## Statistical Machine Learning (BE4M33SSU) Lecture 2: Empirical Risk <br> Czech Technical University in Prague V. Franc

## Prediction problem: the definition

- $\mathcal{X}$ a set of input observations/features
- $\mathcal{Y}$ a finite set of hidden states
- $(x, y) \in \mathcal{X} \times \mathcal{Y}$ samples randomly drawn from r.v. with p.d.f. $p(x, y)$
$h: \mathcal{X} \rightarrow \mathcal{Y}$ a prediction strategy
$\ell: \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}$ a loss function
- Task is to find a strategy with the minimal expected risk

$$
R(h)=\int \sum_{y \in \mathcal{Y}} \ell(y, h(x)) p(x, y) \mathrm{d} x=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))
$$

## Example of a prediction problem

The statistical model:

- $\mathcal{X}=\mathbb{R}, \mathcal{Y}=\{+1,-1\}, \ell\left(y, y^{\prime}\right)=\left\{\begin{array}{lll}0 & \text { if } y=y^{\prime} \\ 1 & \text { if } y \neq y^{\prime}\end{array}\right.$
- $p(x, y)=p(y) \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{1}{2 \sigma^{2}}\left(x-\mu_{y}\right)^{2}}, y \in \mathcal{Y}$.



## Solving the prediction problem from examples

- Assumption: we have an access to examples

$$
\left\{\left(x^{1}, y^{1}\right),\left(x^{2}, y^{2}\right), \ldots\right\}
$$

drawn from i.i.d. r.v. distributed according to unknown $p(x, y)$.

1) Testing: a given $h: \mathcal{X} \rightarrow \mathcal{Y}$ estimate its $R(h)$ using test set

$$
\mathcal{S}^{l}=\left\{\left(x^{i}, y^{i}\right) \in(\mathcal{X} \times \mathcal{Y}) \mid i=1, \ldots, l\right\}
$$

drawn i.i.d. from $p(x, y)$.

- 2) Learning: find $h: \mathcal{X} \rightarrow \mathcal{Y}$ with small $R(h)$ using training set

$$
\mathcal{T}^{m}=\left\{\left(x^{i}, y^{i}\right) \in(\mathcal{X} \times \mathcal{Y}) \mid i=1, \ldots, m\right\}
$$

drawn i.i.d. from $p(x, y)$.

## Testing: estimation of the expected risk

Given a predictor $h: \mathcal{X} \rightarrow \mathcal{Y}$ and a test set $\mathcal{S}^{l}$ draw i.i.d. from distribution $p(x, y)$, compute the empirical risk

$$
R_{\mathcal{S}^{l}}(h)=\frac{1}{l}\left(\ell\left(y^{1}, h\left(x^{1}\right)\right)+\cdots+\ell\left(y^{l}, h\left(x^{l}\right)\right)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)\right.
$$

and use it as an estimate of $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$.
The empirical risk $R_{\mathcal{S}^{l}}(h)$ is a random variable.

- We will show how to compute an interval such that

$$
R(h) \in\left(R_{\mathcal{S}^{l}(h)}-\varepsilon, R_{\mathcal{S}^{l}(h)}+\varepsilon\right)
$$

holds with a prescribed probability (confidence) $\gamma \in(0,1)$.

- We show how the interval width $\varepsilon$ depends on $l$ and $\gamma$.


## Law of large numbers

- Arithmetic mean of the results of random trials gets closer to the expected value as more trials are performed.

Example: The expected value of a single roll of a fair die is

$$
\frac{1+2+3+4+5+6}{6}=3.5
$$



## Hoeffding inequality

Theorem 1. Let $\left\{z^{1}, \ldots, z^{l}\right\}$ be realizations of independent random variables with the same expected value $\mu$ and their values are bounded by an interval $[a, b]$. Then for any $\varepsilon>0$ it holds that

$$
\mathbb{P}\left(\left|\frac{1}{l} \sum_{i=1}^{l} z^{i}-\mu\right| \geq \varepsilon\right) \leq 2 e^{-\frac{2 l \varepsilon^{2}}{(b-a)^{2}}}
$$

- Example (rolling a die): $\mu=3.5, z_{i} \in[1,6], \varepsilon=0.5$.




## Confidence intervals

Let $\mu_{l}=\frac{1}{l} \sum_{i=1}^{l} z^{i}$ be the arithmetic average computed from $\left\{z^{1}, \ldots, z^{l}\right\} \in[a, b]^{l}$ sampled from r.v. with expected value $\mu$.

Find $\varepsilon$ such that $\mu \in\left(\mu_{l}-\varepsilon, \mu_{l}+\varepsilon\right)$ with probability at least $\gamma$.
Using the Hoeffding inequality we can write

$$
\mathbb{P}\left(\left|\mu_{l}-\mu\right|<\varepsilon\right)=1-\mathbb{P}\left(\left|\mu_{l}-\mu\right| \geq \varepsilon\right) \geq 1-2 e^{-\frac{2 l \varepsilon^{2}}{(b-a)^{2}}}=\gamma
$$

and solving the last equation for $\varepsilon$ yields

$$
\varepsilon=|b-a| \sqrt{\frac{\log (2)-\log (1-\gamma)}{2 l}}
$$

## Confidence intervals

Let $\mu_{l}=\frac{1}{l} \sum_{i=1}^{l} z^{i}$ be the arithmetic average computed from $\left\{z^{1}, \ldots, z^{l}\right\} \in[a, b]^{l}$ sampled from r.v. with expected value $\mu$.

- Given a fixed $\varepsilon>0$ and $\gamma \in(0,1)$, what is the minimal number of examples $l$ such that $\mu \in\left(\mu_{l}-\varepsilon, \mu_{l}+\varepsilon\right)$ with probability $\gamma$ at least ?

Starting from

$$
\mathbb{P}\left(\left|\mu_{l}-\mu\right|<\varepsilon\right)=1-\mathbb{P}\left(\left|\mu_{l}-\mu\right| \geq \varepsilon\right) \geq 1-2 e^{-\frac{2 l \varepsilon^{2}}{(b-a)^{2}}}=\gamma
$$

and solving for $l$ yields

$$
l=\frac{\log (2)-\log (1-\gamma)}{2 \varepsilon^{2}}(b-a)^{2}
$$

## Testing: estimation of the expected risk

- Given $h: \mathcal{X} \rightarrow \mathcal{Y}$ estimate the expected risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$ by the empirical risk $R_{\mathcal{S}^{l}}(h)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)$ using the test set $\mathcal{S}^{l}$.
- The incurred losses $z^{i}=\ell\left(y^{i}, h\left(x^{i}\right)\right) \in\left[\ell_{\min }, \ell_{\max }\right], i \in\{1, \ldots, l\}$, are realizations of i.i.d. r.v. with the expected value $\mu=R(h)$.
- According to the Hoeffding inequality, for any $\varepsilon>0$ the probability of seeing a "bad test set" can be bound by

$$
\mathbb{P}\left(\left|R_{\mathcal{S}^{l}}(h)-R(h)\right| \geq \varepsilon\right) \leq 2 e^{-\frac{2 l \varepsilon^{2}}{\left(\ell_{\min }-\ell_{\max }\right)^{2}}}
$$

Testing: confidence intervals
Given $h: \mathcal{X} \rightarrow \mathcal{Y}$ estimate the expected risk $R(h)=\mathbb{E}_{(x, y) \sim p}(\ell(y, h(x)))$ by the empirical risk $R_{\mathcal{S}^{l}}(h)=\frac{1}{l} \sum_{i=1}^{l} \ell\left(y^{i}, h\left(x^{i}\right)\right)$ using the test set $\mathcal{S}^{l}$.

- Confidence interval: the expected risk is

$$
R(h) \in\left(R_{\mathcal{S}^{l}}(h)-\varepsilon, R_{\mathcal{S}^{l}}(h)+\varepsilon\right)
$$

with the probability (confidence) $\gamma \in(0,1)$ at least.

- Interval width: For fixed $l$ and $\gamma \in(0,1)$ compute

$$
\varepsilon=\left(\ell_{\max }-\ell_{\min }\right) \sqrt{\frac{\log (2)-\log (1-\gamma)}{2 l}}
$$

- Number of examples: For fixed $\varepsilon$ and $\gamma \in(0,1)$ compute

$$
l=\frac{\log (2)-\log (1-\gamma)}{2 \varepsilon^{2}}\left(\ell_{\max }-\ell_{\min }\right)^{2}
$$

## Example: confidence intervals

The width of $R(h) \in\left(R_{\mathcal{S}^{l}}(h)-\varepsilon, R_{\mathcal{S}^{l}}(h)+\varepsilon\right)$ is for $\ell\left(y, y^{\prime}\right)=\left[y \neq y^{\prime}\right]$ given by $\varepsilon=\sqrt{\frac{\log (2)-\log (1-\gamma)}{2 l}}$

for $\gamma=0.95$

| $l$ | 100 | 1,000 | 10,000 | 18,445 |
| :--- | ---: | ---: | ---: | ---: |
| $\varepsilon$ | 0.135 | 0.043 | 0.014 | 0.01 |

