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Prediction problem: the definition

� X a set of input observations/features

� Y a finite set of hidden states

� (x, y) ∈ X × Y samples randomly drawn from r.v. with p.d.f. p(x, y)

� h : X → Y a prediction strategy

� ` : Y × Y → R a loss function

� Task is to find a strategy with the minimal expected risk

R(h) =

∫ ∑
y∈Y

`(y, h(x)) p(x, y) dx = E(x,y)∼p

(
`(y, h(x))

)
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Example of a prediction problem

� The statistical model:

• X = R, Y = {+1,−1}, `(y, y′) =
{

0 if y = y′

1 if y 6= y′

• p(x, y) = p(y) 1√
2πσ

e
− 1

2σ2
(x−µy)2, y ∈ Y.
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Solving the prediction problem from examples

� Assumption: we have an access to examples

{(x1, y1), (x2, y2), . . .}

drawn from i.i.d. r.v. distributed according to unknown p(x, y).

� 1) Testing: a given h : X → Y estimate its R(h) using test set

Sl = {(xi, yi) ∈ (X × Y) | i = 1, . . . , l}

drawn i.i.d. from p(x, y).

� 2) Learning: find h : X → Y with small R(h) using training set

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn i.i.d. from p(x, y).
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� Given a predictor h : X → Y and a test set Sl draw i.i.d. from
distribution p(x, y), compute the empirical risk

RSl(h) =
1

l

(
`(y1, h(x1)) + · · ·+ `(yl, h(xl)

)
=

1

l

l∑
i=1

`(yi, h(xi))

and use it as an estimate of R(h) = E(x,y)∼p(`(y, h(x))).

� The empirical risk RSl(h) is a random variable.

� We will show how to compute an interval such that

R(h) ∈ (RSl(h) − ε,RSl(h) + ε)

holds with a prescribed probability (confidence) δ ∈ (0, 1).

� We show how the interval width ε depends on l and δ.
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Testing: estimation of the expected risk
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Law of large numbers

� Arithmetic mean of the results of random trials gets closer to the
expected value as more trials are performed.

� Example: The expected value of a single roll of a fair die is

1 + 2 + 3 + 4 + 5 + 6

6
= 3.5
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Hoeffding inequality

Theorem 1. Let {z1, . . . , zl} ∈ [a, b]l be realizations of independent
random variables with the same expected value µ. Then for any ε > 0 it
holds that

P
(∣∣∣1
l

l∑
i=1

zi − µ
∣∣∣ ≥ ε) ≤ 2e

− 2l ε2

(b−a)2

� Example (rolling a die): µ = 3.5, zi ∈ [1, 6], ε = 0.5.
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Confidence intervals

� Let µl = 1
l

∑l
i=1 z

i be the arithmetic average computed from
{z1, . . . , zl} ∈ [a, b]l sampled from r.v. with expected value µ.

� Find ε such that µ ∈ (µl − ε, µl + ε) with probability at least γ.

Using the Hoeffding inequality we can write

P
(
|µl − µ| < ε

)
= 1− P

(
|µl − µ| ≥ ε

)
≥ 1− 2e

− 2 l ε2

(b−a)2 = γ

and solving the last equation for ε yields

ε = |b− a|
√

log(2)− log(1− γ)
2 l
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Confidence intervals

� Let µl = 1
l

∑l
i=1 z

i be the arithmetic average computed from
{z1, . . . , zl} ∈ [a, b]l sampled from r.v. with expected value µ.

� Given a fixed ε > 0 and γ ∈ (0, 1), what is the minimal number of
examples l such that µ ∈ (µl − ε, µl + ε) with probability γ at least ?

Starting from

P
(
|µl − µ| < ε

)
= 1− P

(
|µl − µ| ≥ ε

)
≥ 1− 2e

− 2 l ε2

(b−a)2 = γ

and solving for l yields

l =
log(2)− log(1− γ)

2 ε2
(b− a)2

http://cmp.felk.cvut.cz


10/25
Testing: estimation of the expected risk

� Given h : X → Y estimate the expected risk R(h) = E(x,y)∼p(`(y, h(x)))

by the empirical risk RSl(h) = 1
l

∑l
i=1 `(y

i, h(xi)) using the test set Sl
drawn i.i.d from p(x, y).

� The incurred losses zi = `(yi, h(xi)) ∈ [`min, `max], i ∈ {1, . . . , l}, are
realizations of i.i.d. r.v. with the expected value µ = R(h).

� According to the Hoeffding inequality, for any ε > 0 the probability of
seeing a “bad test set” can be bound by

P
(∣∣∣RSl(h)−R(h)∣∣∣ ≥ ε) ≤ 2e

− 2l ε2

(`min−`max)2
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Testing: confidence intervals

� Given h : X → Y estimate the expected risk R(h) = E(x,y)∼p(`(y, h(x)))

by the empirical risk RSl(h) = 1
l

∑l
i=1 `(y

i, h(xi)) using the test set Sl
drawn i.i.d from p(x, y).

� Confidence interval: the expected risk is

R(h) ∈
(
RSl(h)− ε,RSl(h) + ε

)
with the probability (confidence) γ ∈ (0, 1) at least.

� Interval width: For fixed l and γ ∈ (0, 1) compute

ε = (`max − `min)

√
log(2)− log(1− γ)

2 l
.

� Number of examples: For fixed ε and γ ∈ (0, 1) compute

l =
log(2)− log(1− γ)

2 ε2
(`max − `min)

2
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Example: confidence intervals

� The width of R(h) ∈
(
RSl(h)− ε,RSl(h) + ε

)
is for `(y, y′) = [[y 6= y′]]

given by ε =
√

log(2)−log(1−γ)
2 l
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l 100 1,000 10,000 18,445
ε 0.135 0.043 0.014 0.01

http://cmp.felk.cvut.cz


13/25
Learning

� The goal: Find a strategy h : X → Y minimizing R(h) using the
training set of examples

T m = {(xi, yi) ∈ (X × Y) | i = 1, . . . ,m}

drawn from i.i.d. according to unknown p(x, y).

� Hypothesis space: he have to use our knowledge to select

H ⊆ YX = {h : X → Y}

� Learning algorithm: a function

A : ∪∞m=1 (X × Y)m→ H

which returns a strategy hm = A(T m) for a training set T m
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� The ERM based algorithm returns hm such that

hm ∈ Argmin
h∈H

RT m(h) (1)

� Depending on the choince of H and ` and algorithm solving (1) we get
individual instances e.g. Support Vector Machines, Linear Regression,
Logistic Regression, Neural Networks learned by back-propagation,
AdaBoost, Gradient Boosted Trees, ...
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Learning: Empirical Risk Minimization approach

� The expected risk R(h), i.e. the true but unknown objective, is replaced
by the empirical risk computed from the training examples

RT m(h) =
1

m

m∑
i=1

`(yi, h(xi))
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The characters of the play:
� R∗ = infh∈YX R(h) best attainable (Bayes) risk

� R(hH) best risk in H where hH ∈ Argminh∈HR(h)

� R(hm) risk of hm = A(Tm) learned from T m

Excess error: the quantity we want to minimize(
R(hm)−R∗

)
︸ ︷︷ ︸
excess error

=

(
R(hm)−R(hH)

)
︸ ︷︷ ︸
estimation error

+

(
R(hH)−R∗

)
︸ ︷︷ ︸

approximation error

Questions:
� Which of the quantities are random and which are not ?
� What causes individual errors ?
� How do the errors depend on H and m?
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Errors to minimize when learning

http://cmp.felk.cvut.cz


16/25
Statistically consistent learning algorithm

� The statistically consistent algorithm can make the estimation error
arbitrarily small if it has enough examples.

� Is the ERM algorithm statistically consistent ?

Definition 1. The algorithm A : ∪∞m=1 (X × Y)m→ H is statistically
consistent in H ⊆ YX if for any p(x, y) and ε > 0 it holds that

lim
m→∞

P
(
R(hm)−R(hH) ≥ ε

)
= 0

where hm = A(T m) is the hypothesis returned by the algorithm A for
training set T m generated from p(x, y).
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Example: ERM does not work if H is unconstrained

� Let X = [a, b] ⊂ R, Y = {+1,−1}, `(y, y′) = [[y 6= y′]], p(x | y = +1)

and p(x | y = −1) be uniform distributions on X and p(y = +1) = 0.8.

� The optimal strategy is h(x) = +1 with the Bayes risk R∗ = 0.2.

� Consider learning algorithm which for a given training set
T m = {(x1, y1), . . . , (xm, ym)} returns strategy

hm(x) =

{
yj if x = xj for some j ∈ {1, . . . ,m}
−1 otherwise

� The empirical risk is RT m(hm) = 0 with probability 1 for any m.

� The expected risk is R(hm) = 0.8 for any m.
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Uniform Law of Large Numbers

Definition 2. The hypothesis space H ⊆ YX satisfies the uniform law of
large numbers if for all ε > 0 it holds that

lim
m→∞

P
(
sup
h∈H

∣∣∣R(h)−RT m(h)∣∣∣ ≥ ε) = 0

� ULLN says that the probability of seeing a “bad training set” can be
made arbitrarily low if we have enough examples.

Theorem 2. If H satisfies ULLN then ERM is statistically consistent in H.
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Proof: ULLN implies consistency of ERM

For fixed T m and hm ∈ Argminh∈HRT m(h) we have:

R(hm)−R(hH) =
(
R(hm)−RT m(hm)

)
+

(
RT m(hm)−R(hH)

)
≤
(
R(hm)−RT m(hm)

)
+

(
RT m(hH)−R(hH)

)
≤ 2 sup

h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣
Therefore ε ≤ R(hm)−R(hH) implies ε2 ≤ suph∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ and
P
(
R(hm)−R(hH) ≥ ε

)
≤ P

(
sup
h∈H

∣∣∣∣R(h)−RT m(h)∣∣∣∣ ≥ ε

2

)
so if converges the RHS to zero (ULLN) so does the LHS (estimation error).
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ULLN for finite hypothesis space

� Assume a finite hypothesis space H = {h1, . . . , hK}.

� Define the set of all “bad” training sets for a hypothesis h ∈ H as

B(h) =
{
T m ∈ (X × Y)m

∣∣∣∣∣RT m(h)−R(h)∣∣ ≥ ε}
� Use the union bound to upper bound the probability of seeing a bad
training set any hypothesis from h ∈ H

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
= P

(
T m ∈ B(h1)

∨
T m ∈ B(h2)

∨
· · ·
∨
T m ∈ B(hK)

)
≤
∑
h∈H

P(T m ∈ B(h))
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B(h1)

B(h3)

B(h2)
B(h2)

B(h3)

B(h1)

mutually exclusive not mutually exclusive
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ULLN for finite hypothesis space

� Example: the union bound for three hypotheses

P
(
T m ∈ B(h1)

∨
T m ∈ B(h2)

∨
T m ∈ B(h3)

)
≤

3∑
i=1

P(T m ∈ B(hi))
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ULLN for finite hypothesis space

� Combining the union bound with the Hoeffding inequality yields

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤
∑
h∈H

P(|RT m(h)−R(h)| ≥ ε︸ ︷︷ ︸
T m∈B(h)

) ≤ 2|H|e−
2mε2

(b−a)2

� Therefore we see that

lim
m→∞

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
= 0

Corollary 1. The ULLN is satisfied for a finite hypothesis space.
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Generalization bound for finite hypothesis space

� Hoeffding inequality generalized for a finite hypothesis space H:

P
(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≤ 2|H|e−

2mε2

(b−a)2

� For which ε is R(h) in the interval (RT m(h)− ε,RT m(h) + ε) with the
probability 1− δ at least, regardless what h ∈ H we consider ?

P
(
max
h∈H
|RT m(h)−R(h)| < ε

)
= 1− P

(
max
h∈H
|RT m(h)−R(h)| ≥ ε

)
≥ 1− 2|H|e−

2mε2

(b−a)2 = 1− δ

and solving the last equality for ε yields

ε = (b− a)

√
log 2|H|+ log 1

δ

2m
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Generalization bound for finite hypothesis space

Theorem 3. Let H be a finite hypothesis space and
T m = {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m a training set draw from i.i.d.
random variables with distribution p(x, y). Then, for any 0 < δ < 1, with
probability at least 1− δ the inequality

R(h) ≤ RT m(h) + (b− a)

√
log 2|H|+ log 1

δ

2m

holds for any h ∈ H and any loss function ` : Y × Y → [a, b].

� The “worst-case” bound in Theorem 3 holds for any h ∈ H, in
particular, for the ERM algorithm which minimizes the first term.

� The second term suggests that we have to use H with appropriate
cardinality (complexity); e.g. if m is small and |H| is high we can overfit.
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Summary

Topics covered in the lecture:

� Prediction problem

� Test risk and its justification by the law of large numbers

� Empirical Risk Minimization

� Excess error = estimation error + approximation error

� Statistical consistency of learning algorithm

� Uniform law of large numbers

� Generalization bound for finite hypothesis space
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