Statistical Machine Learning (BE4M33SSU) Lecture 2: Empirical Risk Minimization I

Czech Technical University in Prague V. Franc

BE4M33SSU – Statistical Machine Learning, Winter 2019

Prediction problem: the definition

- X a set of input observations/features
- \mathcal{Y} a finite set of **hidden states**
- $(x,y) \in \mathcal{X} \times \mathcal{Y}$ samples **randomly drawn** from r.v. with p.d.f. p(x,y)
- $h: \mathcal{X} \to \mathcal{Y}$ a prediction strategy
- $\ell \colon \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ a loss function

Task is to find a strategy with the minimal expected risk

$$R(h) = \int \sum_{y \in \mathcal{Y}} \ell(y, h(x)) \ p(x, y) \ \mathrm{d}x = \mathbb{E}_{(x, y) \sim p} \Big(\ell(y, h(x)) \Big)$$

Example of a prediction problem

•
$$\mathcal{X} = \mathbb{R}$$
, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = \begin{cases} 0 & \text{if } y = y' \\ 1 & \text{if } y \neq y' \end{cases}$

•
$$p(x,y) = p(y) \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{1}{2\sigma^2}(x-\mu_y)^2}, y \in \mathcal{Y}.$$

Solving the prediction problem from examples

• Assumption: we have an access to examples

$$\{(x^1, y^1), (x^2, y^2), \ldots\}$$

drawn from i.i.d. r.v. distributed according to unknown p(x, y).

1) **Testing**: a given $h: \mathcal{X} \to \mathcal{Y}$ estimate its R(h) using **test set**

$$\mathcal{S}^{l} = \{ (x^{i}, y^{i}) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, l \}$$

drawn i.i.d. from p(x, y).

• 2) Learning: find $h: \mathcal{X} \to \mathcal{Y}$ with small R(h) using training set

$$\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m \}$$

drawn i.i.d. from p(x, y).

Testing: estimation of the expected risk

• Given a predictor $h: \mathcal{X} \to \mathcal{Y}$ and a test set \mathcal{S}^l draw i.i.d. from distribution p(x, y), compute the **empirical risk**

$$R_{\mathcal{S}^l}(h) = \frac{1}{l} \left(\ell(y^1, h(x^1)) + \dots + \ell(y^l, h(x^l)) \right) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(x^i))$$

р

5/25

and use it as an estimate of $R(h) = \mathbb{E}_{(x,y)\sim p}(\ell(y,h(x)))$.

• The empirical risk $R_{S^l}(h)$ is a random variable.

We will show how to compute an interval such that

$$R(h) \in (R_{\mathcal{S}^l(h)} - \varepsilon, R_{\mathcal{S}^l(h)} + \varepsilon)$$

holds with a prescribed probability (confidence) $\delta \in (0, 1)$.

We show how the interval width ε depends on l and δ .

Law of large numbers

- Arithmetic mean of the results of random trials gets closer to the expected value as more trials are performed.
- Example: The expected value of a single roll of a fair die is

$$\frac{1+2+3+4+5+6}{6} = 3.5$$

р

6/25

Hoeffding inequality

Theorem 1. Let $\{z^1, \ldots, z^l\} \in [a, b]^l$ be realizations of independent random variables with the same expected value μ . Then for any $\varepsilon > 0$ it holds that

$$\mathbb{P}\left(\left|\frac{1}{l}\sum_{i=1}^{l}z^{i}-\mu\right|\geq\varepsilon\right)\leq 2e^{-\frac{2l\varepsilon^{2}}{(b-a)^{2}}}$$

• Example (rolling a die): $\mu = 3.5$, $z_i \in [1, 6]$, $\varepsilon = 0.5$.

Confidence intervals

• Let $\mu_l = \frac{1}{l} \sum_{i=1}^{l} z^i$ be the arithmetic average computed from $\{z^1, \ldots, z^l\} \in [a, b]^l$ sampled from r.v. with expected value μ .

• Find ε such that $\mu \in (\mu_l - \varepsilon, \mu_l + \varepsilon)$ with probability at least γ .

Using the Hoeffding inequality we can write

$$\mathbb{P}\Big(|\mu_l - \mu| < \varepsilon\Big) = 1 - \mathbb{P}\Big(|\mu_l - \mu| \ge \varepsilon\Big) \ge 1 - 2e^{-\frac{2l\varepsilon^2}{(b-a)^2}} = \gamma$$

and solving the last equation for ε yields

$$\varepsilon = |b - a| \sqrt{\frac{\log(2) - \log(1 - \gamma)}{2l}}$$

Confidence intervals

• Let $\mu_l = \frac{1}{l} \sum_{i=1}^{l} z^i$ be the arithmetic average computed from $\{z^1, \ldots, z^l\} \in [a, b]^l$ sampled from r.v. with expected value μ .

• Given a fixed $\varepsilon > 0$ and $\gamma \in (0, 1)$, what is the minimal number of examples l such that $\mu \in (\mu_l - \varepsilon, \mu_l + \varepsilon)$ with probability γ at least ?

Starting from

$$\mathbb{P}\Big(|\mu_l - \mu| < \varepsilon\Big) = 1 - \mathbb{P}\Big(|\mu_l - \mu| \ge \varepsilon\Big) \ge 1 - 2e^{-\frac{2l \varepsilon^2}{(b-a)^2}} = \gamma$$

and solving for l yields

$$l = \frac{\log(2) - \log(1 - \gamma)}{2\varepsilon^2} (b - a)^2$$

Testing: estimation of the expected risk

• Given $h: \mathcal{X} \to \mathcal{Y}$ estimate the expected risk $R(h) = \mathbb{E}_{(x,y)\sim p}(\ell(y,h(x)))$ by the empirical risk $R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i,h(x^i))$ using the test set \mathcal{S}^l drawn i.i.d from p(x,y).

10/25

- The incurred losses $z^i = \ell(y^i, h(x^i)) \in [\ell_{\min}, \ell_{\max}]$, $i \in \{1, \ldots, l\}$, are realizations of i.i.d. r.v. with the expected value $\mu = R(h)$.
- According to the Hoeffding inequality, for any $\varepsilon > 0$ the probability of seeing a "bad test set" can be bound by

$$\mathbb{P}\left(\left|R_{\mathcal{S}^{l}}(h) - R(h)\right| \ge \varepsilon\right) \le 2e^{-\frac{2l\varepsilon^{2}}{(\ell_{\min} - \ell_{\max})^{2}}}$$

Testing: confidence intervals

- Given $h: \mathcal{X} \to \mathcal{Y}$ estimate the expected risk $R(h) = \mathbb{E}_{(x,y)\sim p}(\ell(y, h(x)))$ by the empirical risk $R_{\mathcal{S}^l}(h) = \frac{1}{l} \sum_{i=1}^l \ell(y^i, h(x^i))$ using the test set \mathcal{S}^l drawn i.i.d from p(x, y).
- Confidence interval: the expected risk is

$$R(h) \in \left(R_{\mathcal{S}^l}(h) - \varepsilon, R_{\mathcal{S}^l}(h) + \varepsilon \right)$$

with the probability (confidence) $\gamma \in (0,1)$ at least.

• Interval width: For fixed l and $\gamma \in (0,1)$ compute

$$\varepsilon = (\ell_{\max} - \ell_{\min}) \sqrt{\frac{\log(2) - \log(1 - \gamma)}{2l}}$$

• Number of examples: For fixed ε and $\gamma \in (0,1)$ compute

$$l = \frac{\log(2) - \log(1 - \gamma)}{2\varepsilon^2} \left(\ell_{\max} - \ell_{\min}\right)^2$$

Example: confidence intervals

Learning

• The goal: Find a strategy $h: \mathcal{X} \to \mathcal{Y}$ minimizing R(h) using the training set of examples

$$\mathcal{T}^m = \{ (x^i, y^i) \in (\mathcal{X} \times \mathcal{Y}) \mid i = 1, \dots, m \}$$

drawn from i.i.d. according to unknown p(x, y).

Hypothesis space: he have to use our knowledge to select

$$\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}} = \{h \colon \mathcal{X} \to \mathcal{Y}\}$$

• Learning algorithm: a function

$$A\colon \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$$

which returns a strategy $h_m = A(\mathcal{T}^m)$ for a training set \mathcal{T}^m

Learning: Empirical Risk Minimization approach

• The expected risk R(h), i.e. the true but unknown objective, is replaced by the empirical risk computed from the training examples

$$R_{\mathcal{T}^m}(h) = \frac{1}{m} \sum_{i=1}^m \ell(y^i, h(x^i))$$

• The ERM based algorithm returns h_m such that

$$h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h) \tag{1}$$

 Depending on the choince of H and l and algorithm solving (1) we get individual instances e.g. Support Vector Machines, Linear Regression, Logistic Regression, Neural Networks learned by back-propagation, AdaBoost, Gradient Boosted Trees, ...

The characters of the play:

- $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$ best attainable (Bayes) risk
- $R(h_{\mathcal{H}})$ best risk in \mathcal{H} where $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$

•
$$R(h_m)$$
 risk of $h_m = A(\mathcal{T}_m)$ learned from \mathcal{T}^m

Excess error: the quantity we want to minimize

$$\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

Questions:

- Which of the quantities are random and which are not ?
- What causes individual errors ?
- How do the errors depend on $\mathcal H$ and m?

Statistically consistent learning algorithm

- The statistically consistent algorithm can make the estimation error arbitrarily small if it has enough examples.
- Is the ERM algorithm statistically consistent ?

Definition 1. The algorithm $A: \cup_{m=1}^{\infty} (\mathcal{X} \times \mathcal{Y})^m \to \mathcal{H}$ is statistically consistent in $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ if for any p(x, y) and $\varepsilon > 0$ it holds that

$$\lim_{m \to \infty} \mathbb{P}\left(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\right) = 0$$

where $h_m = A(\mathcal{T}^m)$ is the hypothesis returned by the algorithm A for training set \mathcal{T}^m generated from p(x, y).

Example: ERM does not work if ${\mathcal H}$ is unconstrained

• Let $\mathcal{X} = [a, b] \subset \mathbb{R}$, $\mathcal{Y} = \{+1, -1\}$, $\ell(y, y') = [y \neq y']$, $p(x \mid y = +1)$ and $p(x \mid y = -1)$ be uniform distributions on \mathcal{X} and p(y = +1) = 0.8.

17/25

- The optimal strategy is h(x) = +1 with the Bayes risk $R^* = 0.2$.
- Consider learning algorithm which for a given training set $\mathcal{T}^m = \{(x^1, y^1), \dots, (x^m, y^m)\}$ returns strategy

$$h_m(x) = \begin{cases} y^j & \text{if } x = x^j \text{ for some } j \in \{1, \dots, m\} \\ -1 & \text{otherwise} \end{cases}$$

• The empirical risk is $R_{\mathcal{T}^m}(h_m) = 0$ with probability 1 for any m.

• The expected risk is
$$R(h_m) = 0.8$$
 for any m .

Uniform Law of Large Numbers

Definition 2. The hypothesis space $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ satisfies the uniform law of large numbers if for all $\varepsilon > 0$ it holds that

$$\lim_{m \to \infty} \mathbb{P}\left(\sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right| \ge \varepsilon \right) = 0$$

 ULLN says that the probability of seeing a "bad training set" can be made arbitrarily low if we have enough examples.

Theorem 2. If \mathcal{H} satisfies ULLN then ERM is statistically consistent in \mathcal{H} .

Proof: ULLN implies consistency of ERM

For fixed \mathcal{T}^m and $h_m \in \operatorname{Argmin}_{h \in \mathcal{H}} R_{\mathcal{T}^m}(h)$ we have:

$$R(h_m) - R(h_{\mathcal{H}}) = \left(R(h_m) - R_{\mathcal{T}^m}(h_m) \right) + \left(R_{\mathcal{T}^m}(h_m) - R(h_{\mathcal{H}}) \right)$$
$$\leq \left(R(h_m) - R_{\mathcal{T}^m}(h_m) \right) + \left(R_{\mathcal{T}^m}(h_{\mathcal{H}}) - R(h_{\mathcal{H}}) \right)$$
$$\leq 2 \sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right|$$

Therefore $\varepsilon \leq R(h_m) - R(h_{\mathcal{H}})$ implies $\frac{\varepsilon}{2} \leq \sup_{h \in \mathcal{H}} \left| R(h) - R_{\mathcal{T}^m}(h) \right|$ and

$$\mathbb{P}\bigg(R(h_m) - R(h_{\mathcal{H}}) \ge \varepsilon\bigg) \le \mathbb{P}\bigg(\sup_{h \in \mathcal{H}} \left|R(h) - R_{\mathcal{T}^m}(h)\right| \ge \frac{\varepsilon}{2}\bigg)$$

so if converges the RHS to zero (ULLN) so does the LHS (estimation error).

ULLN for finite hypothesis space

- Assume a finite hypothesis space $\mathcal{H} = \{h_1, \ldots, h_K\}$.
- ullet Define the set of all "bad" training sets for a hypothesis $h\in\mathcal{H}$ as

$$\mathcal{B}(h) = \left\{ \mathcal{T}^m \in (\mathcal{X} \times \mathcal{Y})^m \middle| \left| R_{\mathcal{T}^m}(h) - R(h) \right| \ge \varepsilon \right\}$$

- Use the union bound to upper bound the probability of seeing a bad training set any hypothesis from $h \in \mathcal{H}$

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)$$
$$=\mathbb{P}\Big(\mathcal{T}^m\in\mathcal{B}(h_1)\bigvee\mathcal{T}^m\in\mathcal{B}(h_2)\bigvee\cdots\bigvee\mathcal{T}^m\in\mathcal{B}(h_K)\Big)$$
$$\leq\sum_{h\in\mathcal{H}}\mathbb{P}(\mathcal{T}^m\in\mathcal{B}(h))$$

ULLN for finite hypothesis space

Example: the union bound for three hypotheses

$$\mathbb{P}\Big(\mathcal{T}^m \in \mathcal{B}(h_1) \bigvee \mathcal{T}^m \in \mathcal{B}(h_2) \bigvee \mathcal{T}^m \in \mathcal{B}(h_3)\Big) \le \sum_{i=1}^3 \mathbb{P}(\mathcal{T}^m \in \mathcal{B}(h_i))$$

not mutually exclusive

ULLN for finite hypothesis space

Combining the union bound with the Hoeffding inequality yields

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq\sum_{h\in\mathcal{H}}\mathbb{P}(\underbrace{|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon}_{\mathcal{T}^m\in\mathcal{B}(h)})\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

Therefore we see that

$$\lim_{m \to \infty} \mathbb{P}\Big(\max_{h \in \mathcal{H}} |R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big) = 0$$

Corollary 1. The ULLN is satisfied for a finite hypothesis space.

Generalization bound for finite hypothesis space

• Hoeffding inequality generalized for a finite hypothesis space \mathcal{H} :

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h)-R(h)|\geq\varepsilon\Big)\leq 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}}$$

For which ε is R(h) in the interval $(R_{\mathcal{T}^m}(h) - \varepsilon, R_{\mathcal{T}^m}(h) + \varepsilon)$ with the probability $1 - \delta$ at least, regardless what $h \in \mathcal{H}$ we consider ?

$$\mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h) - R(h)| < \varepsilon\Big) = 1 - \mathbb{P}\Big(\max_{h\in\mathcal{H}}|R_{\mathcal{T}^m}(h) - R(h)| \ge \varepsilon\Big)$$
$$\ge 1 - 2|\mathcal{H}|e^{-\frac{2m\varepsilon^2}{(b-a)^2}} = 1 - \delta$$

and solving the last equality for ε yields

$$\varepsilon = (b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

Generalization bound for finite hypothesis space

Theorem 3. Let \mathcal{H} be a finite hypothesis space and $\mathcal{T}^m = \{(x^1, y^1), \ldots, (x^m, y^m)\} \in (\mathcal{X} \times \mathcal{Y})^m$ a training set draw from i.i.d. random variables with distribution p(x, y). Then, for any $0 < \delta < 1$, with probability at least $1 - \delta$ the inequality

24/25

$$R(h) \le R_{\mathcal{T}^m}(h) + (b-a)\sqrt{\frac{\log 2|\mathcal{H}| + \log \frac{1}{\delta}}{2m}}$$

holds for any $h \in \mathcal{H}$ and any loss function $\ell \colon \mathcal{Y} \times \mathcal{Y} \to [a, b]$.

- The "worst-case" bound in Theorem 3 holds for any $h \in \mathcal{H}$, in particular, for the ERM algorithm which minimizes the first term.
- The second term suggests that we have to use \mathcal{H} with appropriate cardinality (complexity); e.g. if m is small and $|\mathcal{H}|$ is high we can overfit.

Summary

Topics covered in the lecture:

- Prediction problem
- Test risk and its justification by the law of large numbers
- Empirical Risk Minimization
- Excess error = estimation error + approximation error
- Statistical consistency of learning algorithm
- Uniform law of large numbers
- Generalization bound for finite hypothesis space