Statistical Machine Learning (BE4M33SSU) Lecture 12: Ensembling
 Jan Drchal

Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Topics covered in the lecture:

- Ensemble Methods
- Bias-Variance Decomposition
- Bagging
- Random Forests
- Boosting and Gradient Boosting
- Gradient Boosted Trees

Ensemble Methods

- Inspired in Wisdom of the crowd
- (weighted) averaging or taking majority vote
- cancelling effect of noise of individual opinions,
- examples: politics, trial by jury (vs. trial by judge), sports (figure skating, gymnastics), Wikipedia, Quora, Stack Overflow, . . .
- Learning and aggregating multiple predictors
- Ensemble may be built using single or different types of predictors

Prediction Problem: Expected Risk and Error Decomposition

Expected risk for data generated by $p(x, y)$:

$$
R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))
$$

- The best attainable (Bayes) risk is $R^{*}=\inf _{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$
- The best predictor in \mathcal{H} is $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$

The predictor $h_{m}=A\left(\mathcal{T}^{m}\right)$ learned from \mathcal{T}^{m} has risk $R\left(h_{m}\right)$

Excess error measures deviation of the learned predictor from the best one:

$$
\underbrace{\left(R\left(h_{m}\right)-R^{*}\right)}_{\text {excess error }}=\underbrace{\left(R\left(h_{m}\right)-R\left(h_{\mathcal{H}}\right)\right)}_{\text {estimation error }}+\underbrace{\left(R\left(h_{\mathcal{H}}\right)-R^{*}\right)}_{\text {approximation error }}
$$

Risk Averaged over Datasets

- How will our predictor behave when sampling different training sets?
- We can define the errors considering average over all possible datasets \mathcal{T}^{m}, i.e., $\mathbb{E}_{\mathcal{T}^{m}}\left(R\left(h_{m}\right)\right)$
- The errors can be redefined as:

$$
\underbrace{\left(\mathbb{E}_{\mathcal{T}^{m}}\left(R\left(h_{m}\right)\right)-R^{*}\right)}_{\text {excess error }}=\underbrace{\left(\mathbb{E}_{\mathcal{T}^{m}}\left(R\left(h_{m}\right)\right)-R\left(h_{\mathcal{H}}\right)\right)}_{\text {estimation error }}+\underbrace{\left(R\left(h_{\mathcal{H}}\right)-R^{*}\right)}_{\text {approximation error }}
$$

Predictors Averaged over Datasets

- Let us also define a model averaged over all possible datasets:

$$
g_{m}(x)=\mathbb{E}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)
$$

- Unlike individual h_{m} models, g_{m} has an access to the whole $p(x, y)$
- Note: in general $g_{m} \neq h_{\mathcal{H}}$ due to training algorithm A involved in h_{m}.
- Also: g_{m} can't be actually evaluated for infinite number of \mathcal{T}^{m} datasets

Bias-Variance Decomposition for Regression

- Consider a regression problem with data generated as follows:

$$
y=h^{*}(x)+\epsilon
$$

where ϵ is noise: $\mathbb{E}(\epsilon)=0$ and $\operatorname{Var}(\epsilon)=\sigma^{2}$, e.g., $\epsilon \sim \mathcal{N}\left(0, \sigma^{2}\right)$

- Use squared loss:

$$
\ell(y, h(x))=(h(x)-y)^{2}
$$

- The optimal predictor $h^{*}(x)$ has a nonzero risk (for $\sigma^{2}>0$):

$$
R^{*}=\mathbb{E}_{x, y}\left(\left(h^{*}(x)-y\right)^{2}\right)=\mathbb{E}_{\epsilon}\left(\epsilon^{2}\right)=\operatorname{Var}(\epsilon)=\sigma^{2}
$$

Bias-Variance Decomposition for Regression 2

The expected risk for h_{m} can be decomposed:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{T}^{m}}\left(R\left(h_{m}\right)\right) & =\mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(h_{m}(x)-y\right)^{2}\right) \\
& =\cdots \\
& =\underbrace{\mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(h_{m}(x)-g_{m}(x)\right)^{2}\right)}_{\text {variance }}+ \\
& +\underbrace{\mathbb{E}_{x, y}\left(\left(g_{m}(x)-h^{*}(x)\right)^{2}\right)}_{\text {bias }^{2}}+\underbrace{\sigma^{2}}_{\text {noise }}
\end{aligned}
$$

- The error splits into three terms
- variance: difference of h_{m} from the averaged predictor g_{m},
- bias 2 : difference of the averaged predictor g_{m} from the optimal one,
- noise: irreducible determined by data

Excess Error vs. Bias and Variance

- The excess error is defined as:

$$
\mathbb{E}_{\mathcal{T}^{m}}\left(R\left(h_{m}\right)\right)-R^{*}
$$

- As $R^{*}=\sigma^{2}$ we get:

$$
\begin{aligned}
\mathbb{E}_{\mathcal{T}^{m}}\left(R\left(h_{m}\right)\right)-R^{*} & =\underbrace{\mathbb{E}_{x, y}\left(\left(g_{m}(x)-h^{*}(x)\right)^{2}\right)}_{\text {bias }^{2}} \\
& +\underbrace{\mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(h_{m}(x)-g_{m}(x)\right)^{2}\right)}_{\text {variance }}
\end{aligned}
$$

- We have
- $\boldsymbol{b i a s}^{2} \approx$ approximation error,
- variance \approx estimation error

Derivation of the Bias-Variance Decomposition

$$
\begin{aligned}
\mathbb{E}_{\mathcal{T}^{m}}\left(R\left(h_{m}\right)\right)= & \mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(h_{m}(x)-y\right)^{2}\right) \\
= & \mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(h_{m}(x)-g_{m}(x)+g_{m}(x)-y\right)^{2}\right) \\
= & \mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(h_{m}(x)-g_{m}(x)\right)^{2}+\left(g_{m}(x)-y\right)^{2}\right. \\
& \left.+2\left(h_{m}(x)-g_{m}(x)\right)\left(g_{m}(x)-y\right)\right) \\
= & \mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(h_{m}(x)-g_{m}(x)\right)^{2}\right)+\mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(g_{m}(x)-y\right)^{2}\right) \\
& +\mathbb{E}_{x, y}(2(\underbrace{\mathbb{E}_{\mathcal{T}^{m}}\left(h_{m}(x)\right.}_{g_{m}(x)})-g_{m}(x))\left(g_{m}(x)-y\right))
\end{aligned}
$$

We get:

$$
\mathbb{E}_{\mathcal{T}^{m}}\left(R\left(h_{m}\right)\right)=\underbrace{\mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(h_{m}(x)-g_{m}(x)\right)^{2}\right)}_{\text {variance }}+\mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(g_{m}(x)-y\right)^{2}\right)
$$

Note that the second term does not depend on \mathcal{T}^{m} :

$$
\mathbb{E}_{x, y, \mathcal{T}^{m}}\left(\left(g_{m}(x)-y\right)^{2}\right)=\mathbb{E}_{x, y}\left(\left(g_{m}(x)-y\right)^{2}\right)
$$

Derivation of the Bias-Variance Decomposition 3

Let us continue with the second term:

$$
\begin{aligned}
\mathbb{E}_{x, y}\left(\left(g_{m}(x)-y\right)^{2}\right)= & \mathbb{E}_{x, \epsilon}\left(\left(g_{m}(x)-h^{*}(x)-\epsilon\right)^{2}\right) \\
= & \mathbb{E}_{x, \epsilon}\left(\left(g_{m}(x)-h^{*}(x)\right)^{2}+\epsilon^{2}-2 \epsilon\left(g_{m}(x)-h^{*}(x)\right)\right) \\
= & \underbrace{\mathbb{E}_{x}\left(\left(g_{m}(x)-h^{*}(x)\right)^{2}\right)+\mathbb{E}_{\epsilon}\left(\epsilon^{2}\right)}_{x} \\
& -\underbrace{2 \mathbb{E}_{x, \epsilon}\left(\epsilon\left(g_{m}(x)-h^{*}(x)\right)\right)}_{\text {bias }^{2}}
\end{aligned}
$$

Pointwise Bias-Variance

We can express the bias and variance as function of x by not integrating over in expected values

$$
\begin{aligned}
\mathbb{E}_{y \mid x, \mathcal{T}^{m}}\left(\ell\left(y, h_{m}(x)\right)\right) & =\mathbb{E}_{y \mid x, \mathcal{T}^{m}}\left(\left(h_{m}(x)-y\right)^{2}\right) \\
& =\underbrace{\operatorname{Var}_{y \mid x, \mathcal{T}^{m}}\left(h_{m}(x)\right)}_{\text {variance(x) }}+ \\
& +\underbrace{\mathbb{E}_{y \mid x}\left(\left(g_{m}(x)-h^{*}(x)\right)^{2}\right)}_{\text {bias }(x)^{2}}+\underbrace{\sigma^{2}}_{\text {noise }}
\end{aligned}
$$

Bias-Variance: Example

- Polynomial regression with a varying degree of polynomial

Ensembling Approaches

- Bagging (Bootstrap AGGregatING):
- sample different training sets from the original training set
- train high variance low bias predictors based on these sets and average them
- exploits independence between predictors
- Boosting:
- sequentially train low variance high bias predictors
- subsequent predictors learn to fix the mistakes of the previous ones
- exploits dependence between learners

Stacking and Mixture of Experts

- Combine base-learners with meta-learner

https://www. commonlounge.com/discussion/9331c0d004704e89bd4d1da08fd7c7bc

Decision/Regression Trees

- Nodes at the same level correspond to mutually exclusive subsets of the original training data as well as mutually exclusive subsets of the input space \mathcal{X}
- Inner node further splits its subset

Decision/Regression Trees (contd.)

-Training set: $\mathcal{T}^{m}=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right) \mid i=1, \ldots, m\right\}, \boldsymbol{x}_{i}=\left(x_{i 1}, x_{i 2}, \ldots, x_{i p}\right)$

- Input space split into regions defined in leaves: $R_{r}, r \in\{1, \ldots, M\}$
- We can model region responses by constants $c_{r}, r \in\{1, \ldots, M\}$ but other possibilities, e.g., linear regression are possible
- Prediction:

$$
h(\boldsymbol{x})=\sum_{r=1}^{M} c_{r}\left\lceil\boldsymbol{x} \in R_{r}\right]
$$

- For sum of squares loss function $\sum_{i=1}^{m}\left(y_{i}-h\left(\boldsymbol{x}_{i}\right)\right)^{2}$ we set the responses to be the averages over regions:

$$
\hat{c}_{r}=\frac{1}{\left|S_{r}\right|} \sum_{\boldsymbol{x}_{i} \in R_{r}} y_{i} \quad \text { (see seminar) }
$$

where we define samples per region sets:
$S_{r}=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right):\left(\boldsymbol{x}_{i}, y_{i}\right) \in \mathcal{T}^{m} \wedge \boldsymbol{x}_{i} \in R_{r}\right\}$

Greedy Learning of Decision/Regression Trees

- How many distinct decision trees with n Boolean attributes for binary classification?
- at least as many as boolean functions of p attributes
- = number of distinct truth tables with 2^{p} rows: $2^{2^{p}}$
- For 6 Boolean attributes at least 18,446,744,073,709,551,616 trees!
- Learning is NP-complete: [Hyafil and Rivest 1976]
- We need heuristics \Rightarrow greedy approach
- Recursively choose the "most important" attribute to find a small tree consistent with the training data
- Split points:
- nominal attribute: try all possibilities
- ordinal/continuous attribute: try attribute values based on all training data samples or their subset

Regression Trees: Which Attribute to Split?

- The "most important" attribute for regression trees would be the one, for which the split reduces the loss (sum of squared errors) by the greatest amount
- We have:

$$
h(\boldsymbol{x})=\sum_{r=1}^{M} c_{r}\left[\boldsymbol{x} \in R_{r}\right]
$$

- Consider splitting attribute j and split point s, we split an original region R into a pair of half-planes for an ordinal (e.g., continuous) attribute:

$$
R_{L}(j, s)=\left\{\boldsymbol{x} \mid \boldsymbol{x} \in R \wedge x_{j} \leq s\right\} \text { and } R_{R}(j, s)=\left\{\boldsymbol{x} \mid \boldsymbol{x} \in R \wedge x_{j}>s\right\}
$$

similarly for a nominal attribute:

$$
R_{L}(j, s)=\left\{\boldsymbol{x} \mid \boldsymbol{x} \in R \wedge x_{j}=s\right\} \text { and } R_{R}(j, s)=\left\{\boldsymbol{x} \mid \boldsymbol{x} \in R \wedge x_{j} \neq s\right\}
$$

Regression Trees: Which Attribute to Split? (contd.)

- We seek for an attribute j and a split point s which minimize:

$$
\min _{c_{L}} \sum_{x_{i} \in R_{L}(j, s)}\left(y_{i}-c_{L}\right)^{2}+\min _{c_{R}} \sum_{x_{i} \in R_{R}(j, s)}\left(y_{i}-c_{R}\right)^{2}
$$

for $\left(\boldsymbol{x}_{i}, y_{i}\right) \in S \subseteq \mathcal{T}^{m}$ ($S=\mathcal{T}^{m}$ for the root node) and $R=R_{L} \cup R_{R}$

- Inner minimizations (region response values) are solved by averaging tree outputs per region:

$$
\hat{c}_{L}=\frac{1}{\left|S_{L}(j, s)\right|} \sum_{\boldsymbol{x}_{i} \in R_{L}(j, s)} y_{i} \quad \text { and } \quad \hat{c}_{R}=\frac{1}{\left|S_{R}(j, s)\right|} \sum_{\boldsymbol{x}_{i} \in R_{R}(j, s)} y_{i}
$$

where $S_{k}(j, s)=\left\{\left(\boldsymbol{x}_{i}, y_{i}\right) \mid\left(\boldsymbol{x}_{i}, y_{i}\right) \in \mathcal{T} \wedge \boldsymbol{x}_{i} \in R_{k}(j, s)\right\}$

Tree Learning Algorithm

BUILD-TREE (S)

1	$i=\operatorname{IMPURITY}(S)$	// e.g., the squared loss
2	$\hat{i}, \hat{j}, \hat{s}, \hat{S}_{L}, \hat{S}_{R}=0,0,0, \emptyset, \emptyset$	// current best kept in these
3	for $j \in\{1, \ldots, p\}$	// iterate over attributes
4	for $s \in \operatorname{SPLIT-POINTS}(S, j)$	// iterate over all split points
5	$S_{L}, S_{R}=\operatorname{SPLIT}(S, j, s)$	
6	$i_{L}=\operatorname{IMPURITY}\left(S_{L}\right)$	
7	$i_{R}=\operatorname{IMPURITY}\left(S_{R}\right)$	
8	\quad if $i_{L}+i_{R}<\hat{i}$ and $\left\|S_{L}\right\|>0$ and $\left\|S_{R}\right\|>0$	
9	$\hat{i}, \hat{j}, \hat{s}, \hat{S}_{L}, \hat{S}_{R}=\left(i_{L}+i_{R}\right), j, s, S_{L}, S_{R}$	
10	if $\hat{i}>i \quad$	
11	$N_{L}=\operatorname{BUILD-TREE}\left(\hat{S}_{L}\right)$	
12	$N_{R}=\operatorname{BUILD-TREE}\left(\hat{S}_{R}\right)$	
13	return $\operatorname{DECISION-NODE}\left(\hat{j}, \hat{s}, N_{L}, N_{R}\right)$	
14	else return LEAF-NODE (S)	

Bias and Variance of Decision Trees

- Small changes of training data lead to big differences in final trees
- Decision trees grown deep enough have typically:
- low bias
- high variance
\Rightarrow overfitting
- Idea: average multiple models to reduce variance while (happily) not increasing bias much

Averaging Models

- Define regression model b as an average of K models:

$$
b(x)=\frac{1}{K} \sum_{i=1}^{K} h_{m}^{(i)}(x)
$$

trained using a set of i.i.d. datasets of size $m: \mathcal{D}^{m}=\left\{\mathcal{T}_{1}^{m}, \ldots, \mathcal{T}_{K}^{m}\right\}$

- Note that $b(x)$ approximates the averaging model

$$
g_{m}(x)=\mathbb{E}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)
$$

- The need for K different training sets \mathcal{T}_{i}^{m} is still impractical - why not to train a single model using $\mathcal{T}_{1}^{m} \cup \mathcal{T}_{2}^{m} \cup \ldots \mathcal{T}_{K}^{m}$ instead of $b(x)$?

Averaging Models: Bias

Bias remains unchanged when compared to a single model:

$$
\begin{aligned}
\operatorname{bias}(\mathrm{x})^{2} & =\mathbb{E}_{y \mid x}\left(\left(g_{m}(x)-h^{*}(x)\right)^{2}\right) \\
& =\mathbb{E}_{y \mid x}\left(\left(\mathbb{E}_{\mathcal{D}^{m}}(b(x))-h^{*}(x)\right)^{2}\right) \\
& =\mathbb{E}_{y \mid x}\left(\left(\mathbb{E}_{\mathcal{D}^{m}}\left(\frac{1}{K} \sum_{i=1}^{K} h_{m}^{(i)}(x)\right)-h^{*}(x)\right)^{2}\right) \\
& =\mathbb{E}_{y \mid x}\left(\left(\frac{1}{K} \sum_{i=1}^{K} \mathbb{E}_{\mathcal{T}_{i}^{m}}\left(h_{m}^{(i)}(x)\right)-h^{*}(x)\right)^{2}\right) \\
& =\mathbb{E}_{y \mid x}\left(\left(\mathbb{E}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)-h^{*}(x)\right)^{2}\right)
\end{aligned}
$$

where $\mathbb{E}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)$ was the $g_{m}(x)$ defined for a single model $h_{m}(x)$

Averaging Models: Variance

- For uncorrelated component models $h_{m}^{(i)}(x)$:

$$
\begin{aligned}
\operatorname{Var}_{\mathcal{D}^{m}}(b(x)) & =\operatorname{Var}_{\mathcal{D}^{m}}\left(\frac{1}{K} \sum_{i=1}^{K} h_{m}^{(i)}(x)\right) \\
& =\frac{1}{K^{2}} \sum_{i=1}^{K} \operatorname{Var}_{\mathcal{T}_{i}^{m}}\left(h_{m}^{(i)}(x)\right)=\frac{1}{K} \operatorname{Var}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)
\end{aligned}
$$

which is a great improvement based on the strong assumption
There is no improvement for maximum correlation, i.e., all component models equal: $h_{m}^{(i)}(x)=h_{m}(x)$ for $i=1, \ldots, K$, we get:

$$
\operatorname{Var}_{\mathcal{D}^{m}}(b(x))=\operatorname{Var}_{\mathcal{D}^{m}}\left(\frac{1}{K} \sum_{i=1}^{K} h_{m}^{(i)}(x)\right)=\operatorname{Var}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)
$$

\Rightarrow we need to train uncorrelated (diverse) component models while keeping their bias reasonably low

Bootstrapping

- In practice we have only a single training dataset \mathcal{T}^{m}
- Bootstrapping is a method producing datasets \mathcal{T}_{i}^{m} for $i=1, \ldots K$ by sampling \mathcal{T}^{m} uniformly with replacement
- Bootstrap datasets have the same size as the original dataset $\left|\mathcal{T}_{i}^{m}\right|=\left|\mathcal{T}^{m}\right|$
- \mathcal{T}_{i}^{m} is expected to have the fraction $1-\frac{1}{e} \approx 63.2 \%$ of unique samples from \mathcal{T}^{m}, others are duplicates (see seminar)
- Bagging $=$ Bootstrap AGGregating [Breiman 1994]:

1. Use bootstrapping to generate K datasets
2. Train a model $h_{m}^{(i)}$ on each dataset \mathcal{T}_{i}^{m}
3. Average the models

- When decision trees are used as the models \Rightarrow random forests
- Low bias is achieved by growing the trees to maximal depth
- Trees are decorrelated by:
- training each tree on a different bootstrap dataset
- randomization of split attribute selection

Random Forest Algorithm

1. For $i=1 \ldots K$:
(a) draw a bootstrap dataset \mathcal{T}_{i}^{m} from $\mathcal{T}^{m},\left|\mathcal{T}_{i}^{m}\right|=\left|\mathcal{T}^{m}\right|=m$
(b) grow a tree $h_{m}^{(i)}$ using \mathcal{T}_{i}^{m} by recursively repeating the following, until the minimum node size $n_{\text {min }}$ is reached:
i. select k attributes at random from the p attributes
ii. pick the best attribute and split-point among the k
iii. split the node into two daughter nodes
2. Output ensemble of trees $b(x)$ averaging $h_{m}^{(i)}$ (regression) or selecting a majority vote (classification)

- Node size $n_{\text {min }}$ is the number of dataset samples associated with the node, limits tree depth

Out-of-Bag (OOB) Error

- Cheap way of generalization error assessment for bagging
- Bagging produces bootstrapped sets $\mathcal{T}_{1}^{m}, \mathcal{T}_{2}^{m}, \ldots \mathcal{T}_{K}^{m}$
- For each $\left(\boldsymbol{x}_{i}, y_{i}\right) \in \mathcal{T}^{m}$ select only trees which were not trained on this sample: $H_{i}=\left\{h_{m}^{(j)} \mid\left(\boldsymbol{x}_{i}, y_{i}\right) \notin \mathcal{T}_{j}^{m}\right\}$
- Average only the OOB trees in H_{i} when evaluating error for $\left(\boldsymbol{x}_{i}, y_{i}\right)$
- Replacement for K-fold cross-validation

Feature Importance

- Random forests allow easy evaluation of feature importances
- Mean Decrease Impurity (MDI):
- set $f_{j}=0$ for all attributes $j=1, \ldots, p$
- traverse all trees processing all internal nodes
- for each node having a split attribute j add its impurity decrease multiplied by the proportion of the node size to f_{j}
- Mean Decrease Accuracy (MDA), permutaion importance:
- evaluate the forest using OOB
- do the same with permuted values of an attribute j
- watch decrease in accuracy: low decrease means unimportant feature

Boosting

- Sequentially train weak learners/predictors low variance high bias
- Subsequent predictors fix the mistakes of the previous ones reducing bias
- Methods discussed here:
- Forward Stagewise Additive Modeling
- Gradient Boosting Machine
- Gradient Boosted Trees
- AdaBoost

Forward Stagewise Additive Modeling (FSAM)

1. Initialize $f_{0}(x)=0$
2. For $k=1$ to K :
(a) Find

$$
\left(\beta_{k}, \theta_{k}\right)=\underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^{m} \ell\left(y_{i}, f_{k-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \theta\right)\right)
$$

where $b\left(x_{i} ; \theta_{k}\right)$ is the basis function and β_{k} the corresponding coefficient (b) Set $f_{k}(x)=f_{k-1}(x)+\beta_{k} b\left(x ; \theta_{k}\right)$
3. Return $h_{m}(x)=f_{K}(x)$

FSAM and Gradient Descent

- FSAM update looks very similar to the gradient descent one:

$$
f_{k}(x)=f_{k-1}(x)+\beta_{k} b\left(x ; \theta_{k}\right)
$$

- Just think of
- $\beta_{k} \approx$ step size (learning rate)
- $b\left(x_{i} ; \theta_{k}\right) \approx$ the negative of gradient

FSAM for Squared Loss

- Again consider regression with the squared loss:

$$
\ell(y, f(x))=(y-f(x))^{2}
$$

- For FSAM we get:

$$
\begin{aligned}
\ell\left(y_{i}, f_{k}\left(x_{i}\right)\right) & =\ell\left(y_{i}, f_{k-1}\left(x_{i}\right)+\beta_{k} b\left(x_{i} ; \theta_{k}\right)\right) \\
& =\left(y_{i}-f_{k-1}\left(x_{i}\right)-\beta_{k} b\left(x_{i} ; \theta_{k}\right)\right)^{2} \\
& =\left(r_{i k}-\beta_{k} b\left(x_{i} ; \theta_{k}\right)\right)^{2}
\end{aligned}
$$

where $r_{i k}=y_{i}-f_{k-1}\left(x_{i}\right)$ is the residual of the current model for the i-th sample

The task of FSAM is to fit the model $\beta_{k} b\left(x_{i} ; \theta_{k}\right)$ to match the residuals
The method is sometimes called the least-squares boosting

Gradient Boosting for Regression

- In case of regression with squared loss we minimize:

$$
\mathcal{L}=\sum_{i=1}^{m} \ell\left(y_{i}, f\left(x_{i}\right)\right)=\sum_{i=1}^{m} \frac{1}{2}\left(y_{i}-f\left(x_{i}\right)\right)^{2},
$$

which is same as minimization of the empirical risk

- We can treat $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{m}\right)$ as parameters and take derivatives:

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial f\left(x_{i}\right)} & =\frac{\partial\left(\sum_{j=1}^{m} \ell\left(y_{j}, f\left(x_{j}\right)\right)\right)}{\partial f\left(x_{i}\right)}=\frac{\partial \ell\left(y_{i}, f\left(x_{i}\right)\right)}{\partial f\left(x_{i}\right)} \\
& =f\left(x_{i}\right)-y_{i}=-r_{i}
\end{aligned}
$$

The least-squares boosting hence takes steps in the negative gradient direction where $r_{i}=-\frac{\partial \mathcal{L}}{\partial f\left(x_{i}\right)}$

- This approach can be generalized for any differentiable loss function!

Gradient Boosting Machine

1. Initialize $f_{0}(x)=0$ or $f_{0}(x)=\operatorname{argmin}_{\gamma} \sum_{i=1}^{m} \ell\left(y_{i}, \gamma\right)$
2. For $k=1$ to K :
(a) Compute:

$$
\boldsymbol{g}_{k}=\left[\frac{\partial \ell\left(y_{i}, f_{k-1}\left(x_{i}\right)\right)}{\partial f_{k-1}\left(x_{i}\right)}\right]_{i=1}^{m}
$$

(b) Fit a regression model $b(\cdot ; \theta)$ to $-\boldsymbol{g}_{k}$ using squared loss:

$$
\theta_{k}=\underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{m}\left[\left(-\boldsymbol{g}_{k}\right)_{i}-b\left(x_{i} ; \theta\right)\right]^{2}
$$

(c) Choose a fixed step size $\beta_{k}=\beta>0$ or use line search:

$$
\beta_{k}=\underset{\beta>0}{\operatorname{argmin}} \sum_{i=1}^{m} \ell\left(y_{i}, f_{k-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \theta_{k}\right)\right)
$$

(d) Set $f_{k}(x)=f_{k-1}(x)+\beta_{k} b\left(x ; \theta_{k}\right)$
3. Return $h_{m}(x)=f_{K}(x)$

- Gradient Boosting Tree is GBM where all weak learners f_{k} are decision or regression trees
- Use limit on depth/number of leaves/node size for the weak learners \Rightarrow high bias
- Often single-level tree: decision stump
- Meta-parameters such as K (number of trees) and β (learning rate) have to be found using cross validation
- Model is built sequentially (unlike random forests)
- Highly optimized algorithms based on Gradient Boosting Trees:
- XGBoost, LightGBM
- parallelization, scalability, regularization

AdaBoost M1

Binary classifier: $\mathcal{Y}=\{-1,1\}$

1. Initialize the weights $w_{i}=1 / m$ for $i=1,2, \ldots m$
2. For $k=1$ to K :
(a) Fit a classifier $f_{k}\left(x ; \theta_{k}\right)$ to the training data using loss weighted by w_{i} :

$$
\theta_{k}=\underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{m} w_{i}\left[y_{i} \neq f_{k}\left(x_{i} ; \theta\right)\right]
$$

(b) Compute the weighted error rate

$$
\epsilon_{k}=\frac{\sum_{i=1}^{m} w_{i}\left[y_{i} \neq f_{k}\left(x_{i} ; \theta_{k}\right)\right]}{\sum_{i=1}^{m} w_{i}}
$$

(c) Compute the scaling coefficient $\alpha_{k}=\log \left(\left(1-\epsilon_{k}\right) / \epsilon_{k}\right)$
(d) Set $\left.w_{i} \leftarrow w_{i} \cdot \exp \left(\alpha_{k} \cdot \llbracket y_{i} \neq f_{k}\left(x_{i} ; \theta_{k}\right)\right]\right)$ for $i=1,2, \ldots m$
3. Return $h_{m}(x)=\operatorname{sign}\left[\sum_{k=1}^{K} \alpha_{k} f_{k}\left(x ; \theta_{k}\right)\right]$

AdaBoost is FSAM: the Loss

Claim: AdaBoost is FSAM using the exponential loss

$$
\ell(y, f(x))=\exp (-y f(x))
$$

We get:

$$
\begin{aligned}
\left(\beta_{k}, \theta_{k}\right) & =\underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^{m} \ell\left(y_{i}, f_{k-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \theta\right)\right) \\
& =\underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^{m} \exp \left(-y_{i}\left(f_{k-1}\left(x_{i}\right)+\beta b\left(x_{i} ; \theta\right)\right)\right) \\
& =\underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^{m} w_{i}^{(k)} \exp \left(-y_{i} \beta b\left(x_{i} ; \theta\right)\right)
\end{aligned}
$$

where $w_{i}^{(k)}=\exp \left(-y_{i} f_{k-1}\left(x_{i}\right)\right)$

AdaBoost is FSAM II: Fitting the Classifier

- We can rearrange further:

$$
\begin{aligned}
\left(\beta_{k}, \theta_{k}\right) & =\underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^{m} w_{i}^{(k)} \exp \left(-y_{i} \beta b\left(x_{i} ; \theta\right)\right) \\
& =\underset{\beta, \theta}{\operatorname{argmin}}\left[e^{-\beta} \sum_{y_{i}=b\left(x_{i} ; \theta\right)} w_{i}^{(k)}+e^{\beta} \sum_{y_{i} \neq b\left(x_{i} ; \theta\right)} w_{i}^{(k)}\right] \\
& =\underset{\beta, \theta}{\operatorname{argmin}}[e^{-\beta} \sum_{i=1}^{m} w_{i}^{(k)}+\underbrace{\left(e^{\beta}-e^{-\beta}\right)}_{>0 \text { for } \beta>0} \sum_{i=1}^{m} w_{i}^{(k)}\left[y_{i} \neq b\left(x_{i} ; \theta\right)\right]]
\end{aligned}
$$

For any $\beta>0$ we can minimize θ separately:

$$
\theta_{k}=\underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{m} w_{i}^{(k)}\left[y_{i} \neq b\left(x_{i} ; \theta\right)\right] \quad \text { (same as AdaBoost 2(a)) }
$$

- Let's minimize

$$
\left(e^{\beta}-e^{-\beta}\right) \sum_{i=1}^{m} w_{i}^{(k)}\left[y_{i} \neq b\left(x_{i} ; \theta_{k}\right)\right]+e^{-\beta} \sum_{i=1}^{m} w_{i}^{(k)}
$$

with respect to β

$$
\begin{aligned}
\left(e^{\beta_{k}}+e^{-\beta_{k}}\right) \sum_{i=1}^{m} w_{i}^{(k)}\left[y_{i} \neq b\left(x_{i} ; \theta_{k}\right)\right]-e^{-\beta_{k}} \sum_{i=1}^{m} w_{i}^{(k)} & =0 \\
\left(e^{\beta_{k}}+e^{-\beta_{k}}\right) \epsilon_{k}-e^{-\beta_{k}} & =0
\end{aligned}
$$

where $\epsilon_{k}=\frac{\sum_{i=1}^{m} w_{i}\left[y_{i} \neq b\left(x_{i} ; \theta_{k}\right)\right]}{\sum_{i=1}^{n} w_{i}}$ as in AdaBoost 2(b)

- Solving for β_{k} :

$$
\beta_{k}=\frac{1}{2} \log \frac{1-\epsilon_{k}}{\epsilon_{k}}
$$

- Define $\alpha_{k} \triangleq 2 \beta_{k}$ and compare to AdaBoost 2(c)

AdaBoost is FSAM IV: the Weight Update

We have $w_{i}^{(k)}=e^{-y_{i} f_{k-1}\left(x_{i}\right)}$ and $f_{k}(x)=f_{k-1}(x)+\beta_{k} b\left(x ; \theta_{k}\right)$ so:

$$
w_{i}^{(k+1)}=e^{-y_{i}\left(f_{k-1}\left(x_{i}\right)+\beta_{k} b\left(x_{i} ; \theta_{k}\right)\right)}=w_{i}^{(k)} \cdot e^{-y_{i} \beta_{k} b\left(x_{i} ; \theta_{k}\right)}
$$

Finally $-y_{i} b\left(x_{i} ; \theta_{k}\right)=2 \cdot\left[y_{i} \neq b\left(x_{i} ; \theta_{k}\right)\right]-1$ gives the weight update:

$$
w_{i}^{(k+1)}=w_{i}^{(k)} \cdot e^{\alpha_{k}\left[y_{i} \neq b\left(x_{i} ; \theta_{k}\right)\right]} \cdot e^{-\beta_{k}}
$$

corresponding to AdaBoost 2(d) up to the factor $e^{-\beta_{k}}$ which is same for all weights and hence has no effect

