead:

I(Y; X;)
Split Entropy(Y; X;)

GainRatio(Y; X;) =

where

55|
5]

S
SplitEntropy(Y; X;) = Z ‘]S]‘ log
s&Values(X )

¢ High Split Entropy: partitions have more or less the same size (uniform)

¢ Low SplitEntropy: few partitions hold most of the tuples (peaks)

9yes/5no
(b1 D2 (03 ) (D4 )( D5 )eee D14
o/1 o/1 1/0 1/0 1/0 0/1

all subsets perfectly pure => optimal split
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Other Impurity Measures
29/45

¢ Gini impurity (expected error rate if the classification is picked according
to the class distribution):

Gini(Y) =) P(Y =y)P(Y =y;) =1—) P(Y =)’
i j i

¢ Misclassification measure (minimum probability of misclassification):

0.5
|

0.3

0.2
|

two classes, proportions p and 1 — p

0.1

entropy scaled to pass through (0.5,0.5)

0.0
|

I I I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Hastie et al.: The Elements of Statistical Learning, 2009
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Split while impurity decreases

e no assurance of zero impurity at leafs (e.g., for two samples
T; =T, Yi F Yj)

e when all leaves are pure then tree becomes a lookup table =
overfitting!

Check generalization error using validation set, stop when validation
error starts to increase

Use threshold (: stop splitting when maximum possible gain drops
below 3

e uses all training data unlike the previous approach
e leaves at different depths: adapts to complexity in input distribution

e drawback: hard to set
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Stop when the node represents less than n (e.g., 10) samples or less
then a percentage of total samples (e.g., 5%)

Trade complexity for test accuracy, minimize:

a-size+ »  IMPURITY(S))

[€leaves

where o > 0 and s2ze can be the number of tree nodes or links

Check statistical significance of the impurity reduction, e.g. using
chi-squared test:

e when a candidate split does not reduce the impurity significantly,
splitting is stopped

e does a candidate split significantly differ from a random split?
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The previously stopping methods may stop tree growth prematurely due
to the greedy approach

Pruning: reduce a fully grown tree starting at leaves
All pairs of sibling leaf nodes are considered for merge

Any pair whose elimination yields a satisfactory (small) increase in
impurity is eliminated

Computationally costly but preferred for smaller problems

Rule pruning: simplifying rules defined by conjunction of tests on a way
from the root to leaves = better interpretability
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CART (Classification And Regression Trees): described in previous slides

(some extensions beyond were shown)
ID3 (Interactive Dichotomizer 3)
e Quinlan: Induction of Decision Trees, 1986
e nominal (unordered inputs), uses binning for continuous variables
e multiway
e depth < number of input variables
e no pruning originally
C4.5 (Quinlan)
e multiway for nominal data
e pruning based on statistical significance tests
e missing features different that CART p. 412
e rule-based prunning
C5.0 (Quinlan): patented, faster, less memory, boosting support
CHAID (CHi-square Automatic Interaction Detector)
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Consider a regression problem with data generated as follows:

y = flz) +e

where ¢ is noise: E(¢) = 0 and Var(e) = o*

Let h(x;7T,0) be a model trained on data generated from p(x,y) using
algorithm with hyper-parameters 0 (e.g., a random seed)

Such definition allows randomized training algorithms generating
different models for the same T

To assess performance of the particular learning algorithm on 7 and 6
we can evaluate expected value of a square loss for samples from p(z, y):

Err7'79(213) m— me ([y — h(ll?, T, 9)]2 | T, (9)
Expected test error at x is then:

Err(x) = Er0(Errro(z)) =E ([y — h(2)]?)
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Bias-Variance Decomposition (contd.) C
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¢ Use E(y) = E(f(z))
E(yh(z)) = E((f(z)

f(z), Var(y) = o and
e)h(z)) = f(x)E(h(z)) = E(y)E(h(z)):

+

Err(z) = E ([y — h(@)]?) = E(y?) — 2E(yh(2)) + B(h(2)%) =
= Var(y) + E(y)? — 2B(y)E(h(z)) + Var(h(z)) + E(h(x))? =
= 0* + [E(y) — B(h(2))]” + Var(h(x)) =
= & +E( (@) — h(@)*+ Var(h())

noise(z) bias® () var(x)

® The error splits into three terms
e noise(x): irreducible determined by data,
e bias?(z): error of approximation
e var(x): measures sensitivity to particular dataset
¢ We have to find the right balance to minimize the loss
= bias-variance tradeoff
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Bias-Variance: Model Complexity @
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¢ Polynomial regression with a varying degree of polynomial

Degree =1 Degree =5 Degree = 15

N _

X X X

Gilles Louppe: Understanding Random Forests: From Theory to Practice, 2014
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Bias and Variance of Decision Trees
37/45

¢ Small changes of training data lead to big differences in final trees
¢ Decision trees grown deep enough have typically:
e |ow bias
e high variance
= overfitting

¢ ldea: average multiple models to reduce variance while (happily) not
increasing bias much
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Define model b as an average of M models:

Noise is given by data and does not change

Bias remains unchanged when compared to a single model:

bias(x) = f(x) — E(b(x)) = f(x) — E (ﬁ > hi<x>>

The last step is due to 7; and 6; used to train h;(x) are i.i.d.
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For uncorrelated component models h;(x):

=| —

var(z) = Var(b(x)) = Var (—Z h@-<x>> =

_ # ZVar(hZ-(x)) = %Var(h(:v))

which is a great improvement based on the strong assumption

There is no improvement for maximum correlation, i.e., all component
models are same (h,,(x) = h(x) form =1,..., M) we get:

var(x) Var( Zh ) Var(h(x))

= we need to train uncorrelated (diverse) component models while
keeping their bias reasonably low



http://cmp.felk.cvut.cz

© s

40/45

In practice we have only a single training dataset 7

Bootstrapping is a method producing datasets 7; for: =1,... M by
sampling T uniformly with replacement

Bootstrap datasets have the same size as the original dataset |7;| = |T|

T: is expected to have the fraction 1 — 1 ~ 63.2% of unique samples
from T, others are duplicates (see seminar)
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Bagging = Bootstrap AGGregating [Breiman 1994/

1. Use bootstrapping to generate M datasets
2. Train a model h; on each dataset 7;
3. Average the models

When decision trees are used as the models = random forests
Low bias is achieved by growing the trees to maximal depth
Trees are decorrelated by:

e training each tree on a different bootstrap dataset

e randomization of split attribute selection
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1. Fore=1... M:

(a) draw a bootstrap dataset 7; from T, |T;| = |T|
(b) grow a tree h;(x) using 7T; by recursively repeating the following until
the minimum node size n.;, is reached:
i. select k attributes at random from the p attributes
ii. pick the best variable and split-point among the &
iii. split the node into two daughter nodes

2. Output ensemble of trees b(x) averaging h;(x) (regression) or selecting a
majority vote (classification)

Node size = the number of dataset samples associated with the node
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Out-of-Bag (OOB) Error
43/45

¢ "Cheap" way of generalization error assessment for bagging

¢ Bagging produces bootstrapped sets 71, 72,... 75

¢ For each (x;,y;) € T select only trees which were not trained on this

sample: H; = {hj | (246, y:) € 7;}

¢ Average only the OOB trees in H; when evaluating error for (x;, y;)

® Replacement for K-fold cross-validation
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Random forests allow easy evaluation of feature importances
Mean Decrease Impurity (MDI):

o set f; = 0 for all attributes 7 =1,...,p

e traverse all trees processing all internal nodes

e for each node having a split attribute 7 add its impurity decrease
multiplied by the proportion of the node size to f;

Mean Decrease Accuracy (MDA), permutaion importance:
e evaluate the forest using OOB data
e do the same with permuted values of an attribute

e watch decrease in accuracy: low decrease means unimportant
feature
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Easy to use method: robust w.r.t. parameter settings (M, node size)

While consistency is proven for decision trees (both regression and
classification) we have only proofs for simplified versions of random

forests [Breiman, 1984]

Related methods: boosted trees


http://cmp.felk.cvut.cz

Training examples: 9 yes / 5 no

Day Outlook
D1 ESunny
D2 iSunny
D3 iOvercast
D4 'Rain

D5 iRain

D6 iRain

D7 Overcast
D8 1Sunny
D9 iSunny
D10 iRain
D11 iSunny
D12 Overcast
D13 iOvercast
D14  {Rain
New data:™""""
D15 Rain

—————————

4

\
\
I

Humidity

High
High
High
High
Norma
Norma
Norma
High

Norma
Norma
Norma
High

Normal
High

High

Wind
Weak
Strong

Wea
Wea
Wea

¢
¢

¢

Strong
Strong

Wea
Wea
Wea

¢
¢

K

Strong
Strong
Weak

Strong

Weak

Play

No
Yes
Yes
Yes

No
Yes

Yes
Yes

Yes
Yes

Yes

?



9vyes /5 no

Day Outlook Humid Wind
D3 Overcast High Weak
D7 Overcast Normal Strong
D12 Overcast High Strong
D13 Overcast Normal Weak

——————————

Day Outlook{ Humid | Wind Day Outlook Humid Wind
D1 Sunny i High E Weak 4 yes / 0 no D4y Rain High Weak
D2 Sunny {High ! Strong pure subset D5 Rain Normal Weak
D8 Sunny iHigh i Weak D6 Rain Normal Strong
D9 Sunny | Normal i Weak D10 Rain Normal Weak
D11 Sunny E\Normal,,l Strong D14 Rain High Strong
2yes/3no 3yes/2no

split further split further



9vyes /5 no

utioo

Day Outlook Humid
D3 Overcast High

D7 Overcast Normal
D12 Overcast High
D13 Overcast Normal

um||ty

4 yes / 0 no
pure subset

Day Humid
D1 High
D2 High
D8 High

Wind Day Humid Wind
Weak D9 Normal Weak
Strong D11 Normal Strong
Weak

Wind
Weak
Strong

Strong
Weak

Day Outlook Humid

D4 Rain
D5 Rain
D6 Rain
D10 Rain
D14 Rain

——————————

{ Wind

High E Weak

Normal | Weak

Normali Strong

Normal | Weak

High i\ Strong
3yes/2no

split further

N ————_



Day Humid
D1 High
D2 High
D8 High

9vyes/5no
PN

Outlook

Day Outlook Humid Wind

D3 Overcast High
D7 Overcast Normal Strong
D12 Overcast High
D13 Overcast Normal Weak

Humidity

Wind
Weak
Strong
Weak

Day Humid
D9 Normal
D11 Normal

Wind
Weak
Strong

Weak

Strong

Day Humid
D4 High

D5 Normal
D10 Normal

Wind Day Humid Wind
Weak D6 Normal Strong
Weak D14 High Strong
Weak
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Outlook

4/0
es
Humidity
0/3 2/0 3/0 0/2
no yes yes no

New data: Day Outlook Humid Wind
D15 Rain High Weak =» Yes



Predicting credit risk

years at
current job

# missed
payments

defaulted?
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Data in feature space

Classification tree
training




Training data
°
[
e
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Regression tree
training A {V}

p(y|v)
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Predicting credit risk

C<u 2r Iéenirfof? Par;iqisei(':cls? defaulted?
N N N
Y N Y
N N N
N N N
N Y Y
Y N N
N Y N
N Y Y
Y N N
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Predicting credit risk

C<u 2r Iéenirfof? Par;iqisei(':cls? defaulted?
N N N
Y N Y
N N N
N N N
N Y Y
Y N N
N Y N
N Y Y
Y N N
Y N N




N / 2 year\Y
at current

\_

bad: 3
good: /7

bad: |
good: 6

Missed payments are the
most informative attribute
about defaulting.

missed
N / payments! Y

N

bad: 2
good: |

bad: 0
good: 3

Y job?

bad: |
good: 3




Predicting credit risk

C<u 2r Iéenirfof? Par;iqisei(':cls? defaulted?
N N N
Y N Y
N N N
N N N
N Y Y
Y N N
N Y N
N Y Y
Y N N
Y N N
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 Day
01 (D2 (D3 ) (Da)( D5 eee D14

o/1 o0/1 1/0 1/0 1/0 0/1
all subsets perfectly pure => optimal split




Training examples: 9 yes / 5 no

Day Outlook
D1 ESunny
D2 iSunny
D3 iOvercast
D4 'Rain

D5 iRain

D6 iRain

D7 Overcast
D8 1Sunny
D9 iSunny
D10 iRain
D11 iSunny
D12 Overcast
D13 iOvercast
D14  {Rain
New data:™""""
D15 Rain

—————————
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Humidity

High
High
High
High
Norma
Norma
Norma
High

Norma
Norma
Norma
High

Normal
High

High

Wind
Weak
Strong

Wea
Wea
Wea

¢
¢

¢

Strong
Strong

Wea
Wea
Wea

¢
¢

K

Strong
Strong
Weak

Strong

Weak

Play

No
Yes
Yes
Yes

No
Yes

Yes
Yes

Yes
Yes

Yes
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 Day
01 (D2 (D3 ) (Da)( D5 eee D14

o/1 o0/1 1/0 1/0 1/0 0/1
all subsets perfectly pure => optimal split




G0

0

€0

o0

10

00

1.0

0.8

0.6

0.4

0.2

0.0



Degree =1 Degree = 5 Degree = 15

error(z)
—  bias® ()

—  war(x)
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