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Linear classifier with minimal classification error
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X is a set of observations and ) = {41, —1} is a set of hidden labels
¢: X — R" is fixed feature map embedding observations from X to R"

Task: we search for a linear classification strategy h: X — )

h(x;w,b) = sign({(w, p(x)) +b) = { ji :i EZ: Zggi 12 i 8

with minimal expected risk
RY1(h) = E(z y)p (50/ 'y, h(w))) where (%1 (y,y") = [y # /]
We are given a set of training examples
T ={(z"y) e (X xW)|i=1,...,m}

drawn from i.i.d. with the distribution p(x, y).
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ERM learning for linear classifiers
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The Empirical Risk Minimization principle leads to solving
(w*,b*) €  Argmin RV (h(-;w, b)) (1)

(w,b)e(R”xR)

where the empirical risk is

m

R w,0) = — S [yt # b w,b)

i=1
In this lecture we address the following issues:

1. Algorithmic issues: In the general case there is no known algorithm solving
the task (1) in time polynomial in m.

2. Is the ERM algorithm for hypothesis space containing linear classifiers
statistically consistent? ... yes.
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Vapnik-Chervonenkis (VC) dimension
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Definition 1. Let H C {—1,+1}* and {z!,..., 2™} € X™ be a set of m
input observations. The set {z!,... 2™} is said to be shattered by H if for
all y € {+1,—1}"™ there exists h € H such that h(z*) =y, i € {1,...,m}.

Definition 2. Let H C {—1,+1}*. The Vapnik-Chervonenkis dimension of
‘H is the cardinality of the largest set of points from X which can be
shattered by H.

Theorem 1. The VC-dimension of the hypothesis space of all linear
classifiers operating in n-dimensional feature space

H ={h(z;w,b) =sign({(w, ¢p(z)) +b) | (w,b) € (R" xR)} isn+ 1.
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Consistency of prediction with two classes and 0/1-loss
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Theorem 2. Let H C {+1,—1}* be a hypothesis space with VVC dimension
d<ooand T™={(z',y!),..., (™ y™)} € (X x V)™ a training set draw
from i.i.d. rand vars with distribution p(x,y). Then, for any € > 0 it holds

d 2
(sup‘RO/l Ro/l(h)‘ 25) §4(26m> e~ s
heH d

Corollary 1. Let H C {+1,—1}" be a hypothesis space with VVC dimension
d < co. Then ERM is statistically consistent in H w.r.t £°/1 loss function.

Corollary 2. Let H C {+1,—1}* be a hypothesis space with VVC dimension
d < oo. Then, for any 0 < 0 < 1 the inequality

RY1(h) < RYm(R) + \/8(

m

holds for any h € ‘H with probability 1 — § at least.



http://cmp.felk.cvut.cz

©
Training linear classifier from separable examples

Definition 3. The examples T™ = {(z*,3*) € (X x V) | i =1,...,m} are
linearly separable w.r.t. feature map ¢: X — R" if there exists
(w,b) € R"™! such that

y'((w, ¢(z") +0) >0,  iefl,... . m} (2)
Implementation of the ERM for linearly separable examples 7™ leads to

solving (2) which yileds h(z;w, b) with ROT/%(h(-;w, b)) = 0.
Note that y'({w, ¢(x*)) + b) > 0 implies

h(z') = sign((w, (z")) +b) =y’

The linear programming task (2) can be solved by the Perceptron
algorithm.
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Auxiliary prediction problem leading to tractable ERM

X, Y={+1,—-1} and ¢: X — R" defined as before.

Auxiliary prediction problem: find a decision function f: X — R
minimizing the expectation of the hinge loss ¢: YV X R — R:

RY(f) = E(zy)~p(¥(y, f(2))) where 4(y,t) = max{0,1—y t}
Assuming the hypothesis space which contains the linear functions
F={f(z) = (p(z),w) +b| (w,b) € R""}
the ERM principle leads to solving

f* = Argmianprm(f) where me(f) = l2¢(y27 f(xz))

m
JeF i1

How is this task related to minimization of the classification error?
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The hinge-loss upper bounds the 0/1-loss

The hinge-loss is an upper bound of the 0/1-loss evaluated for the
predictor h(xz) = sign(f(x)):

[sign(f(x)) #yl = [y f(z) £ 0] < max{0,1 —y f(z)}

/1 (y, f () b (y, f(x))
max (0,1 — t)
1
[t <0
0 1 /

Therefore 0/1-risk of h(x) = sign(f(x)) is upper-bounded by -risk:

RYY(sign(f)) < R¥(f)  forany  f: X =R

8/11
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© Wkt
Excess error of 1-risk upper bounds excess risk of 0/1-risk
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The best attainable 0/1-risk is RV = inf),cyx RY1(R).
The best attainable y-risk is RY = inf ;cpr RY(f)

The best predictor in F is fr € Argmin . R¥(f).

Theorem 3. For any f: X — R the following inequality holds

R (sign(f)) — RY! < RY(f) - RY

excess error excess error
of original task of auxiliary task

Corollary 3. Let A": US_, (X x )V) — F be a learning algorithm
statistically consistent in F C R w.r.t. 1-risk. In addition, let

RY(fr) = RY. Then, the learning algorithm A(T™) = sign(A'(T™)) is
statistically consistent in H = {sign(f) | f € F} w.r.t. 0/1-risk.
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C
Solving ERM problem of the auxiliary prediction task C
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Let us consider a space of linear score functions with parameter vector

inside a ball of radius r, that is,
Fr=A{f(x) = (p(x),w) +b| (w,b) e R"™, |Jw]|| < r}
The ERM problem for ¢ (y,t) = max{0,1 — y t} loss reads

f* = ArgminR?rm(f) where R¢m(f) = lZlb(yza f(xz))

m

The ERM problem is a convex unconstrained optimization task

(w*,b*) = argmin <% Z max{0,1 — y'({(w, ¢p(z")) + b)})

|w||<r,beR
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Summary
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Topics covered in the lecture
Linear classifier
Vapnik-Chervonenkis dimension

Consistency and generalization bound for two-class prediction and
0/1-loss

ERM problem for linear classifiers
Auxiliary prediction problem ERM of which is tractable

Excess error of the auxiliary problem upper bounds the excess error of
the original problem
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max(0,1 — 1)
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