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Overview

Topics covered in the lecture:

� Ensemble Methods

� Bias-Variance Decomposition

� Bagging

� Random Forests

� Boosting and Gradient Boosting

� Gradient Boosted Trees

http://cmp.felk.cvut.cz
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Ensemble Methods

� Inspired in Wisdom of the crowd

• (weighted) averaging or taking majority vote

• cancelling effect of noise of individual opinions,

• examples: politics, trial by jury (vs. trial by judge), sports (figure
skating, gymnastics), Wikipedia, Quora, Stack Overflow, . . .

� Learning and aggregating multiple predictors

� Ensemble may be built using single or different types of predictors

http://cmp.felk.cvut.cz
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Prediction Problem: Expected Risk and Error Decomposition

Expected risk for data generated by p(x, y):

R(h) = E(x,y)∼p

(
`(y, h(x))

)
� The best attainable (Bayes) risk is R∗ = infh∈YX R(h)

� The best predictor in H is hH ∈ Argminh∈HR(h)

� The predictor hm = A(T m) learned from T m has risk R(hm)

Excess error measures deviation of the learned predictor from the best one:(
R(hm)−R∗

)
︸ ︷︷ ︸
excess error

=

(
R(hm)−R(hH)

)
︸ ︷︷ ︸
estimation error

+

(
R(hH)−R∗

)
︸ ︷︷ ︸

approximation error

http://cmp.felk.cvut.cz
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Risk Averaged over Datasets

� How will our predictor behave when sampling different training sets?

� We can define the errors considering average over all possible
datasets T m, i.e., ET m

(
R(hm)

)
� The errors can be redefined as:

(
ET m(R(hm))−R∗

)
︸ ︷︷ ︸

excess error

=

(
ET m(R(hm))−R(hH)

)
︸ ︷︷ ︸

estimation error

+

(
R(hH)−R∗

)
︸ ︷︷ ︸

approximation error

http://cmp.felk.cvut.cz
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Predictors Averaged over Datasets

� Let us also define a model averaged over all possible datasets:

gm(x) = ET m
(
hm(x)

)
� Unlike individual hm models, gm has an access to the whole p(x, y)

� Note: in general gm 6= hH due to training algorithm A involved in hm.

� Also: gm can’t be actually evaluated for infinite number of T m datasets

http://cmp.felk.cvut.cz
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Bias-Variance Decomposition for Regression

� Consider a regression problem with data generated as follows:

y = h∗(x) + ε

where ε is noise: E(ε) = 0 and Var(ε) = σ2, e.g., ε ∼ N (0, σ2)

� Use squared loss:
`(y, h(x)) =

(
h(x)− y

)2
� The optimal predictor h∗(x) has a nonzero risk (for σ2 > 0):

R∗ = Ex,y
((

h∗(x)− y
)2)

= Eε
(
ε2
)
= Var(ε) = σ2

http://cmp.felk.cvut.cz
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Bias-Variance Decomposition for Regression 2

� The expected risk for hm can be decomposed:

ET m
(
R(hm)

)
= Ex,y,T m

((
hm(x)− y

)2)
= · · ·

= Ex,y,T m
((

hm(x)− gm(x)
)2)

︸ ︷︷ ︸
variance

+

+ Ex,y
((

gm(x)− h∗(x)
)2)

︸ ︷︷ ︸
bias2

+ σ2︸︷︷︸
noise

� The error splits into three terms
• variance: difference of hm from the averaged predictor gm,
• bias2: difference of the averaged predictor gm from the optimal one,
• noise: irreducible determined by data

http://cmp.felk.cvut.cz
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Excess Error vs. Bias and Variance

� The excess error is defined as:

ET m(R(hm))−R∗

� As R∗ = σ2 we get:

ET m(R(hm))−R∗ = Ex,y
((

gm(x)− h∗(x)
)2)

︸ ︷︷ ︸
bias2

+ Ex,y,T m
((

hm(x)− gm(x)
)2)

︸ ︷︷ ︸
variance

� We have

• bias2 ≈ approximation error,

• variance ≈ estimation error

http://cmp.felk.cvut.cz
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Derivation of the Bias-Variance Decomposition

ET m
(
R(hm)

)
= Ex,y,T m

((
hm(x)− y

)2)
= Ex,y,T m

((
hm(x)− gm(x) + gm(x)− y

)2)
= Ex,y,T m

((
hm(x)− gm(x)

)2
+
(
gm(x)− y

)2
+ 2
(
hm(x)− gm(x)

)(
gm(x)− y

))
= Ex,y,T m

((
hm(x)− gm(x)

)2)
+ Ex,y,T m

((
gm(x)− y

)2)
+ Ex,y

(
2

(
ET m

(
hm(x)

)
︸ ︷︷ ︸

gm(x)

−gm(x)
)(
gm(x)− y

))

http://cmp.felk.cvut.cz
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Derivation of the Bias-Variance Decomposition 2

We get:

ET m
(
R(hm)

)
= Ex,y,T m

((
hm(x)− gm(x)

)2)
︸ ︷︷ ︸

variance

+Ex,y,T m
((

gm(x)− y
)2)

Note that the second term does not depend on T m:

Ex,y,T m
((

gm(x)− y
)2)

= Ex,y
((

gm(x)− y
)2)

http://cmp.felk.cvut.cz
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Derivation of the Bias-Variance Decomposition 3

Let us continue with the second term:

Ex,y
((

gm(x)− y
)2)

= Ex,ε
((

gm(x)− h∗(x)− ε
)2)

= Ex,ε
((

gm(x)− h∗(x)
)2

+ ε2 − 2ε
(
gm(x)− h∗(x)

))
= Ex

((
gm(x)− h∗(x)

)2)
+ Eε

(
ε2
)

−2Ex,ε
(
ε
(
gm(x)− h∗(x)

))
︸ ︷︷ ︸

=0

= Ex
((

gm(x)− h∗(x)
)2)

︸ ︷︷ ︸
bias2

+ σ2︸︷︷︸
noise

http://cmp.felk.cvut.cz
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Pointwise Bias-Variance

We can express the bias and variance as function of x by not integrating over
in expected values

Ey|x,T m
(
`(y, hm(x))

)
= Ey|x,T m

((
hm(x)− y

)2)
= Vary|x,T m

(
hm(x)

)
︸ ︷︷ ︸

variance(x)

+

+ Ey|x
((

gm(x)− h∗(x)
)2)

︸ ︷︷ ︸
bias(x)2

+ σ2︸︷︷︸
noise

http://cmp.felk.cvut.cz
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Figure 4.2: Bias-variance decomposition of the expected generalization error
for polynomials of degree 1, 5 and 15.

Also, because of low complexity, none of them really fits the trend of
the training points, even approximately, which implies that the aver-
age model is far from approximating the Bayes model. This results in
high bias. On the other hand, polynomials of degree 15 (right) suffer
from overfitting. In terms of bias and variance, the situation is the
opposite. Predictions have low bias but high variance, as shown in
the lower right plot of Figure 4.2. The variability of the predictions is
large because the high degree of the polynomials (i.e., the high model
complexity) captures noise in the learning set. Indeed, compare the
gray line with the blue dots – they almost all intersect. Put other-
wise, small changes in the learning set result in large changes in the
obtained model and therefore in its predictions. By contrast, the av-
erage model is now quite close from the Bayes model, which results
in low bias1. Finally, polynomials of degree 5 (middle) are neither too
simple nor too complex. In terms of bias and variance, the trade-off is
well-balanced between the two extreme situations. Bias and variance
are neither too low nor too large.

4.1.2 Classification

In direct analogy with the bias-variance decomposition for the squared
error loss, similar decompositions have been proposed in the litera-
ture for the expected generalization error based on the zero-one loss,
i.e., for EL{EY|X=x{1('L(x) 6= Y)}} = PL,Y|X=x('L(x) 6= Y). Most no-

1 Note however the Gibbs-like phenomenon resulting in both high variance and high
bias at the boundaries of X.

Gilles Louppe: Understanding Random Forests: From Theory to Practice, 2014
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Bias-Variance: Example

� Polynomial regression with a varying degree of polynomial

http://cmp.felk.cvut.cz
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Ensembling Approaches

� Bagging (Bootstrap AGGregatING):

• sample different training sets from the original training set

• train high variance low bias predictors based on these sets and
average them

• exploits independence between predictors

� Boosting:

• sequentially train low variance high bias predictors

• subsequent predictors learn to fix the mistakes of the previous ones

• exploits dependence between learners

http://cmp.felk.cvut.cz
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Stacking and Mixture of Experts

� Combine base-learners with meta-learner

https://www.commonlounge.com/discussion/9331c0d004704e89bd4d1da08fd7c7bc
http://cmp.felk.cvut.cz


306 9. Additive Models, Trees, and Related Methods
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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Hastie et al.: The Elements of Statistical Learning, 2009
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Decision/Regression Trees

� Nodes at the same level correspond to mutually exclusive subsets of the
original training data as well as mutually exclusive subsets of the input
space X

� Inner node further splits its subset

http://cmp.felk.cvut.cz
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Decision/Regression Trees (contd.)

� Training set: T m = {(xi, yi) | i = 1, . . . ,m}, xi = (xi1, xi2, . . . , xip)

� Input space split into regions defined in leaves: Rr, r ∈ {1, . . . ,M}
� We can model region responses by constants cr, r ∈ {1, . . . ,M} but
other possibilities, e.g., linear regression are possible

� Prediction:

h(x) =

M∑
r=1

cr[[x ∈ Rr]]

� For sum of squares loss function
∑m
i=1(yi − h(xi))2 we set the

responses to be the averages over regions:

ĉr =
1

|Sr|
∑

xi∈Rr

yi (see seminar)

where we define samples per region sets :
Sr = {(xi, yi) : (xi, yi) ∈ T m ∧ xi ∈ Rr}

http://cmp.felk.cvut.cz
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Greedy Learning of Decision/Regression Trees

� How many distinct decision trees with n Boolean attributes for binary
classification?
• at least as many as boolean functions of p attributes
• = number of distinct truth tables with 2p rows: 22p

• For 6 Boolean attributes at least
18,446,744,073,709,551,616 trees!

� Learning is NP-complete: [Hyafil and Rivest 1976]
� We need heuristics ⇒ greedy approach
� Recursively choose the "most important" attribute to find a small tree
consistent with the training data

� Split points:
• nominal attribute: try all possibilities
• ordinal/continuous attribute: try attribute values based on all

training data samples or their subset

http://cmp.felk.cvut.cz
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Regression Trees: Which Attribute to Split?

� The "most important" attribute for regression trees would be the one,
for which the split reduces the loss (sum of squared errors) by the
greatest amount

� We have:

h(x) =

M∑
r=1

cr[[x ∈ Rr]]

� Consider splitting attribute j and split point s, we split an original region
R into a pair of half-planes for an ordinal (e.g., continuous) attribute:

RL(j, s) = {x|x ∈ R ∧ xj ≤ s} and RR(j, s) = {x|x ∈ R ∧ xj > s}

similarly for a nominal attribute:

RL(j, s) = {x|x ∈ R ∧ xj = s} and RR(j, s) = {x|x ∈ R ∧ xj 6= s}

http://cmp.felk.cvut.cz
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Regression Trees: Which Attribute to Split? (contd.)

� We seek for an attribute j and a split point s which minimize:

min
cL

∑
xi∈RL(j,s)

(yi − cL)2 +min
cR

∑
xi∈RR(j,s)

(yi − cR)2

for (xi, yi) ∈ S ⊆ T m (S = T m for the root node) and R = RL ∪RR

� Inner minimizations (region response values) are solved by averaging
tree outputs per region:

ĉL =
1

|SL(j, s)|
∑

xi∈RL(j,s)

yi and ĉR =
1

|SR(j, s)|
∑

xi∈RR(j,s)

yi

where Sk(j, s) = {(xi, yi) | (xi, yi) ∈ T ∧ xi ∈ Rk(j, s)}

http://cmp.felk.cvut.cz
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Tree Learning Algorithm

BUILD-TREE(S)

1 i = IMPURITY(S) // e.g., the squared loss
2 î, ĵ, ŝ, ŜL, ŜR = 0, 0, 0, ∅, ∅ // current best kept in these
3 for j ∈ {1, . . . , p} // iterate over attributes
4 for s ∈ SPLIT-POINTS(S, j) // iterate over all split points
5 SL, SR = SPLIT(S, j, s)
6 iL = IMPURITY(SL)
7 iR = IMPURITY(SR)

8 if iL + iR < î and |SL| > 0 and |SR| > 0

9 î, ĵ, ŝ, ŜL, ŜR = (iL + iR), j, s, SL, SR
10 if î > i

11 NL = BUILD-TREE(ŜL)

12 NR = BUILD-TREE(ŜR)

13 return DECISION-NODE(ĵ, ŝ, NL, NR)
14 else return LEAF-NODE(S)

http://cmp.felk.cvut.cz
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Bias and Variance of Decision Trees

� Small changes of training data lead to big differences in final trees

� Decision trees grown deep enough have typically:

• low bias

• high variance

⇒ overfitting

� Idea: average multiple models to reduce variance while (happily) not
increasing bias much

http://cmp.felk.cvut.cz
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Averaging Models

� Define regression model b as an average of K models:

b(x) =
1

K

K∑
i=1

h(i)m (x)

trained using a set of i.i.d. datasets of size m: Dm = {T m1 , . . . , T mK }

� Note that b(x) approximates the averaging model

gm(x) = ET m
(
hm(x)

)
� The need for K different training sets T mi is still impractical – why not
to train a single model using T m1 ∪ T m2 ∪ . . . T mK instead of b(x)?

http://cmp.felk.cvut.cz
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Averaging Models: Bias

� Bias remains unchanged when compared to a single model:

bias(x)2 = Ey|x
(
(gm(x)− h∗(x))2

)
= Ey|x

(
(EDm (b(x))− h∗(x))2

)
= Ey|x

(EDm( 1

K

K∑
i=1

h(i)m (x)

)
− h∗(x)

)2


= Ey|x

( 1

K

K∑
i=1

ET mi
(
h(i)m (x)

)
− h∗(x)

)2


= Ey|x
(
(ET m (hm(x))− h∗(x))2

)
where ET m (hm(x)) was the gm(x) defined for a single model hm(x)

http://cmp.felk.cvut.cz
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Averaging Models: Variance

� For uncorrelated component models h(i)m (x):

VarDm (b(x)) = VarDm

(
1

K

K∑
i=1

h(i)m (x)

)

=
1

K2

K∑
i=1

VarT mi

(
h(i)m (x)

)
=

1

K
VarT m (hm(x))

which is a great improvement based on the strong assumption
� There is no improvement for maximum correlation, i.e., all component
models equal: h(i)m (x) = hm(x) for i = 1, . . . ,K, we get:

VarDm (b(x)) = VarDm

(
1

K

K∑
i=1

h(i)m (x)

)
= VarT m(hm(x))

⇒ we need to train uncorrelated (diverse) component models while
keeping their bias reasonably low

http://cmp.felk.cvut.cz
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Bootstrapping

� In practice we have only a single training dataset T m

� Bootstrapping is a method producing datasets T mi for i = 1, . . .K by
sampling T m uniformly with replacement

� Bootstrap datasets have the same size as the original dataset
|T mi | = |T m|

� T mi is expected to have the fraction 1− 1
e ≈ 63.2% of unique samples

from T m, others are duplicates (see seminar)

http://cmp.felk.cvut.cz
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Bagging

� Bagging = Bootstrap AGGregating [Breiman 1994]:
1. Use bootstrapping to generate K datasets
2. Train a model h(i)m on each dataset T mi
3. Average the models

� When decision trees are used as the models ⇒ random forests

� Low bias is achieved by growing the trees to maximal depth

� Trees are decorrelated by:

• training each tree on a different bootstrap dataset

• randomization of split attribute selection

http://cmp.felk.cvut.cz
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Random Forest Algorithm

1. For i = 1 . . .K:

(a) draw a bootstrap dataset T mi from T m, |T mi | = |T m| = m

(b) grow a tree h(i)m using T mi by recursively repeating the following, until
the minimum node size nmin is reached:
i. select k attributes at random from the p attributes
ii. pick the best attribute and split-point among the k
iii. split the node into two daughter nodes

2. Output ensemble of trees b(x) averaging h(i)m (regression) or selecting a
majority vote (classification)

� Node size nmin is the number of dataset samples associated with the
node, limits tree depth

http://cmp.felk.cvut.cz
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Out-of-Bag (OOB) Error

� Cheap way of generalization error assessment for bagging

� Bagging produces bootstrapped sets T m1 , T m2 , . . . T mK
� For each (xi, yi) ∈ T m select only trees which were not trained on this
sample: Hi = {h(j)m | (xi, yi) /∈ T mj }

� Average only the OOB trees in Hi when evaluating error for (xi, yi)

� Replacement for K-fold cross-validation

http://cmp.felk.cvut.cz
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Feature Importance

� Random forests allow easy evaluation of feature importances

� Mean Decrease Impurity (MDI):

• set fj = 0 for all attributes j = 1, . . . , p

• traverse all trees processing all internal nodes

• for each node having a split attribute j add its impurity decrease
multiplied by the proportion of the node size to fj

� Mean Decrease Accuracy (MDA), permutaion importance:

• evaluate the forest using OOB

• do the same with permuted values of an attribute j

• watch decrease in accuracy: low decrease means unimportant
feature

http://cmp.felk.cvut.cz
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Boosting

� Sequentially train weak learners/predictors low variance high bias

� Subsequent predictors fix the mistakes of the previous ones reducing bias

� Methods discussed here:

• Forward Stagewise Additive Modeling

• Gradient Boosting Machine

• Gradient Boosted Trees

• AdaBoost

http://cmp.felk.cvut.cz
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Forward Stagewise Additive Modeling (FSAM)

1. Initialize f0(x) = 0

2. For k = 1 to K:

(a) Find

(βk, θk) = argmin
β,θ

m∑
i=1

`
(
yi, fk−1(xi) + βb(xi; θ)

)
where b(xi; θk) is the basis function and βk the corresponding coefficient

(b) Set fk(x) = fk−1(x) + βkb(x; θk)

3. Return hm(x) = fK(x)

http://cmp.felk.cvut.cz
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FSAM and Gradient Descent

� FSAM update looks very similar to the gradient descent one:

fk(x) = fk−1(x) + βkb(x; θk)

� Just think of

• βk ≈ step size (learning rate)

• b(xi; θk) ≈ the negative of gradient

http://cmp.felk.cvut.cz
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FSAM for Squared Loss

� Again consider regression with the squared loss:

`(y, f(x)) = (y − f(x))2

� For FSAM we get:

`(yi, fk(xi)) = `(yi, fk−1(xi) + βkb(xi; θk))

= (yi − fk−1(xi)− βkb(xi; θk))2

= (rik − βkb(xi; θk))2

where rik = yi − fk−1(xi) is the residual of the current model for the
i-th sample

� The task of FSAM is to fit the model βkb(xi; θk) to match the residuals

� The method is sometimes called the least-squares boosting

http://cmp.felk.cvut.cz
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Gradient Boosting for Regression

� In case of regression with squared loss we minimize:

L =

m∑
i=1

`(yi, f(xi)) =

m∑
i=1

1

2
(yi − f(xi))2,

which is same as minimization of the empirical risk
� We can treat f(x1), f(x2), . . . , f(xm) as parameters and take
derivatives:

∂L
∂f(xi)

=
∂
(∑m

j=1 `(yj, f(xj))
)

∂f(xi)
=
∂`(yi, f(xi))

∂f(xi)

= f(xi)− yi = −ri

� The least-squares boosting hence takes steps in the negative gradient
direction where ri = − ∂L

∂f(xi)

� This approach can be generalized for any differentiable loss function!

http://cmp.felk.cvut.cz
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Gradient Boosting Machine

1. Initialize f0(x) = 0 or f0(x) = argminγ
∑m
i=1 `(yi, γ)

2. For k = 1 to K:

(a) Compute:

gk =

[
∂`(yi, fk−1(xi))

∂fk−1(xi)

]m
i=1

(b) Fit a regression model b(·; θ) to −gk using squared loss:

θk = argmin
θ

m∑
i=1

[(−gk)i − b(xi; θ)]2

(c) Choose a fixed step size βk = β > 0 or use line search:

βk = argmin
β>0

m∑
i=1

`
(
yi, fk−1(xi) + βb(xi; θk)

)
(d) Set fk(x) = fk−1(x) + βkb(x; θk)

3. Return hm(x) = fK(x)

http://cmp.felk.cvut.cz
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Gradient Boosted Trees

� Gradient Boosting Tree is GBM where all weak learners fk are decision
or regression trees

� Use limit on depth/number of leaves/node size for the weak learners ⇒
high bias

� Often single-level tree: decision stump

� Meta-parameters such as K (number of trees) and β (learning rate)
have to be found using cross validation

� Model is built sequentially (unlike random forests)

� Highly optimized algorithms based on Gradient Boosting Trees:

• XGBoost, LightGBM

• parallelization, scalability, regularization

http://cmp.felk.cvut.cz
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AdaBoost M1

Binary classifier: Y = {−1, 1}

1. Initialize the weights wi = 1/m for i = 1, 2, . . .m

2. For k = 1 to K:

(a) Fit a classifier fk(x; θk) to the training data using loss weighted by wi:

θk = argmin
θ

m∑
i=1

wi[[yi 6= fk(xi; θ)]]

(b) Compute the weighted error rate

εk =

∑m
i=1wi[[yi 6= fk(xi; θk)]]∑m

i=1wi

(c) Compute the scaling coefficient αk = log((1− εk)/εk)
(d) Set wi ← wi · exp(αk · [[yi 6= fk(xi; θk)]]) for i = 1, 2, . . .m

3. Return hm(x) = sign
[∑K

k=1αkfk(x; θk)
]

http://cmp.felk.cvut.cz
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AdaBoost is FSAM: the Loss

� Claim: AdaBoost is FSAM using the exponential loss

`(y, f(x)) = exp(−yf(x))

� We get:

(βk, θk) = argmin
β,θ

m∑
i=1

`
(
yi, fk−1(xi) + βb(xi; θ)

)
= argmin

β,θ

m∑
i=1

exp

(
− yi

(
fk−1(xi) + βb(xi; θ)

))

= argmin
β,θ

m∑
i=1

w
(k)
i exp

(
− yiβb(xi; θ)

)
,

where w(k)
i = exp(−yifk−1(xi))
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AdaBoost is FSAM II: Fitting the Classifier

� We can rearrange further:

(βk, θk) = argmin
β,θ

m∑
i=1

w
(k)
i exp

(
− yiβb(xi; θ)

)

= argmin
β,θ

e−β ∑
yi=b(xi;θ)

w
(k)
i + eβ

∑
yi 6=b(xi;θ)

w
(k)
i


= argmin

β,θ

e−β m∑
i=1

w
(k)
i + (eβ − e−β)︸ ︷︷ ︸

>0 for β>0

m∑
i=1

w
(k)
i [[yi 6= b(xi; θ)]]



� For any β > 0 we can minimize θ separately:

θk = argmin
θ

m∑
i=1

w
(k)
i [[yi 6= b(xi; θ)]] (same as AdaBoost 2(a))
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AdaBoost is FSAM III: the Weighted Error εk

and the Scaling Coefficient αk

� Let’s minimize

(eβ − e−β)
m∑
i=1

w
(k)
i [[yi 6= b(xi; θk)]] + e−β

m∑
i=1

w
(k)
i

with respect to β

(eβk + e−βk)

m∑
i=1

w
(k)
i [[yi 6= b(xi; θk)]]− e−βk

m∑
i=1

w
(k)
i = 0

(eβk + e−βk)εk − e−βk = 0

where εk =
∑m
i=1wi[[yi 6=b(xi;θk)]]∑m

i=1wi
as in AdaBoost 2(b)

� Solving for βk:
βk =

1

2
log

1− εk
εk

� Define αk , 2βk and compare to AdaBoost 2(c)
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AdaBoost is FSAM IV: the Weight Update

� We have w(k)
i = e−yifk−1(xi) and fk(x) = fk−1(x) + βkb(x; θk) so:

w
(k+1)
i = e−yi(fk−1(xi)+βkb(xi;θk)) = w

(k)
i · e

−yiβkb(xi;θk)

� Finally −yib(xi; θk) = 2 · [[yi 6= b(xi; θk)]]− 1 gives the weight update:

w
(k+1)
i = w

(k)
i · e

αk[[yi 6=b(xi;θk)]] · e−βk

corresponding to AdaBoost 2(d) up to the factor e−βk which is same for
all weights and hence has no effect

http://cmp.felk.cvut.cz
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Figure 4.2: Bias-variance decomposition of the expected generalization error
for polynomials of degree 1, 5 and 15.

Also, because of low complexity, none of them really fits the trend of
the training points, even approximately, which implies that the aver-
age model is far from approximating the Bayes model. This results in
high bias. On the other hand, polynomials of degree 15 (right) suffer
from overfitting. In terms of bias and variance, the situation is the
opposite. Predictions have low bias but high variance, as shown in
the lower right plot of Figure 4.2. The variability of the predictions is
large because the high degree of the polynomials (i.e., the high model
complexity) captures noise in the learning set. Indeed, compare the
gray line with the blue dots – they almost all intersect. Put other-
wise, small changes in the learning set result in large changes in the
obtained model and therefore in its predictions. By contrast, the av-
erage model is now quite close from the Bayes model, which results
in low bias1. Finally, polynomials of degree 5 (middle) are neither too
simple nor too complex. In terms of bias and variance, the trade-off is
well-balanced between the two extreme situations. Bias and variance
are neither too low nor too large.

4.1.2 Classification

In direct analogy with the bias-variance decomposition for the squared
error loss, similar decompositions have been proposed in the litera-
ture for the expected generalization error based on the zero-one loss,
i.e., for EL{EY|X=x{1('L(x) 6= Y)}} = PL,Y|X=x('L(x) 6= Y). Most no-

1 Note however the Gibbs-like phenomenon resulting in both high variance and high
bias at the boundaries of X.
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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