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Linear classifier with minimal classification error

� X is a set of observations and Y = {+1,−1} is a set of hidden labels

� φ : X → Rn is fixed feature map embedding observations from X to Rn

� Task: we search for a linear classification strategy h : X → Y

h(x;w, b) = sign(〈w,φ(x)〉+ b) =

{
+1 if 〈w,φ(x)〉+ b ≥ 0

−1 if 〈w,φ(x)〉+ b < 0

with minimal expected risk

R0/1(h) = E(x,y)∼p

(
`0/1(y, h(x))

)
where `0/1(y, y′) = [[y 6= y′]]

� We are given a set of training examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. with the distribution p(x, y).

http://cmp.felk.cvut.cz
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ERM learning for linear classifiers

� The Empirical Risk Minimization principle leads to solving

(w∗, b∗) ∈ Argmin
(w,b)∈(Rn×R)

R
0/1
T m(h(·;w, b)) (1)

where the empirical risk is

R
0/1
T m(h(·;w, b)) =

1

m

m∑
i=1

[[yi 6= h(xi;w, b)]]

In this lecture we address the following issues:

1. Algorithmic issues: In the general case there is no known algorithm solving
the task (1) in time polynomial in m.

2. Is the ERM algorithm for hypothesis space containing linear classifiers
statistically consistent? . . . yes.

http://cmp.felk.cvut.cz
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Vapnik-Chervonenkis (VC) dimension

Definition 1. Let H ⊆ {−1,+1}X and {x1, . . . , xm} ∈ Xm be a set of m
input observations. The set {x1, . . . , xm} is said to be shattered by H if for
all y ∈ {+1,−1}m there exists h ∈ H such that h(xi) = yi, i ∈ {1, . . . ,m}.

Definition 2. Let H ⊆ {−1,+1}X . The Vapnik-Chervonenkis dimension of
H is the cardinality of the largest set of points from X which can be
shattered by H.

Theorem 1. The VC-dimension of the hypothesis space of all linear
classifiers operating in n-dimensional feature space
H = {h(x;w, b) = sign(〈w,φ(x)〉+ b) | (w, b) ∈ (Rn × R)} is n+ 1.
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Consistency of prediction with two classes and 0/1-loss

Theorem 2. Let H ⊆ {+1,−1}X be a hypothesis space with VC dimension
d <∞ and T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw
from i.i.d. rand vars with distribution p(x, y). Then, for any ε > 0 it holds

P
(
sup
h∈H

∣∣∣R0/1(h)−R0/1
T m(h)

∣∣∣ ≥ ε) ≤ 4

(
2 em

d

)d
e−

m ε2

8 .

Corollary 1. Let H ⊆ {+1,−1}X be a hypothesis space with VC dimension
d <∞. Then ERM is statistically consistent in H w.r.t `0/1 loss function.

Corollary 2. Let H ⊆ {+1,−1}X be a hypothesis space with VC dimension
d <∞. Then, for any 0 < δ < 1 the inequality

R0/1(h) ≤ R0/1
T m(h) +

√
8
(
d log 2 em

d + log 4
δ

)
m

holds for any h ∈ H with probability 1− δ at least.
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Training linear classifier from separable examples

Definition 3. The examples T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m} are
linearly separable w.r.t. feature map φ : X → Rn if there exists
(w, b) ∈ Rn+1 such that

yi(〈w,φ(xi)〉+ b) > 0 , i ∈ {1, . . . ,m} (2)

� Implementation of the ERM for linearly separable examples T m leads to
solving (2) which yileds h(x;w, b) with R0/1

T m(h(·;w, b)) = 0.
Note that yi(〈w,φ(xi)〉+ b) > 0 implies

h(xi) = sign(〈w,φ(xi)〉+ b) = yi

� The linear programming task (2) can be solved by the Perceptron
algorithm.

http://cmp.felk.cvut.cz
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Auxiliary prediction problem leading to tractable ERM

� X , Y = {+1,−1} and φ : X → Rn defined as before.

� Auxiliary prediction problem: find a decision function f : X → R
minimizing the expectation of the hinge loss ψ : Y × R→ R+:

Rψ(f) = E(x,y)∼p(ψ(y, f(x))) where ψ(y, t) = max{0, 1− y t}

� Assuming the hypothesis space which contains the linear functions

F =
{
f(x) = 〈φ(x),w〉+ b | (w, b) ∈ Rn+1}

the ERM principle leads to solving

f∗ = Argmin
f∈F

RψT m(f) where RψT m(f) =
1

m

m∑
i=1

ψ(yi, f(xi))

� How is this task related to minimization of the classification error?

http://cmp.felk.cvut.cz
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The hinge-loss upper bounds the 0/1-loss

� The hinge-loss is an upper bound of the 0/1-loss evaluated for the
predictor h(x) = sign(f(x)):

[[sign(f(x)) 6= y]]︸ ︷︷ ︸
`0/1(y,f(x))

= [[ y f(x) ≤ 0]] ≤ max{0, 1− y f(x)}︸ ︷︷ ︸
ψ(y,f(x))

1
[[t ≤ 0]]

max(0, 1− t)

10 t

� Therefore 0/1-risk of h(x) = sign(f(x)) is upper-bounded by ψ-risk:

R0/1(sign(f)) ≤ Rψ(f) for any f : X → R

http://cmp.felk.cvut.cz
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Excess error of ψ-risk upper bounds excess risk of 0/1-risk

� The best attainable 0/1-risk is R0/1
∗ = infh∈YX R

0/1(h).

� The best attainable ψ-risk is Rψ∗ = inff∈RX R
ψ(f)

� The best predictor in F is fF ∈ Argminf∈F R
ψ(f).

Theorem 3. For any f : X → R the following inequality holds

R0/1(sign(f))−R0/1
∗︸ ︷︷ ︸

excess error
of original task

≤ Rψ(f)−Rψ∗︸ ︷︷ ︸
excess error

of auxiliary task

Corollary 3. Let A′ : ∪∞m=1 (X × Y)→ F be a learning algorithm
statistically consistent in F ⊆ RX w.r.t. ψ-risk. In addition, let
Rψ(fF) = Rψ∗ . Then, the learning algorithm A(T m) = sign(A′(T m)) is
statistically consistent in H = {sign(f) | f ∈ F} w.r.t. 0/1-risk.

http://cmp.felk.cvut.cz
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Solving ERM problem of the auxiliary prediction task

� Let us consider a space of linear score functions with parameter vector
inside a ball of radius r, that is,

Fr =
{
f(x) = 〈φ(x),w〉+ b | (w, b) ∈ Rn+1, ‖w‖ ≤ r}

� The ERM problem for ψ(y, t) = max{0, 1− y t} loss reads

f∗ = Argmin
f∈Fr

RψT m(f) where RψT m(f) =
1

m

m∑
i=1

ψ(yi, f(xi))

� The ERM problem is a convex unconstrained optimization task

(w∗, b∗) = argmin
‖w‖≤r,b∈R

(
1

m

m∑
i=1

max{0, 1− yi(〈w,φ(xi)〉+ b)}
)

http://cmp.felk.cvut.cz
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Summary

Topics covered in the lecture

� Linear classifier

� Vapnik-Chervonenkis dimension

� Consistency and generalization bound for two-class prediction and
0/1-loss

� ERM problem for linear classifiers

� Auxiliary prediction problem ERM of which is tractable

� Excess error of the auxiliary problem upper bounds the excess error of
the original problem

http://cmp.felk.cvut.cz
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