Statistical Machine Learning (BE4M33SSU) Lecture 12: Ensembling

Jan Drchal

Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science

Overview

Topics covered in the lecture:

- Ensemble Methods
- Bias-Variance Decomposition
- Bagging
- Random Forests
- Boosting and Gradient Boosting
- Gradient Boosted Trees

Ensemble Methods

- Inspired in Wisdom of the crowd
 - (weighted) averaging or taking majority vote
 - cancelling effect of noise of individual opinions,
 - examples: politics, trial by jury (vs. trial by judge), sports (figure skating, gymnastics), Wikipedia, Quora, Stack Overflow, . . .
- Learning and aggregating multiple predictors
- Ensemble may be built using single or different types of predictors

Wikimedia Commons

Prediction Problem: Expected Risk and Error Decomposition

Expected risk for data generated by p(x, y):

$$R(h) = \mathbb{E}_{(x,y)\sim p}\Big(\ell(y,h(x))\Big)$$

- lacktriangle The best attainable (Bayes) risk is $R^* = \inf_{h \in \mathcal{Y}^{\mathcal{X}}} R(h)$
- The best predictor in \mathcal{H} is $h_{\mathcal{H}} \in \operatorname{Argmin}_{h \in \mathcal{H}} R(h)$
- The predictor $h_m = A(\mathcal{T}^m)$ learned from \mathcal{T}^m has risk $R(h_m)$

Excess error measures deviation of the learned predictor from the best one:

$$\underbrace{\left(R(h_m) - R^*\right)}_{\text{excess error}} = \underbrace{\left(R(h_m) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

- How will our predictor behave when sampling different training sets?
- We can define the errors considering average over all possible datasets \mathcal{T}^m , i.e., $\mathbb{E}_{\mathcal{T}^m}\Big(R(h_m)\Big)$
- ♦ The errors can be redefined as:

$$\underbrace{\left(\mathbb{E}_{\mathcal{T}^m}(R(h_m)) - R^*\right)}_{\text{excess error}} = \underbrace{\left(\mathbb{E}_{\mathcal{T}^m}(R(h_m)) - R(h_{\mathcal{H}})\right)}_{\text{estimation error}} + \underbrace{\left(R(h_{\mathcal{H}}) - R^*\right)}_{\text{approximation error}}$$

Let us also define a model averaged over all possible datasets:

$$g_m(x) = \mathbb{E}_{\mathcal{T}^m}\Big(h_m(x)\Big)$$

- lacktriangle Unlike individual h_m models, g_m has an access to the whole p(x,y)
- Note: in general $g_m \neq h_{\mathcal{H}}$ due to training algorithm A involved in h_m .
- lacktriangle Also: g_m can't be actually evaluated for infinite number of \mathcal{T}^m datasets

Bias-Variance Decomposition for Regression

Consider a regression problem with data generated as follows:

$$y = h^*(x) + \epsilon$$

where ϵ is noise: $\mathbb{E}(\epsilon) = 0$ and $\mathrm{Var}(\epsilon) = \sigma^2$, e.g., $\epsilon \sim \mathcal{N}(0, \sigma^2)$

Use squared loss:

$$\ell(y, h(x)) = \left(h(x) - y\right)^2$$

• The optimal predictor $h^*(x)$ has a nonzero risk (for $\sigma^2 > 0$):

$$R^* = \mathbb{E}_{x,y} \left(\left(h^*(x) - y \right)^2 \right) = \mathbb{E}_{\epsilon} \left(\epsilon^2 \right) = \operatorname{Var}(\epsilon) = \sigma^2$$

lacktriangle The expected risk for h_m can be decomposed:

$$\mathbb{E}_{\mathcal{T}^m}\Big(R(h_m)\Big) = \mathbb{E}_{x,y,\mathcal{T}^m}\bigg(\Big(h_m(x) - y\Big)^2\Big)$$

$$= \cdots$$

$$= \mathbb{E}_{x,y,\mathcal{T}^m}\bigg(\Big(h_m(x) - g_m(x)\Big)^2\Big) + \cdots$$
variance
$$+ \mathbb{E}_{x,y}\bigg(\Big(g_m(x) - h^*(x)\Big)^2\Big) + \cdots$$
hise

- The error splits into three terms
 - variance: difference of h_m from the averaged predictor g_m ,
 - **bias**²: difference of the averaged predictor g_m from the optimal one,
 - noise: irreducible determined by data

The excess error is defined as:

$$\mathbb{E}_{\mathcal{T}^m}(R(h_m)) - R^*$$

• As $R^* = \sigma^2$ we get:

$$\mathbb{E}_{\mathcal{T}^m}(R(h_m)) - R^* = \underbrace{\mathbb{E}_{x,y}\bigg(\Big(g_m(x) - h^*(x)\Big)^2\bigg)}_{\text{bias}^2} + \underbrace{\mathbb{E}_{x,y,\mathcal{T}^m}\bigg(\Big(h_m(x) - g_m(x)\Big)^2\bigg)}_{\text{variance}}$$

- We have
 - **bias** $^2 \approx \text{approximation error}$,
 - variance \approx estimation error

m p

Derivation of the Bias-Variance Decomposition

10/43

$$\mathbb{E}_{\mathcal{T}^m}\Big(R(h_m)\Big) = \mathbb{E}_{x,y,\mathcal{T}^m}\Big(\Big(h_m(x) - y\Big)^2\Big)$$

$$= \mathbb{E}_{x,y,\mathcal{T}^m}\Big(\Big(h_m(x) - g_m(x) + g_m(x) - y\Big)^2\Big)$$

$$= \mathbb{E}_{x,y,\mathcal{T}^m}\Big(\Big(h_m(x) - g_m(x)\Big)^2 + \Big(g_m(x) - y\Big)^2$$

$$+ 2\Big(h_m(x) - g_m(x)\Big)\Big(g_m(x) - y\Big)\Big)$$

$$= \mathbb{E}_{x,y,\mathcal{T}^m}\Big(\Big(h_m(x) - g_m(x)\Big)^2\Big) + \mathbb{E}_{x,y,\mathcal{T}^m}\Big(\Big(g_m(x) - y\Big)^2\Big)$$

$$+ \mathbb{E}_{x,y}\Big(2\Big(\underbrace{\mathbb{E}_{\mathcal{T}^m}\Big(h_m(x)\Big)}_{g_m(x)} - g_m(x)\Big)\Big(g_m(x) - y\Big)\Big)$$

Derivation of the Bias-Variance Decomposition 2

11/4

We get:

$$\mathbb{E}_{\mathcal{T}^m}\Big(R(h_m)\Big) = \underbrace{\mathbb{E}_{x,y,\mathcal{T}^m}\bigg(\Big(h_m(x) - g_m(x)\Big)^2\bigg)}_{\text{variance}} + \mathbb{E}_{x,y,\mathcal{T}^m}\bigg(\Big(g_m(x) - y\Big)^2\bigg)$$

Note that the second term does not depend on \mathcal{T}^m :

$$\mathbb{E}_{x,y,\mathcal{T}^m}\bigg(\bigg(g_m(x)-y\bigg)^2\bigg)=\mathbb{E}_{x,y}\bigg(\bigg(g_m(x)-y\bigg)^2\bigg)$$

m l

Derivation of the Bias-Variance Decomposition 3

12/43

Let us continue with the second term:

$$\mathbb{E}_{x,y} \left(\left(g_m(x) - y \right)^2 \right) = \mathbb{E}_{x,\epsilon} \left(\left(g_m(x) - h^*(x) - \epsilon \right)^2 \right)$$

$$= \mathbb{E}_{x,\epsilon} \left(\left(g_m(x) - h^*(x) \right)^2 + \epsilon^2 - 2\epsilon \left(g_m(x) - h^*(x) \right) \right)$$

$$= \mathbb{E}_x \left(\left(g_m(x) - h^*(x) \right)^2 \right) + \mathbb{E}_\epsilon \left(\epsilon^2 \right)$$

$$\underbrace{-2\mathbb{E}_{x,\epsilon} \left(\epsilon \left(g_m(x) - h^*(x) \right) \right)}_{=0}$$

$$= \mathbb{E}_x \left(\left(g_m(x) - h^*(x) \right)^2 \right) + \underbrace{\sigma^2}_{\text{noise}}$$

Pointwise Bias-Variance

13/43

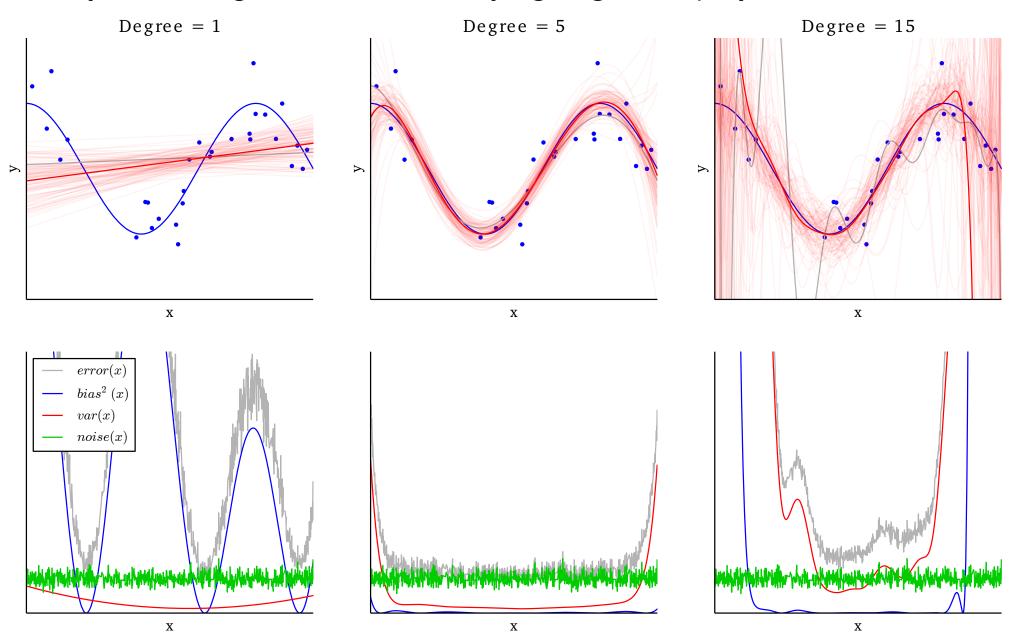
We can express the bias and variance as function of \boldsymbol{x} by not integrating over in expected values

$$\mathbb{E}_{y|x,\mathcal{T}^m}\Big(\ell(y,h_m(x))\Big) = \mathbb{E}_{y|x,\mathcal{T}^m}\Big(\Big(h_m(x) - y\Big)^2\Big)$$

$$= \underbrace{\mathrm{Var}_{y|x,\mathcal{T}^m}\Big(h_m(x)\Big)}_{\text{variance}(\mathsf{x})} + \underbrace{\mathbb{E}_{y|x}\Big(\Big(g_m(x) - h^*(x)\Big)^2\Big)}_{\text{bias}(\mathsf{x})^2} + \underbrace{\sigma^2}_{\text{noise}}$$

Bias-Variance: Example

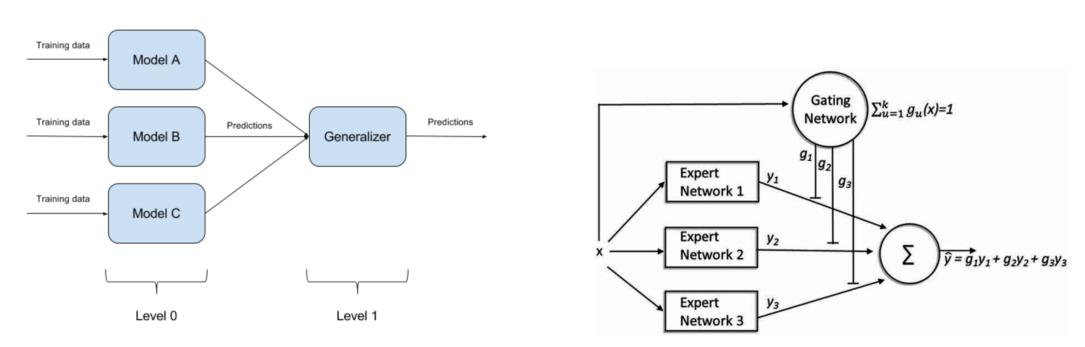
Polynomial regression with a varying degree of polynomial



Ensembling Approaches

- Bagging (Bootstrap AGGregatING):
 - sample different training sets from the original training set
 - train high variance low bias predictors based on these sets and average them
 - exploits independence between predictors
- Boosting:
 - sequentially train low variance high bias predictors
 - subsequent predictors learn to fix the mistakes of the previous ones
 - exploits dependence between learners

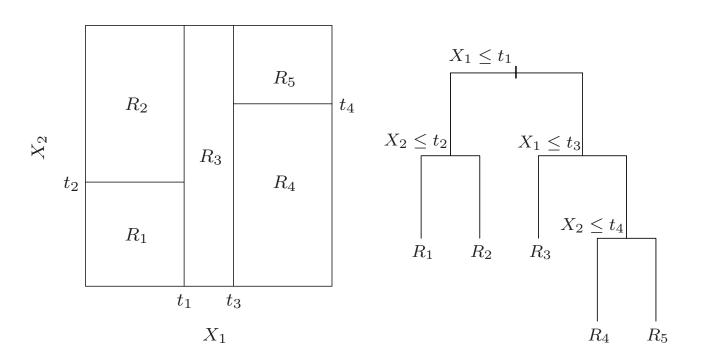
Combine base-learners with meta-learner

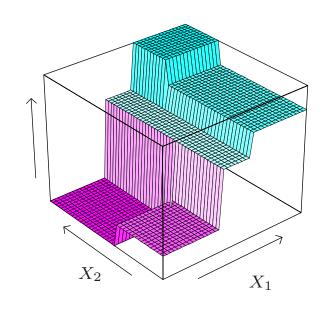


https://www.commonlounge.com/discussion/9331c0d004704e89bd4d1da08fd7c7bc

Decision/Regression Trees

- lacktriangle Nodes at the same level correspond to mutually exclusive subsets of the original training data as well as mutually exclusive subsets of the input space $\mathcal X$
- Inner node further splits its subset





Hastie et al.: The Elements of Statistical Learning, 2009

Decision/Regression Trees (contd.)

- Training set: $T^m = \{(x_i, y_i) \mid i = 1, ..., m\}, x_i = (x_{i1}, x_{i2}, ..., x_{ip})$
- Input space split into regions defined in leaves: $R_r, r \in \{1, \ldots, M\}$
- We can model region responses by constants $c_r, r \in \{1, ..., M\}$ but other possibilities, e.g., linear regression are possible
- Prediction:

$$h(\boldsymbol{x}) = \sum_{r=1}^{M} c_r [\boldsymbol{x} \in R_r]$$

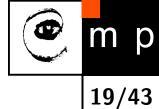
• For sum of squares loss function $\sum_{i=1}^{m} (y_i - h(\boldsymbol{x}_i))^2$ we set the responses to be the averages over regions:

$$\hat{c}_r = \frac{1}{|S_r|} \sum_{\boldsymbol{x}_i \in R_r} y_i$$
 (see seminar)

where we define samples per region sets:

$$S_r = \{(\boldsymbol{x}_i, y_i) : (\boldsymbol{x}_i, y_i) \in \mathcal{T}^m \land \boldsymbol{x}_i \in R_r\}$$

Greedy Learning of Decision/Regression Trees



lacktriangle How many distinct decision trees with n Boolean attributes for binary classification?

- at least as many as boolean functions of p attributes
- \bullet = number of distinct truth tables with 2^p rows: 2^{2^p}
- For 6 Boolean attributes at least 18,446,744,073,709,551,616 trees!
- Learning is NP-complete: [Hyafil and Rivest 1976]
- ◆ We need heuristics ⇒ greedy approach
- Recursively choose the "most important" attribute to find a small tree consistent with the training data
- Split points:
 - nominal attribute: try all possibilities
 - ordinal/continuous attribute: try attribute values based on all training data samples or their subset

Regression Trees: Which Attribute to Split?

- The "most important" attribute for regression trees would be the one, for which the split reduces the loss (sum of squared errors) by the greatest amount
- We have:

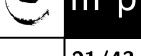
$$h(\boldsymbol{x}) = \sum_{r=1}^{M} c_r [\boldsymbol{x} \in R_r]$$

• Consider splitting attribute j and split point s, we split an original region R into a pair of half-planes for an ordinal (e.g., continuous) attribute:

$$R_L(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j \leq s \} \text{ and } R_R(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j > s \}$$

similarly for a nominal attribute:

$$R_L(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j = s \} \text{ and } R_R(j,s) = \{ \boldsymbol{x} | \boldsymbol{x} \in R \land x_j \neq s \}$$



lacktriangle We seek for an attribute j and a split point s which minimize:

$$\min_{c_L} \sum_{\mathbf{x}_i \in R_L(j,s)} (y_i - c_L)^2 + \min_{c_R} \sum_{\mathbf{x}_i \in R_R(j,s)} (y_i - c_R)^2$$

for $(\boldsymbol{x}_i, y_i) \in S \subseteq \mathcal{T}^m$ ($S = \mathcal{T}^m$ for the root node) and $R = R_L \cup R_R$

 Inner minimizations (region response values) are solved by averaging tree outputs per region:

$$\hat{c}_L = \frac{1}{|S_L(j,s)|} \sum_{\boldsymbol{x}_i \in R_L(j,s)} y_i \qquad \text{and} \qquad \hat{c}_R = \frac{1}{|S_R(j,s)|} \sum_{\boldsymbol{x}_i \in R_R(j,s)} y_i$$

where $S_k(j,s) = \{(x_i, y_i) \mid (x_i, y_i) \in \mathcal{T} \land x_i \in R_k(j,s)\}$

Tree Learning Algorithm

```
BUILD-TREE(S)
 1 \quad i = \text{IMPURITY}(S)
                                                               // e.g., the squared loss
 2 \hat{i}, \hat{j}, \hat{s}, \hat{S}_L, \hat{S}_R = 0, 0, 0, \emptyset, \emptyset
                                                               // current best kept in these
   for j \in \{1, ..., p\}
                                                               // iterate over attributes
           for s \in \text{SPLIT-POINTS}(S, j)
                                                              // iterate over all split points
 5
                  S_L, S_R = \text{SPLIT}(S, j, s)
 6
                  i_L = \text{IMPURITY}(S_L)
                  i_R = \text{IMPURITY}(S_R)
                 if i_L+i_R<\hat{i} and |S_L|>0 and |S_R|>0
 8
 9
                        (\hat{i}, \hat{j}, \hat{s}, \hat{S}_L, \hat{S}_R = (i_L + i_R), j, s, S_L, S_R)
     if \hat{i} > i
10
            N_L = \text{BUILD-TREE}(\hat{S}_L)
11
```

return DECISION-NODE $(\hat{j}, \hat{s}, N_L, N_R)$

 $N_R = \text{BUILD-TREE}(\hat{S}_R)$

else return LEAF-NODE(S)

12

13

Bias and Variance of Decision Trees

- Small changes of training data lead to big differences in final trees
- Decision trees grown deep enough have typically:
 - low bias
 - high variance
 - \Rightarrow overfitting
- ◆ Idea: average multiple models to reduce variance while (happily) not increasing bias much

lacktriangle Define regression model b as an average of K models:

$$b(x) = \frac{1}{K} \sum_{i=1}^{K} h_m^{(i)}(x)$$

trained using a set of i.i.d. datasets of size m: $\mathcal{D}^m = \{\mathcal{T}_1^m, \dots, \mathcal{T}_K^m\}$

lacktriangle Note that b(x) approximates the averaging model

$$g_m(x) = \mathbb{E}_{\mathcal{T}^m}\Big(h_m(x)\Big)$$

• The need for K different training sets \mathcal{T}_i^m is still impractical – why not to train a single model using $\mathcal{T}_1^m \cup \mathcal{T}_2^m \cup \ldots \mathcal{T}_K^m$ instead of b(x)?

Averaging Models: Bias

Bias remains unchanged when compared to a single model:

$$\begin{aligned} \operatorname{bias}(\mathbf{x})^2 &= \mathbb{E}_{y|x} \left(\left(g_m(x) - h^*(x) \right)^2 \right) \\ &= \mathbb{E}_{y|x} \left(\left(\mathbb{E}_{\mathcal{D}^m} \left(b(x) \right) - h^*(x) \right)^2 \right) \\ &= \mathbb{E}_{y|x} \left(\left(\mathbb{E}_{\mathcal{D}^m} \left(\frac{1}{K} \sum_{i=1}^K h_m^{(i)}(x) \right) - h^*(x) \right)^2 \right) \\ &= \mathbb{E}_{y|x} \left(\left(\frac{1}{K} \sum_{i=1}^K \mathbb{E}_{\mathcal{T}_i^m} \left(h_m^{(i)}(x) \right) - h^*(x) \right)^2 \right) \\ &= \mathbb{E}_{y|x} \left(\left(\mathbb{E}_{\mathcal{T}^m} \left(h_m(x) \right) - h^*(x) \right)^2 \right) \end{aligned}$$

where $\mathbb{E}_{\mathcal{T}^m}\left(h_m(x)\right)$ was the $g_m(x)$ defined for a single model $h_m(x)$

• For uncorrelated component models $h_m^{(i)}(x)$:

$$\operatorname{Var}_{\mathcal{D}^{m}}(b(x)) = \operatorname{Var}_{\mathcal{D}^{m}}\left(\frac{1}{K}\sum_{i=1}^{K}h_{m}^{(i)}(x)\right)$$
$$= \frac{1}{K^{2}}\sum_{i=1}^{K}\operatorname{Var}_{\mathcal{T}_{i}^{m}}\left(h_{m}^{(i)}(x)\right) = \frac{1}{K}\operatorname{Var}_{\mathcal{T}^{m}}\left(h_{m}(x)\right)$$

which is a great improvement based on the strong assumption

There is no improvement for maximum correlation, i.e., all component models equal: $h_m^{(i)}(x) = h_m(x)$ for i = 1, ..., K, we get:

$$\operatorname{Var}_{\mathcal{D}^m}(b(x)) = \operatorname{Var}_{\mathcal{D}^m}\left(\frac{1}{K}\sum_{i=1}^K h_m^{(i)}(x)\right) = \operatorname{Var}_{\mathcal{T}^m}(h_m(x))$$

⇒ we need to train uncorrelated (diverse) component models while keeping their bias reasonably low

- lacktriangle In practice we have only a single training dataset \mathcal{T}^m
- lacktriangle Bootstrapping is a method producing datasets \mathcal{T}_i^m for $i=1,\ldots K$ by sampling \mathcal{T}^m uniformly with replacement
- lacktriangle Bootstrap datasets have the same size as the original dataset $|\mathcal{T}_i^m| = |\mathcal{T}^m|$
- \mathcal{T}_i^m is expected to have the fraction $1 \frac{1}{e} \approx 63.2\%$ of unique samples from \mathcal{T}^m , others are duplicates (see seminar)

- Bagging = Bootstrap AGGregating [Breiman 1994]:
 - 1. Use bootstrapping to generate K datasets
 - 2. Train a model $h_m^{(i)}$ on each dataset \mathcal{T}_i^m
 - 3. Average the models
- When decision trees are used as the models \Rightarrow random forests
- Low bias is achieved by growing the trees to maximal depth
- Trees are decorrelated by:
 - training each tree on a different bootstrap dataset
 - randomization of split attribute selection

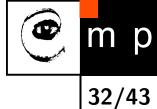
- 1. For i = 1 ... K:
 - (a) draw a bootstrap dataset \mathcal{T}_i^m from \mathcal{T}^m , $|\mathcal{T}_i^m| = |\mathcal{T}^m| = m$
 - (b) grow a tree $h_m^{(i)}$ using \mathcal{T}_i^m by recursively repeating the following, until the minimum node size n_{\min} is reached:
 - i. select k attributes at random from the p attributes
 - ii. pick the best attribute and split-point among the k
 - iii. split the node into two daughter nodes
- 2. Output ensemble of trees b(x) averaging $h_m^{(i)}$ (regression) or selecting a majority vote (classification)
 - lacktriangle Node size n_{\min} is the number of dataset samples associated with the node, limits tree depth

- Cheap way of generalization error assessment for bagging
- lacktriangle Bagging produces bootstrapped sets $\mathcal{T}_1^m, \mathcal{T}_2^m, \dots \mathcal{T}_K^m$
- For each $(\boldsymbol{x}_i, y_i) \in \mathcal{T}^m$ select only trees which were not trained on this sample: $H_i = \{h_m^{(j)} \mid (\boldsymbol{x}_i, y_i) \notin \mathcal{T}_i^m\}$
- lacktriangle Average only the OOB trees in H_i when evaluating error for $({m x}_i, y_i)$
- Replacement for K-fold cross-validation

31/43

- Random forests allow easy evaluation of feature importances
- Mean Decrease Impurity (MDI):
 - set $f_i = 0$ for all attributes $j = 1, \ldots, p$
 - traverse all trees processing all internal nodes
 - ullet for each node having a split attribute j add its *impurity decrease* multiplied by the proportion of the *node size* to f_j
- Mean Decrease Accuracy (MDA), permutaion importance:
 - evaluate the forest using OOB
 - ullet do the same with permuted values of an attribute j
 - watch decrease in accuracy: low decrease means unimportant feature

Boosting



- Sequentially train weak learners/predictors low variance high bias
- Subsequent predictors fix the mistakes of the previous ones reducing bias
- Methods discussed here:
 - Forward Stagewise Additive Modeling
 - Gradient Boosting Machine
 - Gradient Boosted Trees
 - AdaBoost

Forward Stagewise Additive Modeling (FSAM)

33/43

- 1. Initialize $f_0(x) = 0$
- 2. For k = 1 to K:
 - (a) Find

$$(\beta_k, \theta_k) = \underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^m \ell(y_i, f_{k-1}(x_i) + \beta b(x_i; \theta))$$

where $b(x_i;\theta_k)$ is the basis function and β_k the corresponding coefficient (b) Set $f_k(x)=f_{k-1}(x)+\beta_k b(x;\theta_k)$

3. Return $h_m(x) = f_K(x)$

FSAM and **Gradient** Descent

FSAM update looks very similar to the gradient descent one:

$$f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$$

- Just think of
 - $\beta_k \approx$ step size (learning rate)
 - $b(x_i; \theta_k) \approx$ the negative of gradient

34/43

FSAM for Squared Loss

Again consider regression with the squared loss:

$$\ell(y, f(x)) = (y - f(x))^2$$

For FSAM we get:

$$\ell(y_i, f_k(x_i)) = \ell(y_i, f_{k-1}(x_i) + \beta_k b(x_i; \theta_k))$$

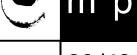
$$= (y_i - f_{k-1}(x_i) - \beta_k b(x_i; \theta_k))^2$$

$$= (r_{ik} - \beta_k b(x_i; \theta_k))^2$$

where $r_{ik}=y_i-f_{k-1}(x_i)$ is the *residual* of the current model for the i-th sample

- lacktriangle The task of FSAM is to fit the model $\beta_k b(x_i; \theta_k)$ to match the residuals
- The method is sometimes called the least-squares boosting

Gradient Boosting for Regression



In case of regression with squared loss we minimize:

$$\mathcal{L} = \sum_{i=1}^{m} \ell(y_i, f(x_i)) = \sum_{i=1}^{m} \frac{1}{2} (y_i - f(x_i))^2,$$

which is same as minimization of the empirical risk

• We can treat $f(x_1), f(x_2), \ldots, f(x_m)$ as parameters and take derivatives:

$$\frac{\partial \mathcal{L}}{\partial f(x_i)} = \frac{\partial \left(\sum_{j=1}^m \ell(y_j, f(x_j))\right)}{\partial f(x_i)} = \frac{\partial \ell(y_i, f(x_i))}{\partial f(x_i)}$$
$$= f(x_i) - y_i = -r_i$$

- The least-squares boosting hence takes steps in the negative gradient direction where $r_i = -\frac{\partial \mathcal{L}}{\partial f(x_i)}$
- This approach can be generalized for any differentiable loss function!

Gradient Boosting Machine

- 1. Initialize $f_0(x) = 0$ or $f_0(x) = \operatorname{argmin}_{\gamma} \sum_{i=1}^m \ell(y_i, \gamma)$
- 2. For k = 1 to K:
 - (a) Compute:

$$\mathbf{g}_k = \left[\frac{\partial \ell(y_i, f_{k-1}(x_i))}{\partial f_{k-1}(x_i)}\right]_{i=1}^m$$

(b) Fit a regression model $b(\cdot; \theta)$ to $-\mathbf{g}_k$ using squared loss:

$$\theta_k = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^m \left[(-\boldsymbol{g}_k)_i - b(x_i; \theta) \right]^2$$

(c) Choose a fixed step size $\beta_k = \beta > 0$ or use line search:

$$\beta_k = \underset{\beta>0}{\operatorname{argmin}} \sum_{i=1}^m \ell(y_i, f_{k-1}(x_i) + \beta b(x_i; \theta_k))$$

- (d) Set $f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$
- 3. Return $h_m(x) = f_K(x)$

Gradient Boosted Trees

- lacktriangle Gradient Boosting Tree is GBM where all weak learners f_k are decision or regression trees
- lacktriangle Use limit on depth/number of leaves/node size for the weak learners \Rightarrow high bias
- Often single-level tree: decision stump
- lacktriangle Meta-parameters such as K (number of trees) and eta (learning rate) have to be found using cross validation
- Model is built sequentially (unlike random forests)
- Highly optimized algorithms based on Gradient Boosting Trees:
 - XGBoost, LightGBM
 - parallelization, scalability, regularization

AdaBoost M1

Binary classifier: $\mathcal{Y} = \{-1, 1\}$

- 1. Initialize the weights $w_i = 1/m$ for i = 1, 2, ... m
- 2. For k = 1 to K:
 - (a) Fit a classifier $f_k(x;\theta_k)$ to the training data using loss weighted by w_i :

$$\theta_k = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^m w_i [y_i \neq f_k(x_i; \theta)]$$

(b) Compute the weighted error rate

$$\epsilon_k = \frac{\sum_{i=1}^{m} w_i [y_i \neq f_k(x_i; \theta_k)]}{\sum_{i=1}^{m} w_i}$$

- (c) Compute the scaling coefficient $\alpha_k = \log((1 \epsilon_k)/\epsilon_k)$
- (d) Set $w_i \leftarrow w_i \cdot \exp(\alpha_k \cdot [y_i \neq f_k(x_i; \theta_k)])$ for $i = 1, 2, \dots m$
- 3. Return $h_m(x) = \operatorname{sign} \left[\sum_{k=1}^K \alpha_k f_k(x; \theta_k) \right]$

40/43

AdaBoost is FSAM: the Loss

Claim: AdaBoost is FSAM using the exponential loss

 $\ell(y, f(x)) = \exp(-yf(x))$

0/1 loss
hinge
exponential

1

-1.0 -0.5 0.0 0.5 1.0

vf(x)

We get:

$$(\beta_k, \theta_k) = \underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^m \ell \Big(y_i, f_{k-1}(x_i) + \beta b(x_i; \theta) \Big)$$

$$= \underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^m \exp \Big(-y_i \Big(f_{k-1}(x_i) + \beta b(x_i; \theta) \Big) \Big)$$

$$= \underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^m w_i^{(k)} \exp \Big(-y_i \beta b(x_i; \theta) \Big),$$

where $w_i^{(k)} = \exp(-y_i f_{k-1}(x_i))$

We can rearrange further:

$$(\beta_k, \theta_k) = \underset{\beta, \theta}{\operatorname{argmin}} \sum_{i=1}^m w_i^{(k)} \exp\left(-y_i \beta b(x_i; \theta)\right)$$

$$= \underset{\beta, \theta}{\operatorname{argmin}} \left[e^{-\beta} \sum_{y_i = b(x_i; \theta)} w_i^{(k)} + e^{\beta} \sum_{y_i \neq b(x_i; \theta)} w_i^{(k)} \right]$$

$$= \underset{\beta, \theta}{\operatorname{argmin}} \left[e^{-\beta} \sum_{i=1}^m w_i^{(k)} + \underbrace{(e^{\beta} - e^{-\beta})}_{>0 \text{ for } \beta > 0} \sum_{i=1}^m w_i^{(k)} [y_i \neq b(x_i; \theta)] \right]$$

• For any $\beta > 0$ we can minimize θ separately:

$$\theta_k = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^m w_i^{(k)} [y_i \neq b(x_i; \theta)]$$
 (same as AdaBoost 2(a))

AdaBoost is FSAM III: the Weighted Error ϵ_k and the Scaling Coefficient α_k

42/43

Let's minimize

$$(e^{\beta} - e^{-\beta}) \sum_{i=1}^{m} w_i^{(k)} [y_i \neq b(x_i; \theta_k)] + e^{-\beta} \sum_{i=1}^{m} w_i^{(k)}$$

with respect to β

$$(e^{\beta_k} + e^{-\beta_k}) \sum_{i=1}^m w_i^{(k)} [y_i \neq b(x_i; \theta_k)] - e^{-\beta_k} \sum_{i=1}^m w_i^{(k)} = 0$$
$$(e^{\beta_k} + e^{-\beta_k}) \epsilon_k - e^{-\beta_k} = 0$$

where $\epsilon_k = \frac{\sum_{i=1}^m w_i \left[y_i \neq b(x_i; \theta_k) \right]}{\sum_{i=1}^m w_i}$ as in AdaBoost 2(b)

• Solving for β_k :

$$\beta_k = \frac{1}{2} \log \frac{1 - \epsilon_k}{\epsilon_k}$$

• Define $\alpha_k \triangleq 2\beta_k$ and compare to AdaBoost 2(c)

AdaBoost is FSAM IV: the Weight Update

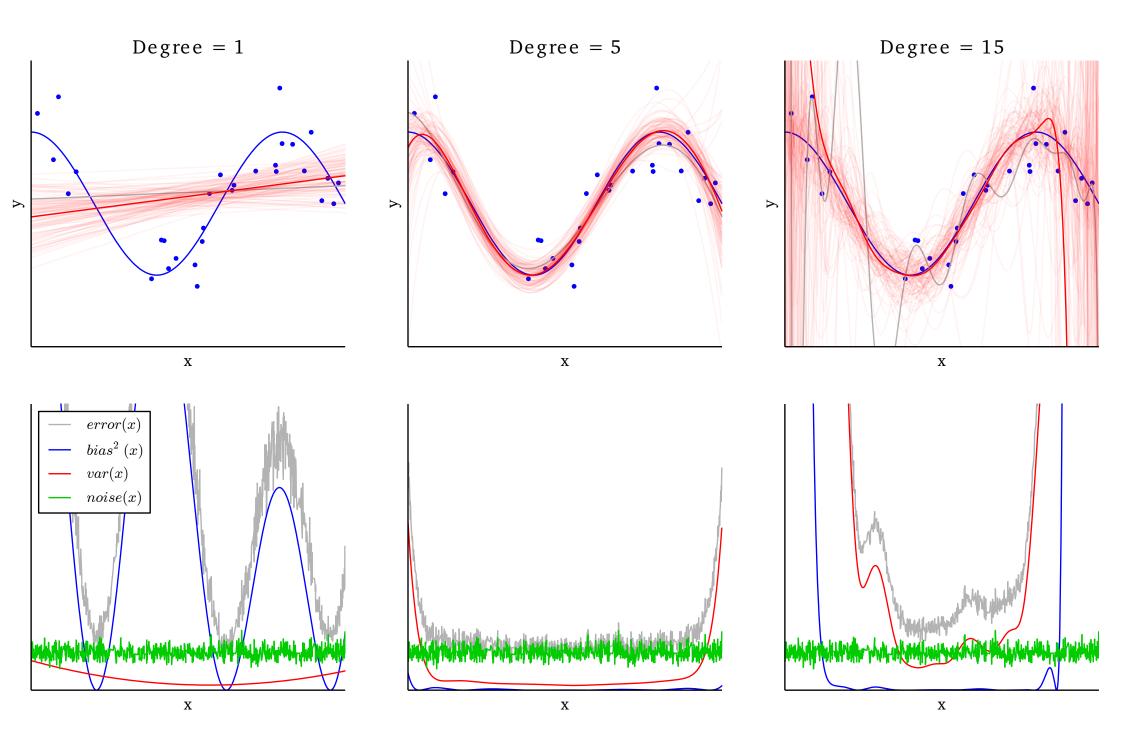
• We have $w_i^{(k)} = e^{-y_i f_{k-1}(x_i)}$ and $f_k(x) = f_{k-1}(x) + \beta_k b(x; \theta_k)$ so:

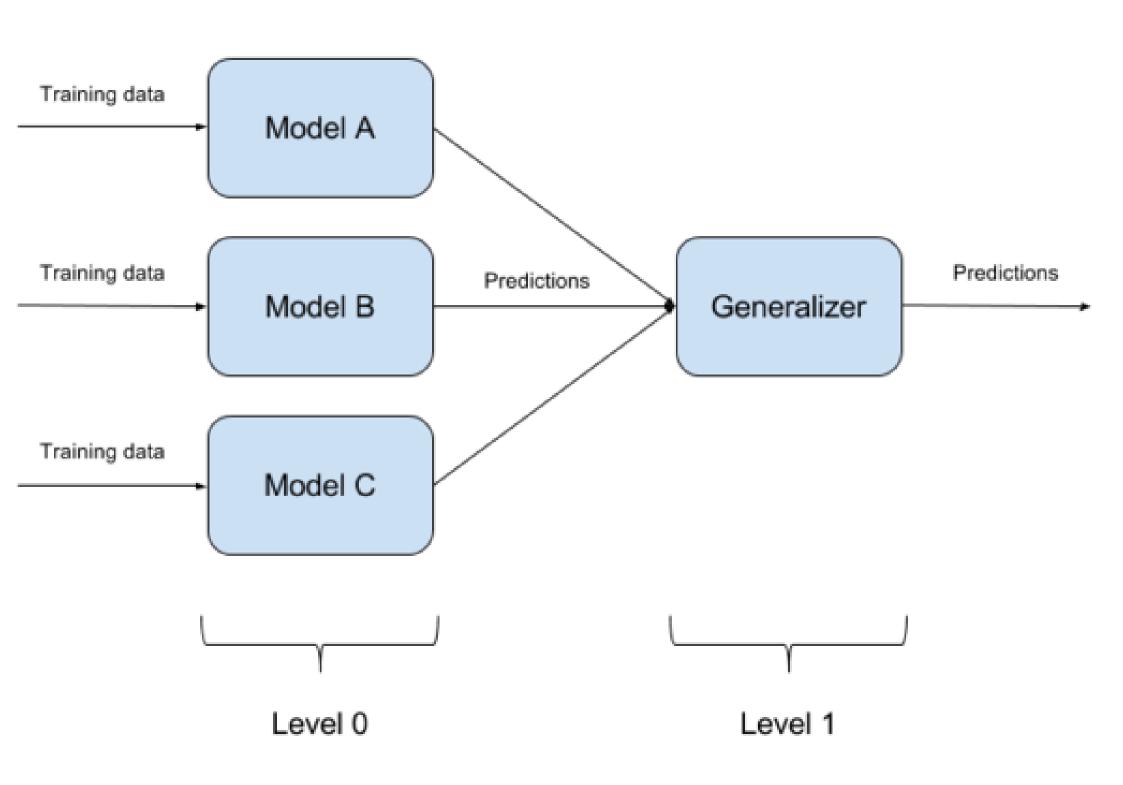
$$w_i^{(k+1)} = e^{-y_i (f_{k-1}(x_i) + \beta_k b(x_i; \theta_k))} = w_i^{(k)} \cdot e^{-y_i \beta_k b(x_i; \theta_k)}$$

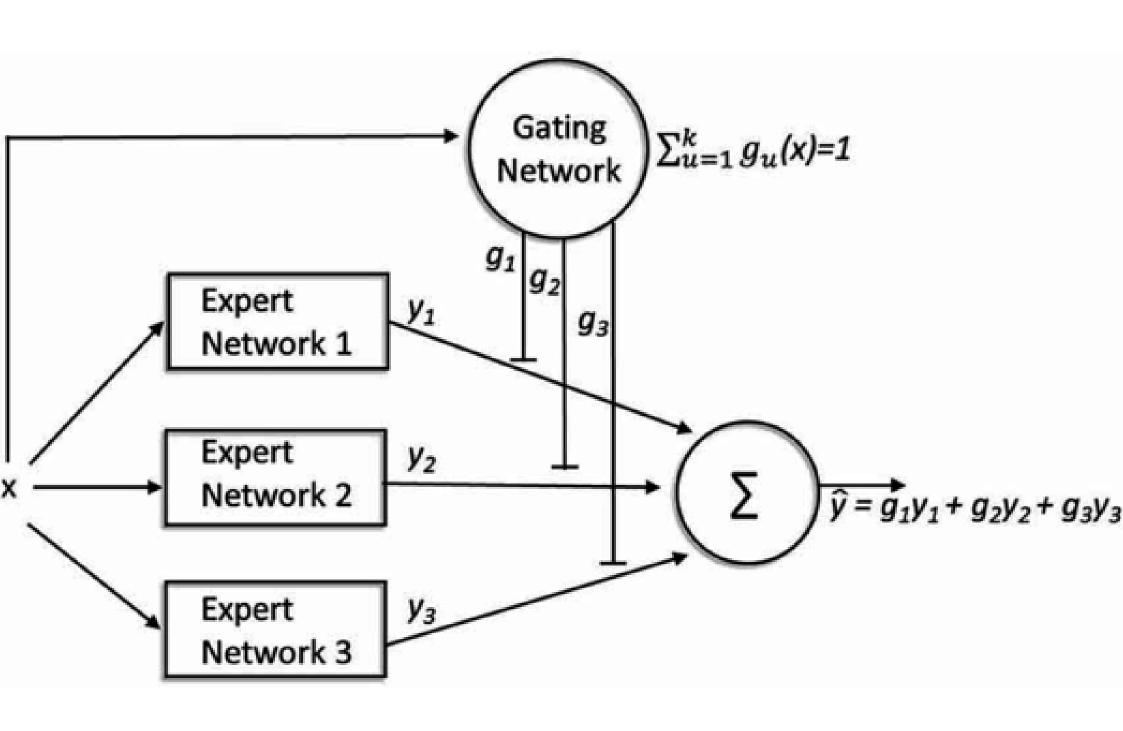
• Finally $-y_i b(x_i; \theta_k) = 2 \cdot [y_i \neq b(x_i; \theta_k)] - 1$ gives the weight update:

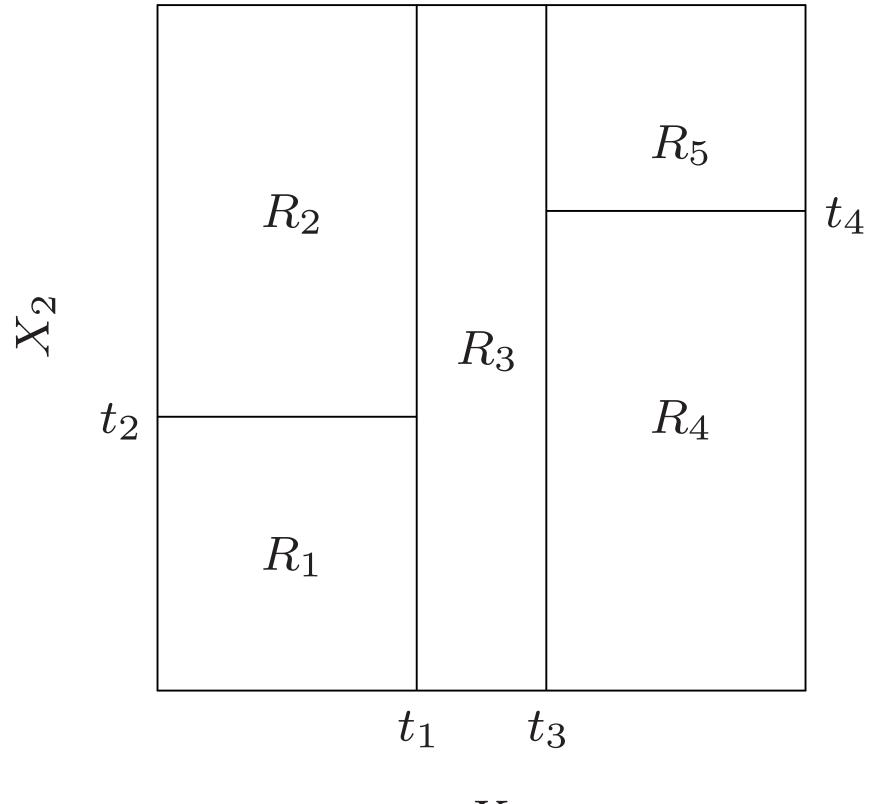
$$w_i^{(k+1)} = w_i^{(k)} \cdot e^{\alpha_k \left[y_i \neq b(x_i; \theta_k) \right]} \cdot e^{-\beta_k}$$

corresponding to $AdaBoost\ 2(d)$ up to the factor $e^{-\beta_k}$ which is same for all weights and hence has no effect









 X_1

