Statistical Machine Learning (BE4M33SSU) Lecture 7: Deep Neural Networks

Jan Drchal

Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science

Overview

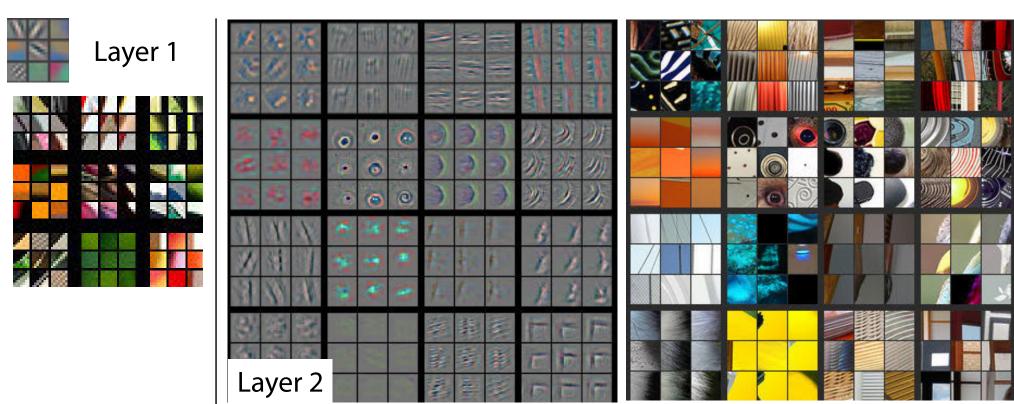
Topics covered in the lecture:

- Deep Architectures
- Convolutional Neural Networks (CNNs)
- Transfer learning

- Is it better to use deep architectures rather than the shallow ones for complex nonlinear mappings?
- We know that deep architectures evolved in Nature (e.g., cortex)
- Universal approximation theorem: one layer is enough so why to bother with more layers?
- Mhaskar et al: Learning Functions: When Is Deep Better Than Shallow, 2016:
 - deep neural networks can have exponentially less units than shallow networks for learning the same function
 - functions such as those realized by current deep convolutional neural networks are considered
- Handcrafted features vs. automatic extraction
- Gradually increasing complexity, intermediate representations: each successive layer brings higher abstraction

Features in Deep Neural Networks

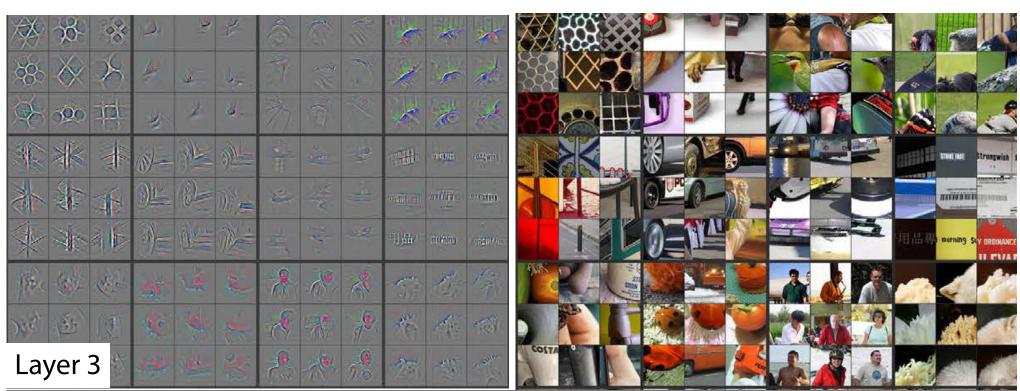
4/21



Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

Features in Deep Neural Networks

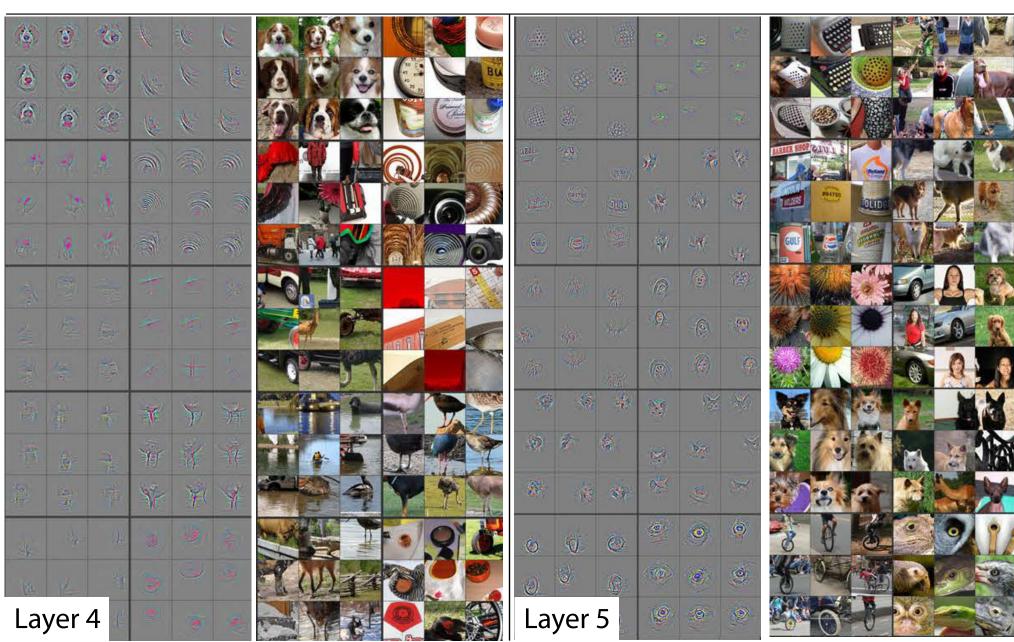
4/21



Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

Features in Deep Neural Networks

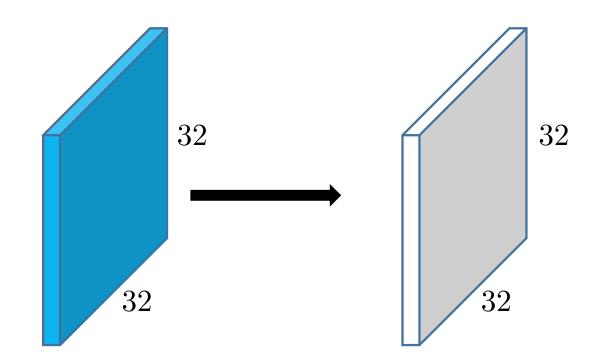
4/21



Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013

Processing Images

- lacktriangle Input: grayscale image 32 imes 32 pixels
- Output: layer of 32×32 features
- How many parameters do we need when input and output is fully connected?

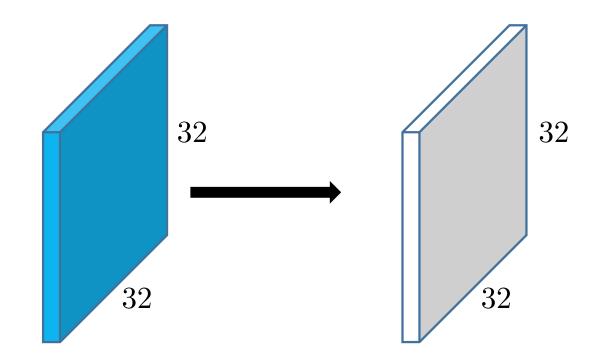


Processing Images

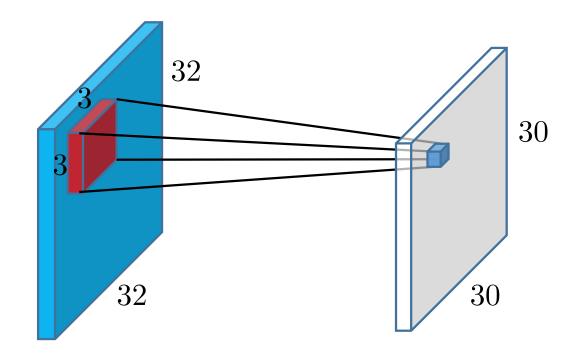


- Input: grayscale image 32×32 pixels
- Output: layer of 32×32 features
- How many parameters do we need when input and output is fully connected?

$$32^2 \times (32^2 + 1)_{\rm biases} \approx 1 \rm M$$
 outputs

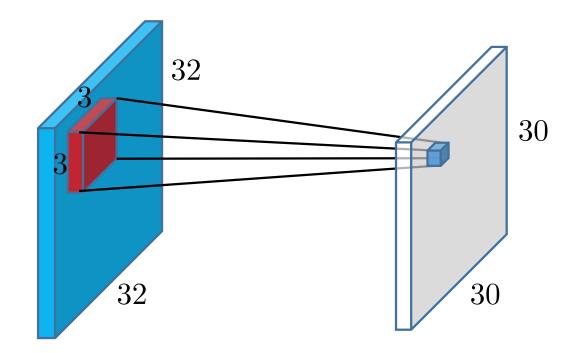


- Motivation: topographical mapping in the visual cortex nearby cells process nearby regions in the visual field
- Each neuron has a **receptive field** of 3×3 pixels
- It is fully connected only to the corresponding set of 9 inputs
- How many parameters do we need now?



- Motivation: topographical mapping in the visual cortex nearby cells process nearby regions in the visual field
- ullet Each neuron has a **receptive field** of 3×3 pixels
- It is fully connected only to the corresponding set of 9 inputs
- How many parameters do we need now?

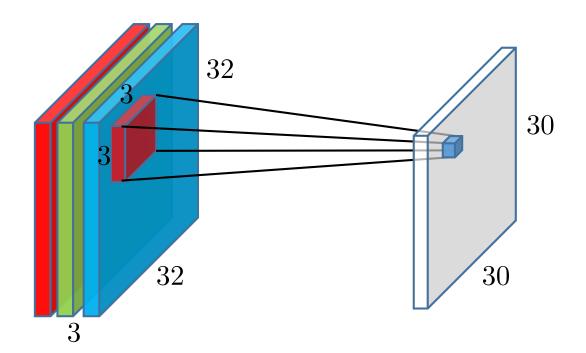
$$30^2 \times (3^2 + 1) = 9 \mathrm{k}$$
 outputs



Multiple Input Channels

7/21

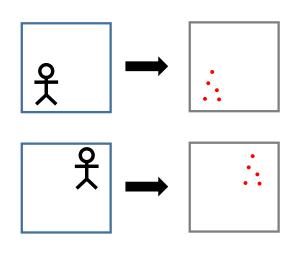
- We can have more input channels, e.g., colors
- ullet Now the input is defined by width, height and depth: $32 \times 32 \times 3$
- \bullet The number of parameters is $30^2\times(3\times3^2+1)\approx25\text{k}$

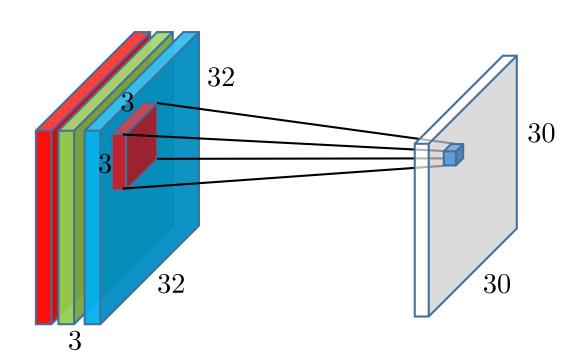


Sharing Parameters

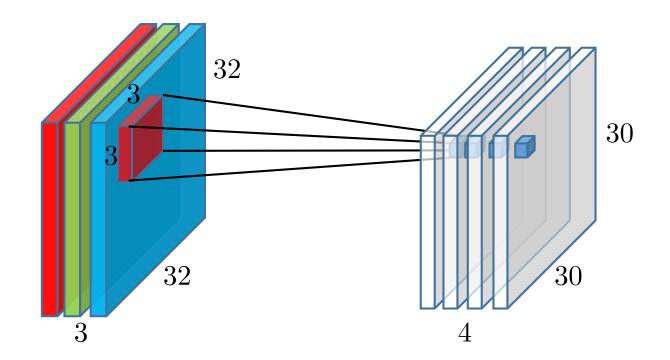
8/21

- We can further reduce the number of parameters by sharing weights
- Use the same set of weights and bias for all outputs, define a filter
- lacktriangle The number of parameters drops to $3\times 3^2 + 1_{\rm bias} = 28$
- Translation equivariance





- Extract multiple different of features
- Use multiple filters to get more feature maps
- \bullet For 4 filters we have $\underset{\text{filters}}{4}\times(3\times3^2+1)=112$ parameters
- This is the convolutional layer
- Processes volume into volume

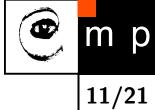


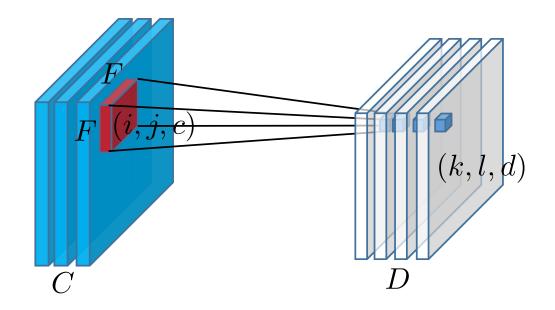
Convolution Applied to an Image

Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Edge detection	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$		Box blur (normalized)	1 1 1	
	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$			$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$		Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	

https://en.wikipedia.org/wiki/Kernel_(image_processing)

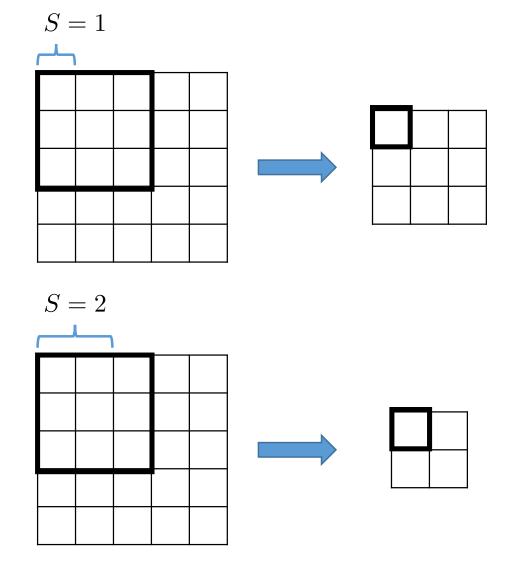
Convolution in 2D: Forward Message



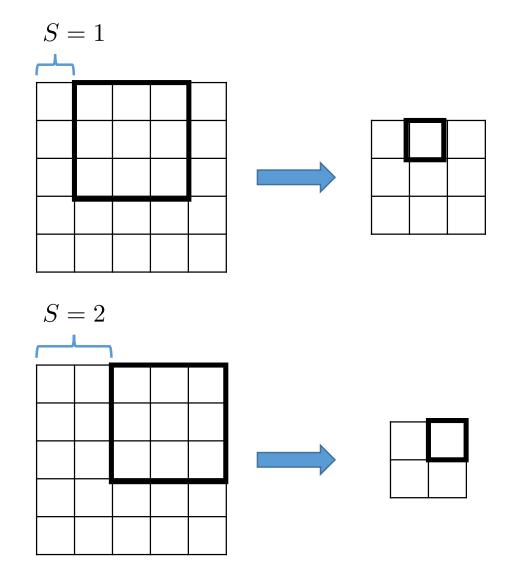


$$z_{kld} = f_{kld}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{b}) = b_d + \sum_{i=1}^{F} \sum_{j=1}^{F} \sum_{c=1}^{C} x_{k+i-1, l+j-1, c} w_{ijcd}$$

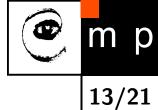
- Stric
- lacktriangle Stride hyper parameter, typically $S \in \{1,2\}$
- Higher stride produces smaller output volumes spatially



- lacktriangle Stride hyper parameter, typically $S \in \{1,2\}$
- Higher stride produces smaller output volumes spatially



Zero Padding



- Convolutional layer reduces the spatial size of the output w.r.t. the input
- For many layers this might be a problem
- This is often fixed by zero padding the input
- lacktriangle The size of the zero padding is denoted P

0

0

0

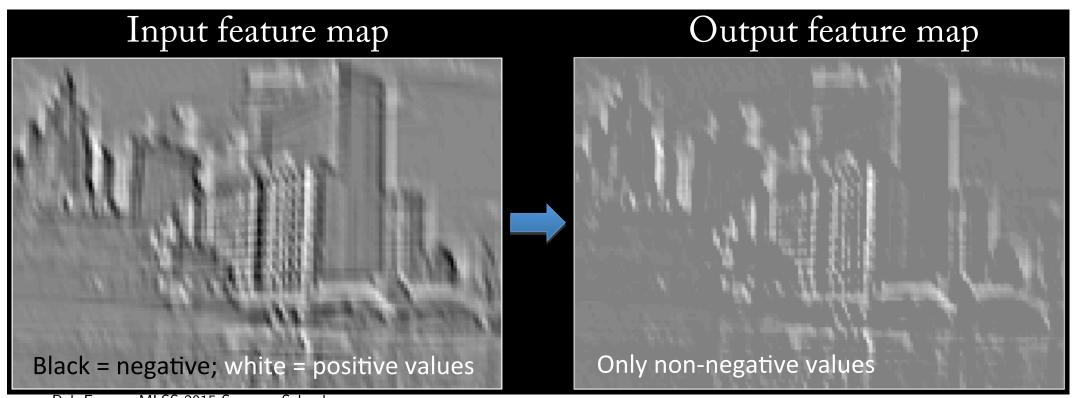
Convolutional Layer Summary

- Input volume: $W_{\mathsf{input}} \times H_{\mathsf{input}} \times C$
- Output volume: $W_{\text{output}} \times H_{\text{output}} \times D$
- lacktriangle Having D filters:
 - ullet receptive field of $F \times F$ units,
 - \bullet stride S
 - ullet zero padding P

$$W_{\text{output}} = (W_{\text{input}} - F + 2P)/S + 1$$
$$H_{\text{output}} = (H_{\text{input}} - F + 2P)/S + 1$$

- lacktriangle Needs F^2CD weights and D biases
- The number of activations and δ s to store: $W_{\text{output}} \times H_{\text{output}} \times D$

- In most cases a nonlinearity (sigmoid, tanh, ReLU) is applied to the outputs of the convolutional layer
- Example: ReLU units

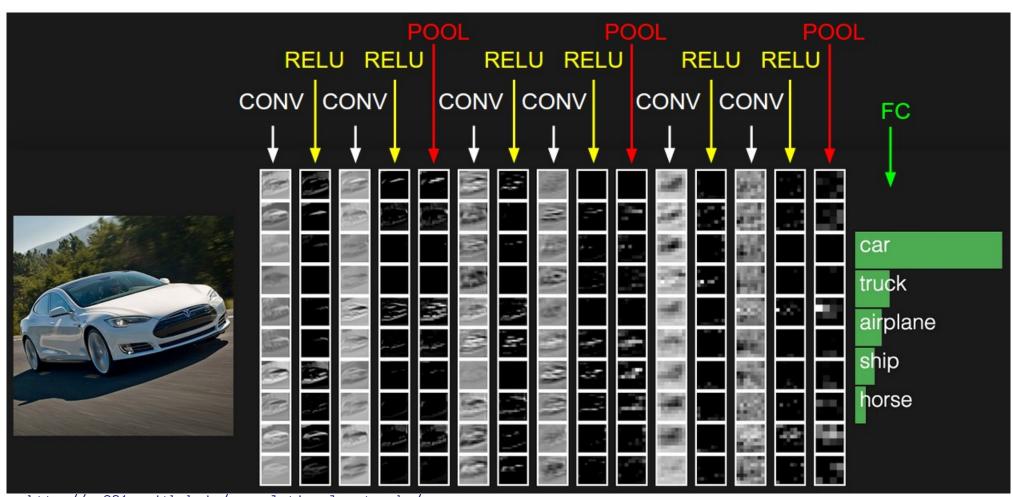


Rob Fergus: MLSS 2015 Summer School

- lacktriangle Reduces spatial resolution ightarrow less parameters ightarrow helps with overfitting
- Introduces translation invariance and invariance to small rotations
- Depth is not affected

T =	= 2, 1	S =	2							
2	2	0	4	3	4					
0	0	5	0	4	1			2		
4	5	2	5	1	4		2	5		
5	2	1	0	2	1		5	5		
2	3	3	3	5	3			3	4	
0	3	0	4	0	1					

Convolutional Neural Networks (CNNs)



http://cs231n.github.io/convolutional-networks/

VGGNet 2014

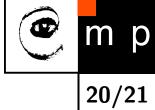


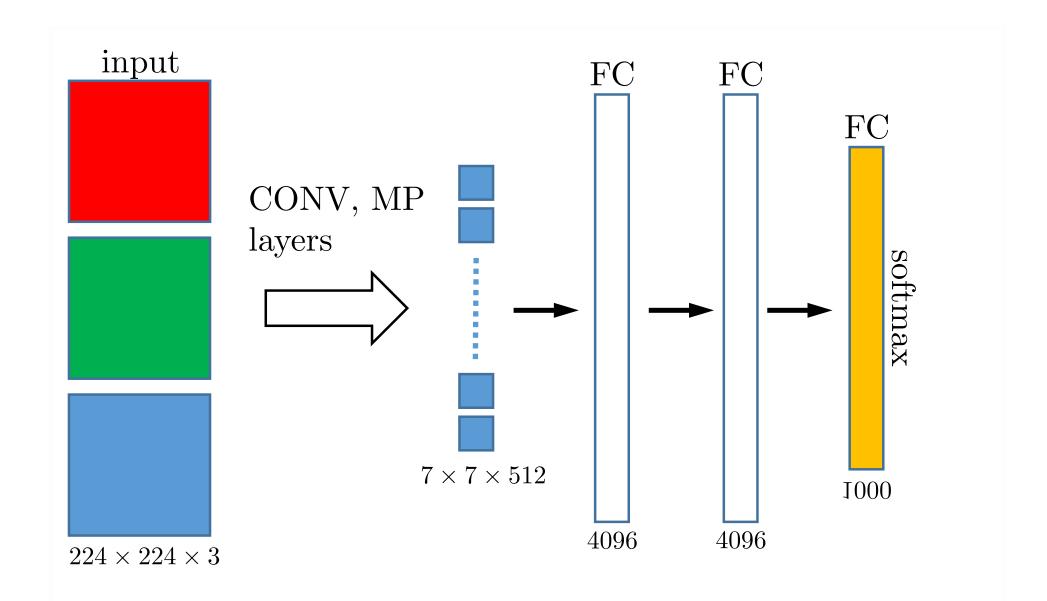
- Simonyan, Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014
- Lowering filter spatial resolution (F = 3, S = 1, P = 1), increasing depth
- lacktriangle A sequence of 3×3 filters can emulate a single large one
- \bullet Top five error 7.3%, 6.8% for an ensemble of 2 CNNs

19/21

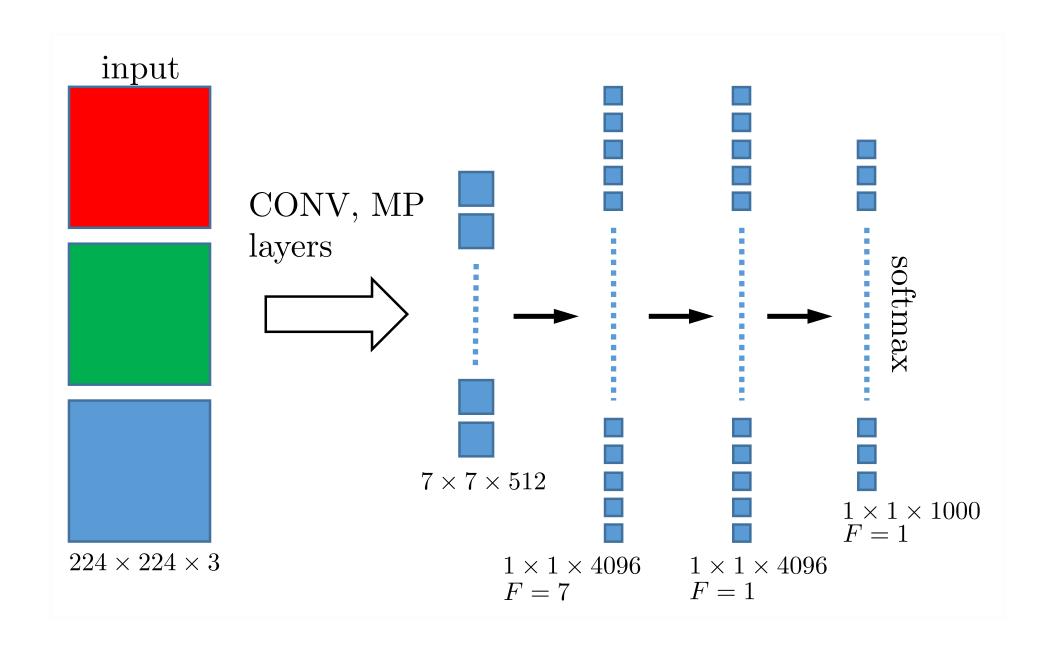
- lackloss Convolutional layer can be simply transformed to a Fully-connected layer \rightarrow sparse weight matrix
- ♦ The other direction is also possible: FC layer of D units following a $F \times F \times C$ convolutional layer can be replaced by a $1 \times 1 \times D$ convolutional layer using $F \times F$ filters (P = 0, S = 1)
- ◆ In both cases you do not have to recompute the weights, you just rearrange them

Fully-Connected Layer to Convolutional Example

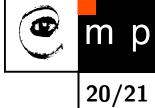


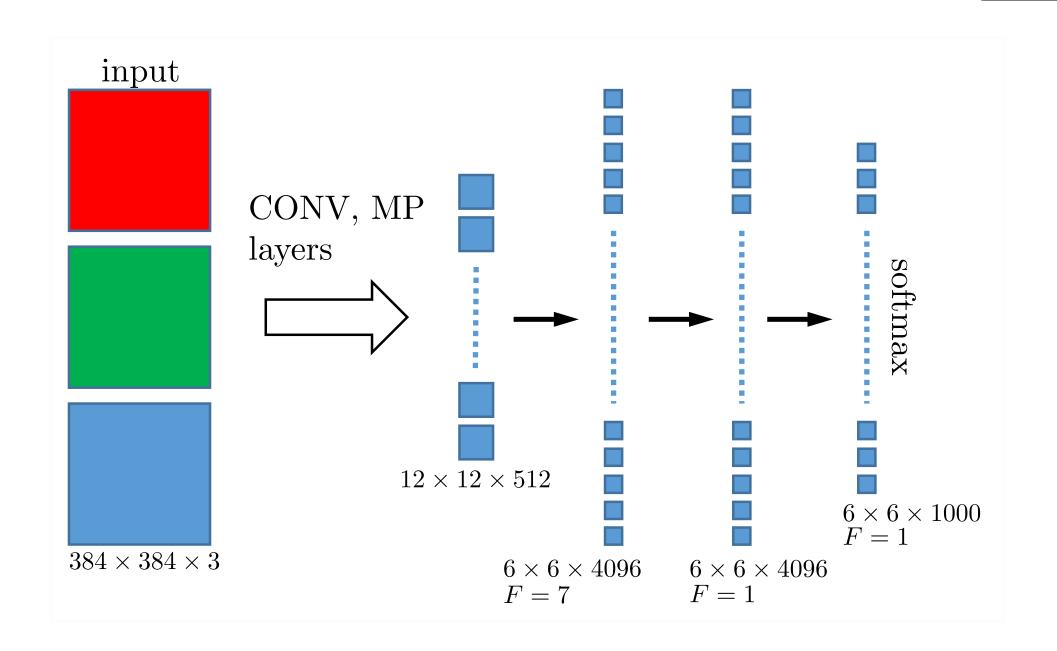


Fully-Connected Layer to Convolutional Example

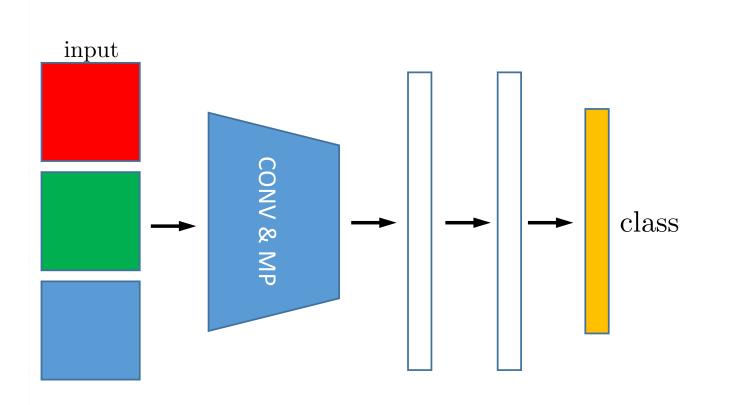


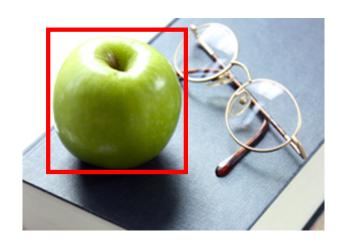
Fully-Connected Layer to Convolutional Example



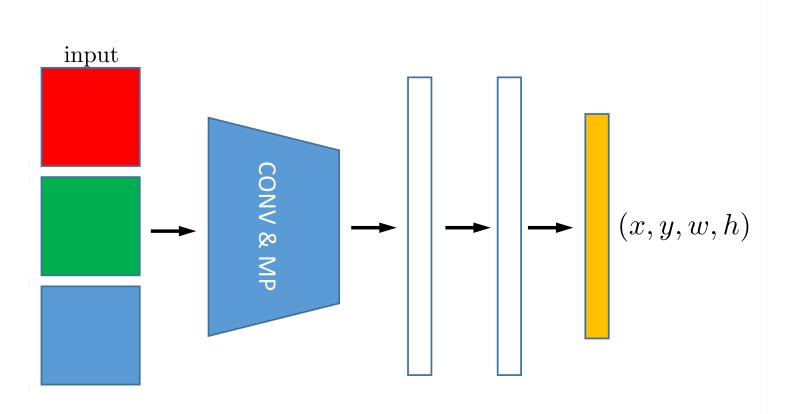


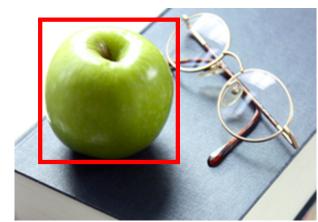
- ◆ Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization



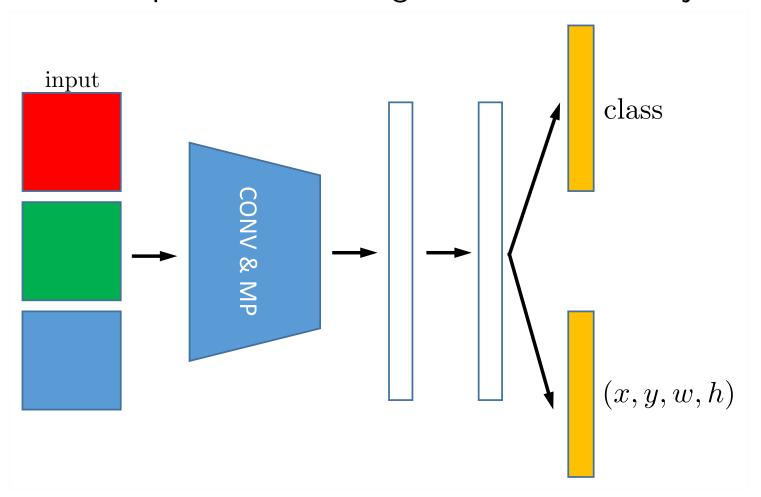


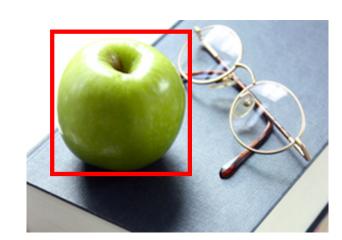
- ♦ Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization



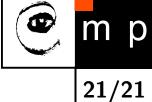


- ♦ Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization

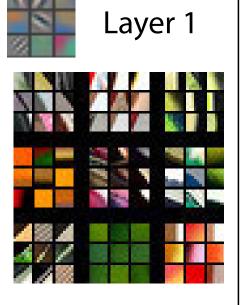


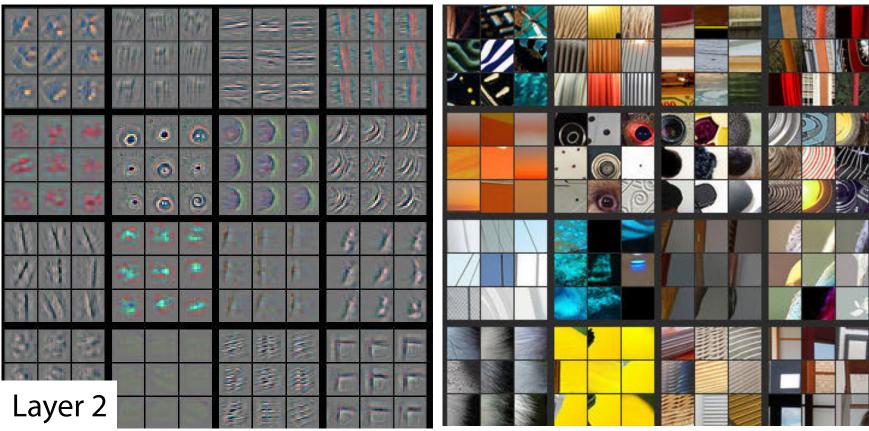


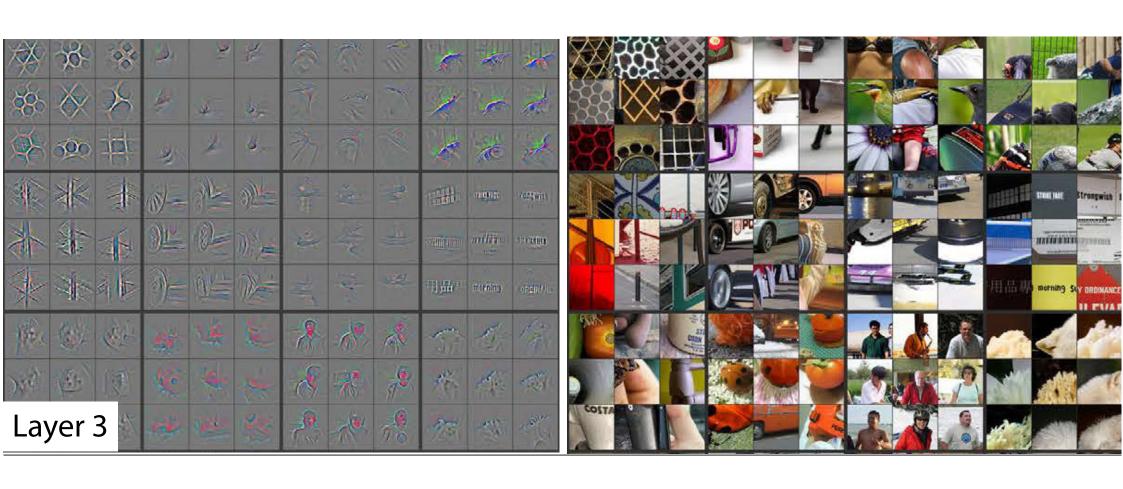
Transfer Learning

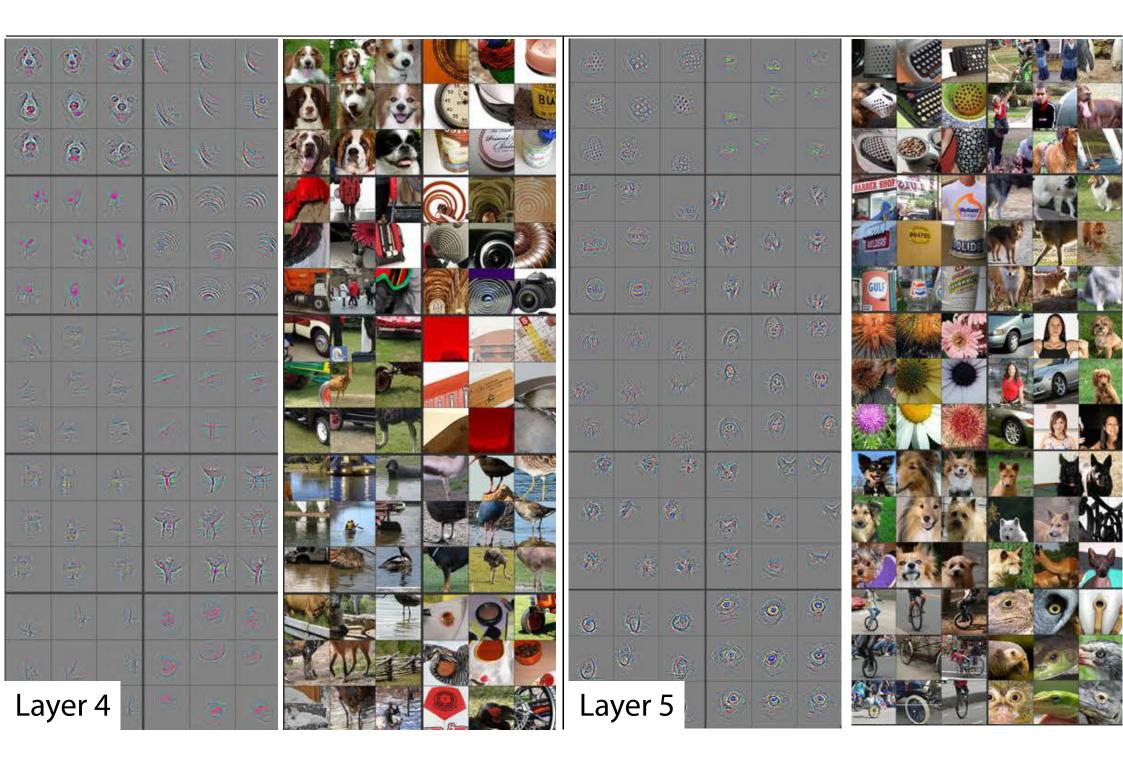


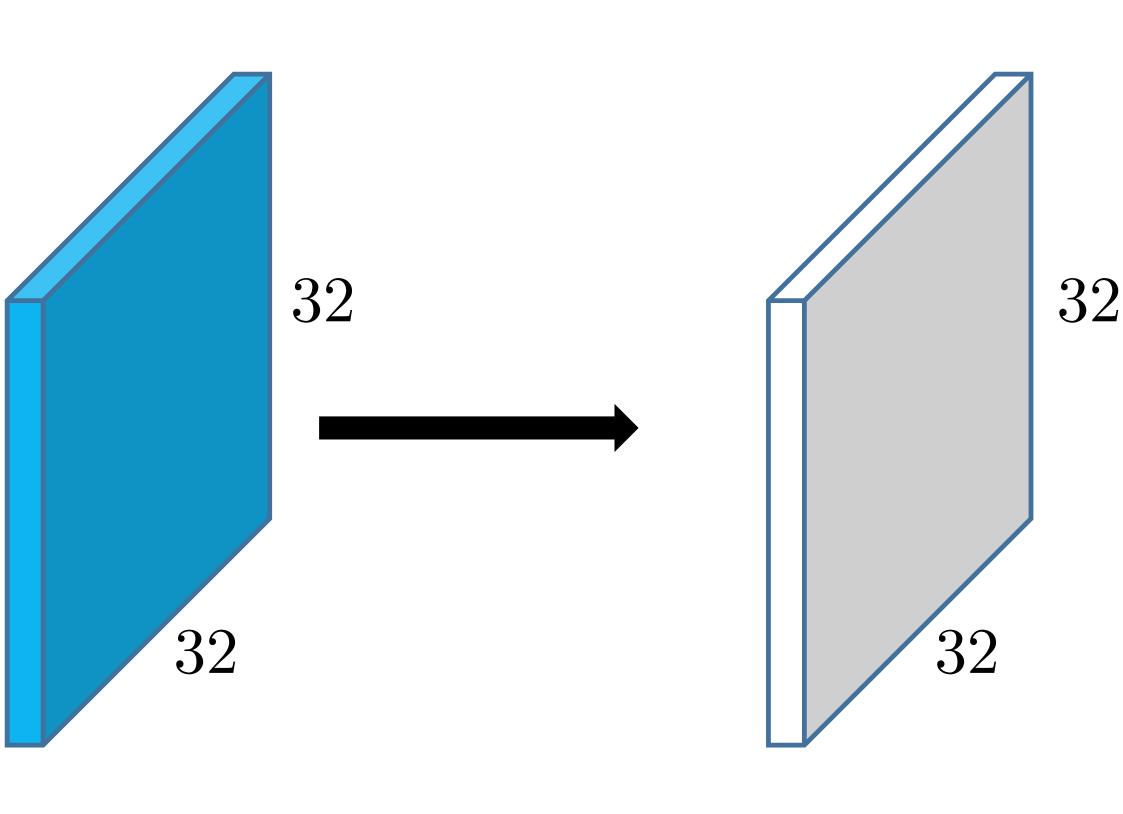
- ◆ Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization
- You can:
 - cut the original network at various layers,
 - fix or not the weights of the original network or use different learning rates
 - use different type of model instead of the output layers, e.g., linear SVM

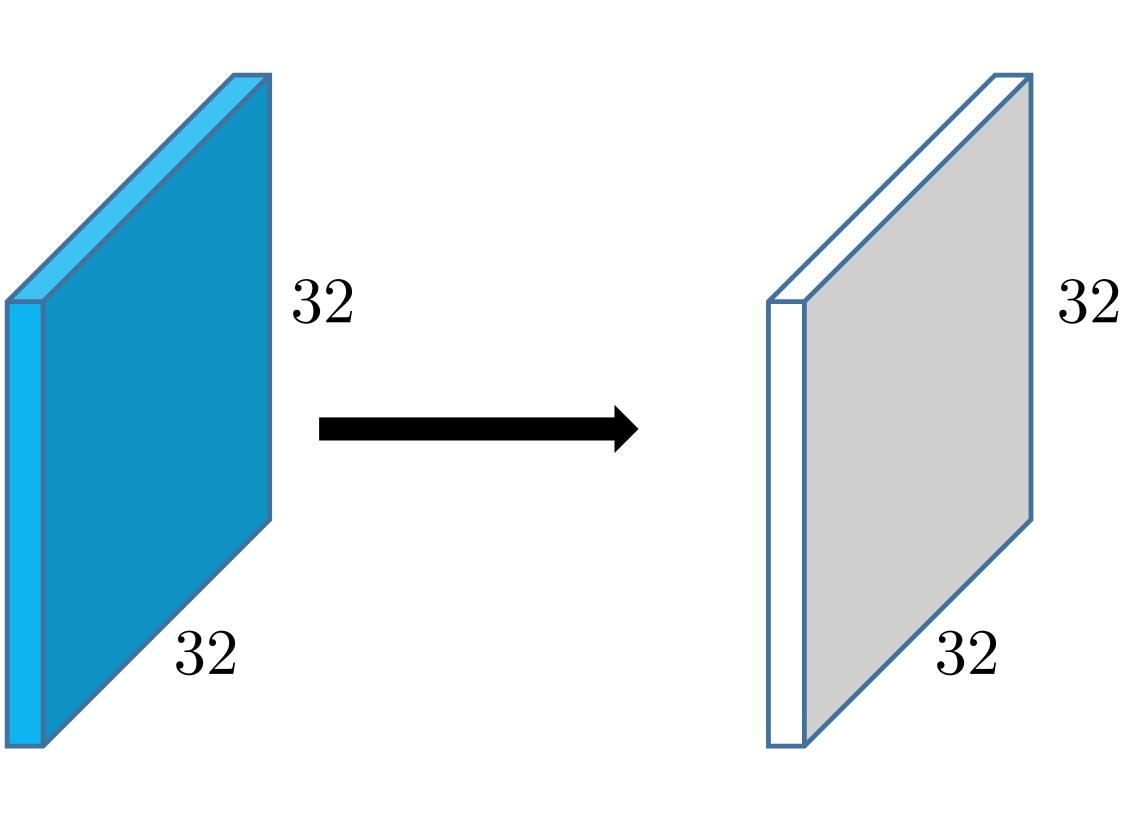


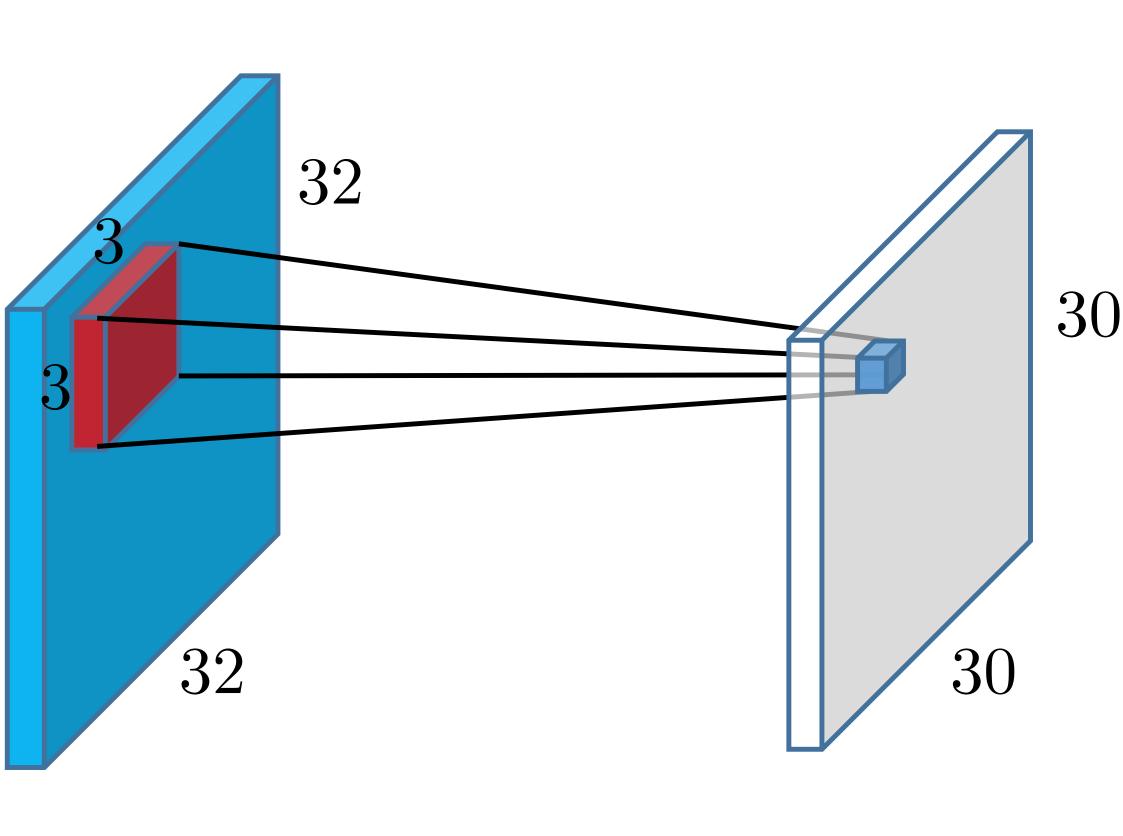


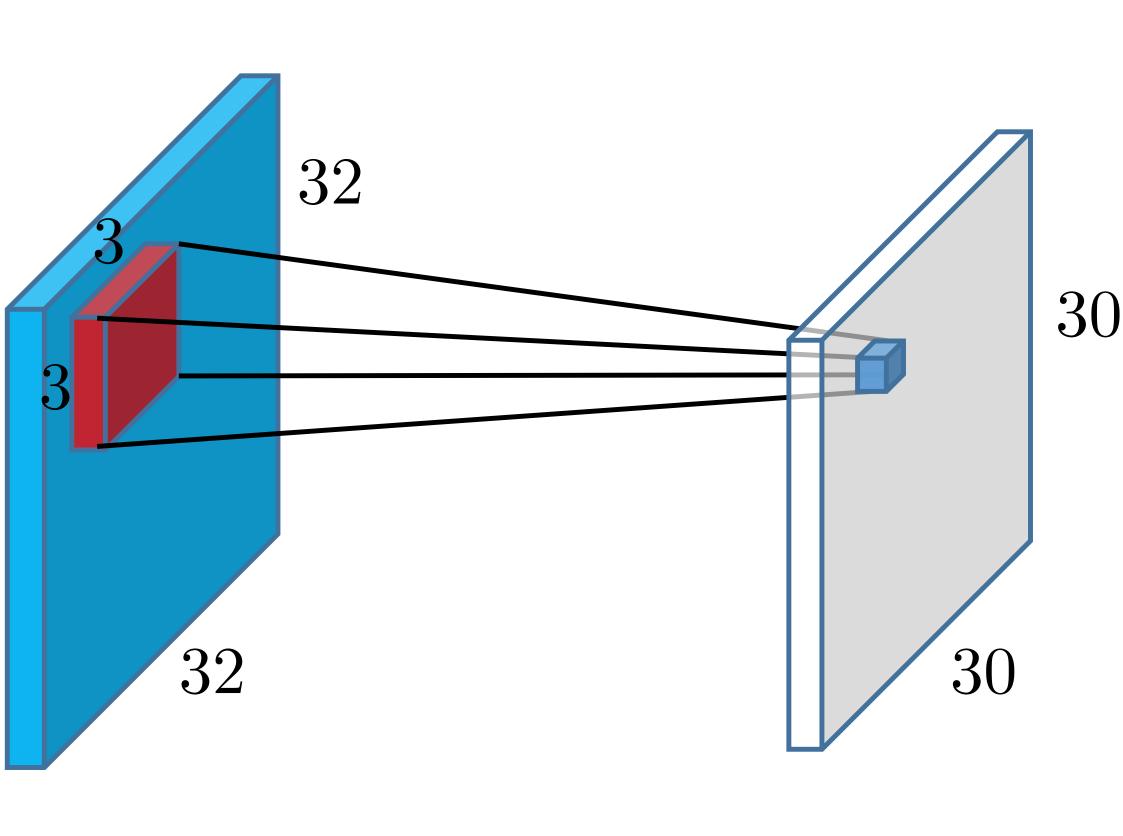


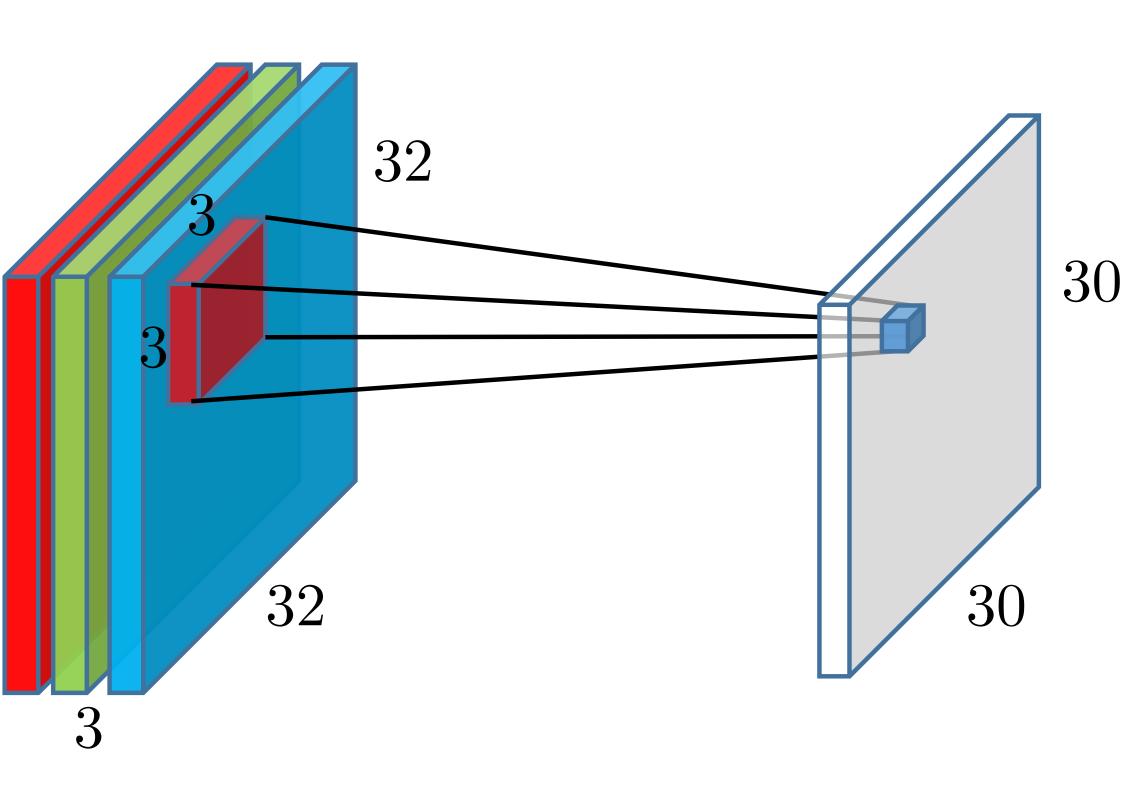


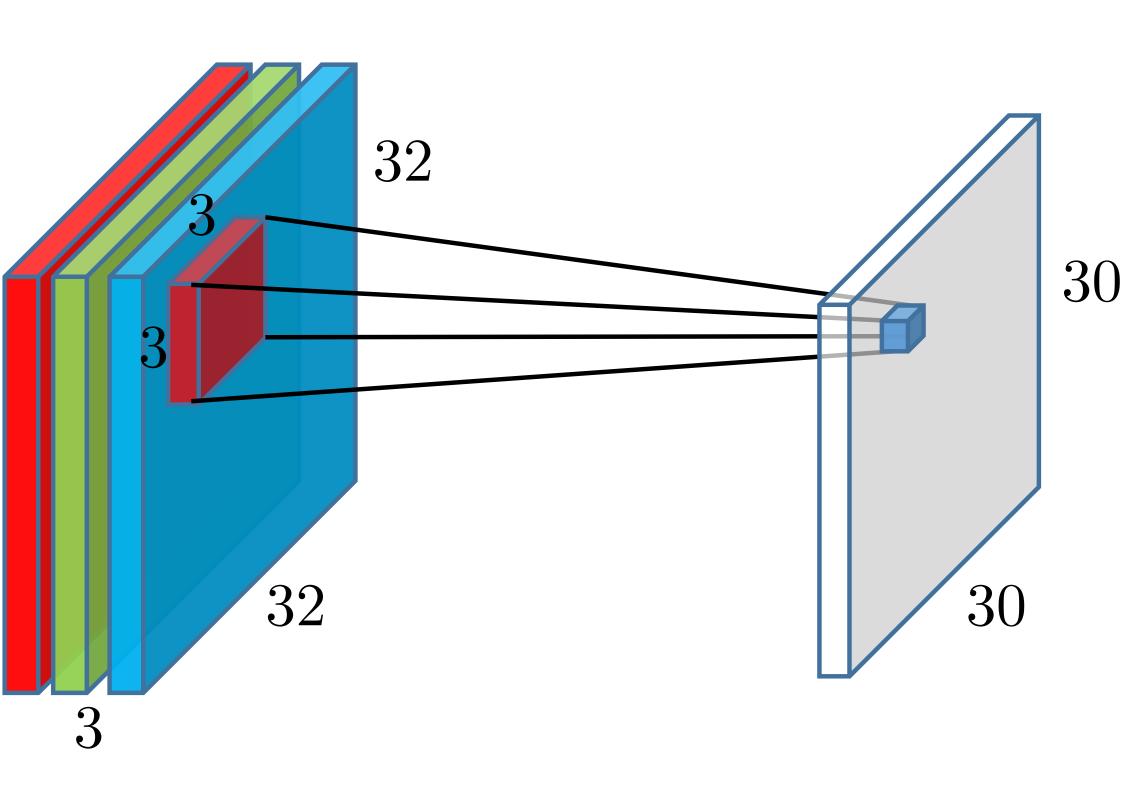


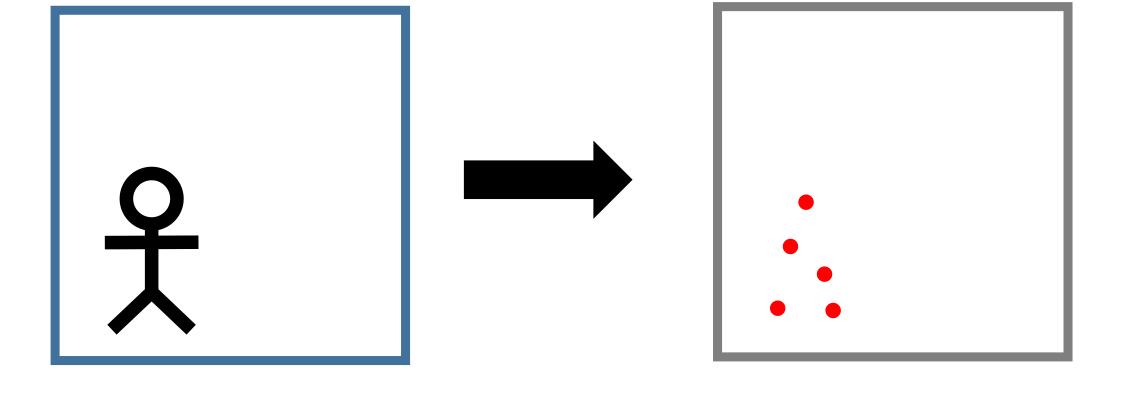


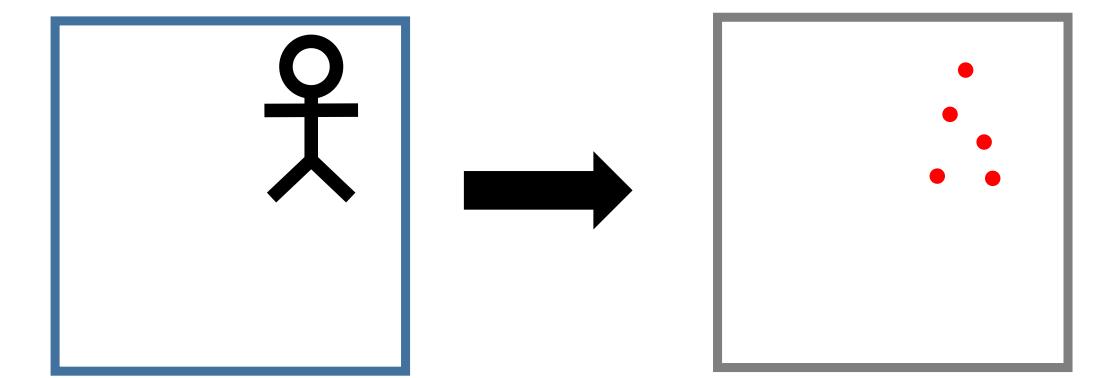


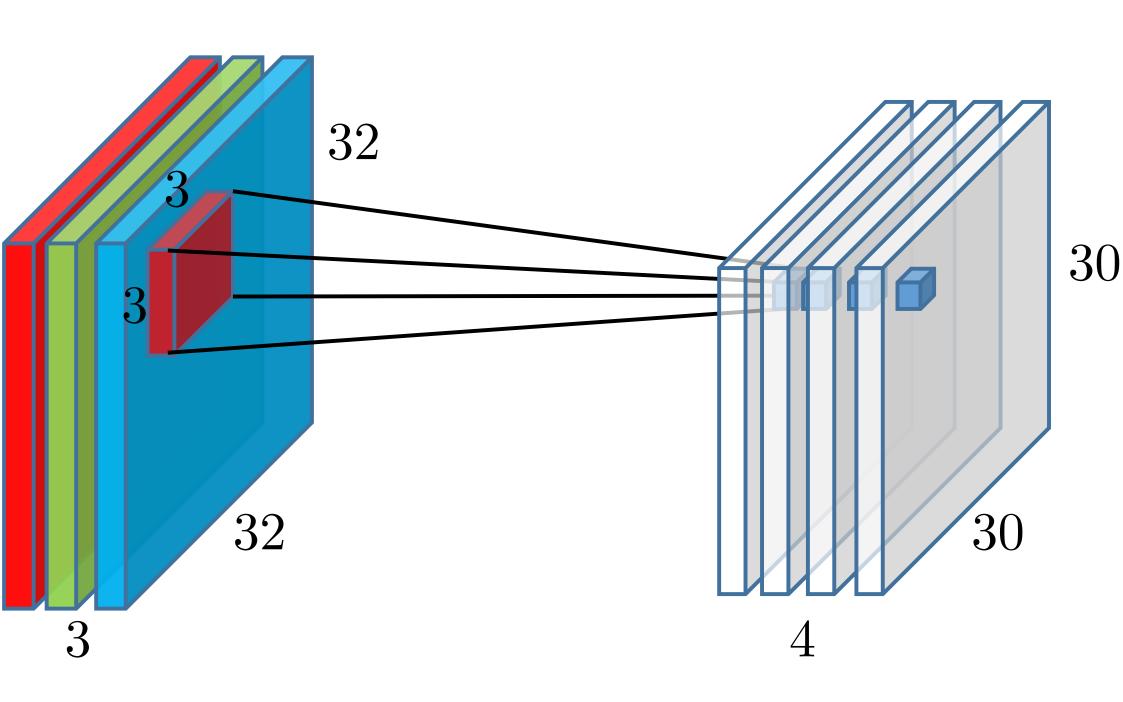


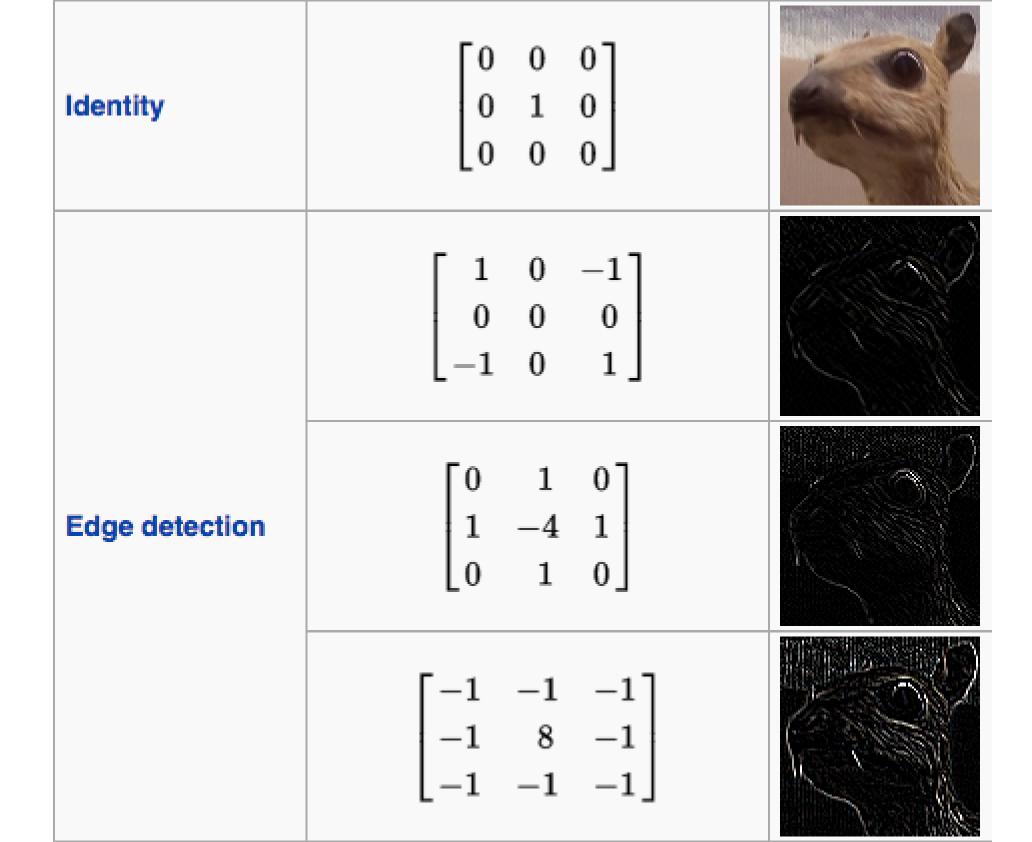




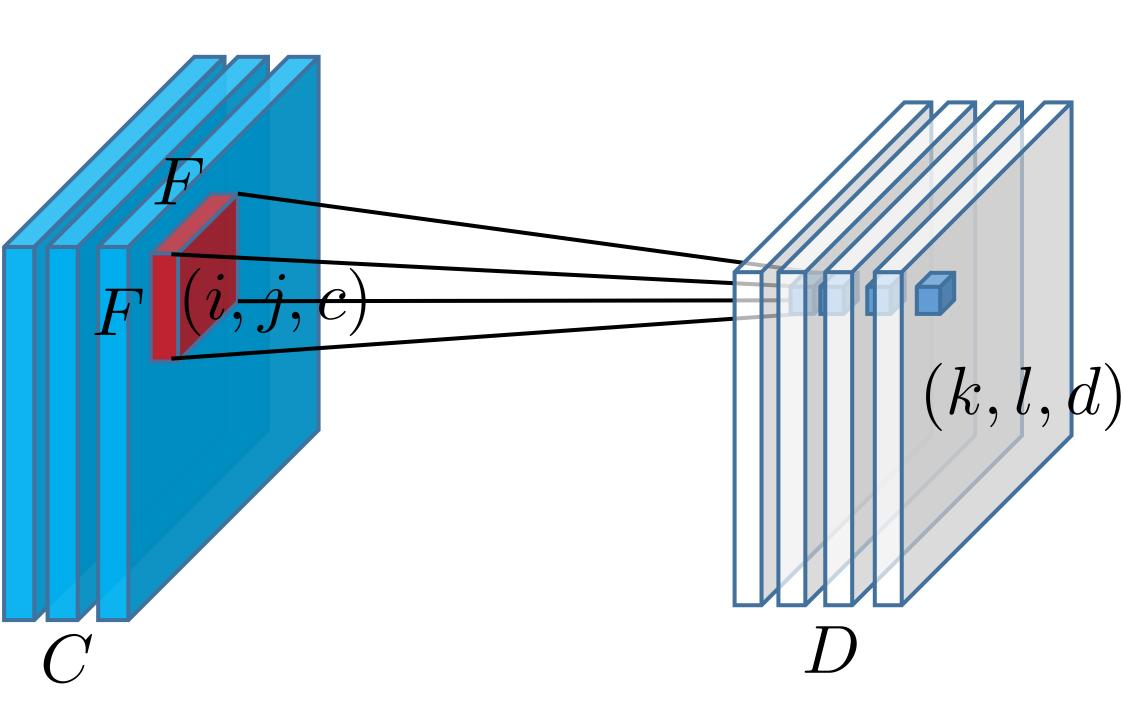








Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	
Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	



$$S = 1$$

$$S = 2$$

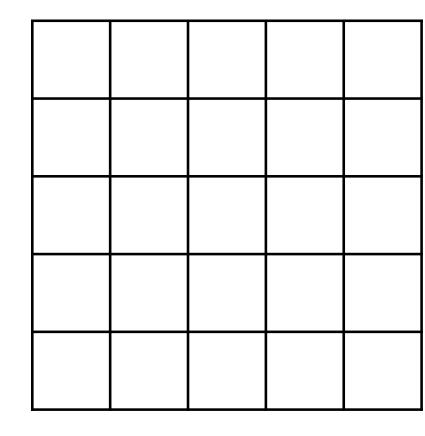
$$S=1$$

$$S=2$$

$$S=2$$

P	=	1,	S	=	1
		•			

0	0	0	0	0	0
0					0
0					0
0					0
0					0
0	0	0	0	0	0



Input feature map

Output feature map

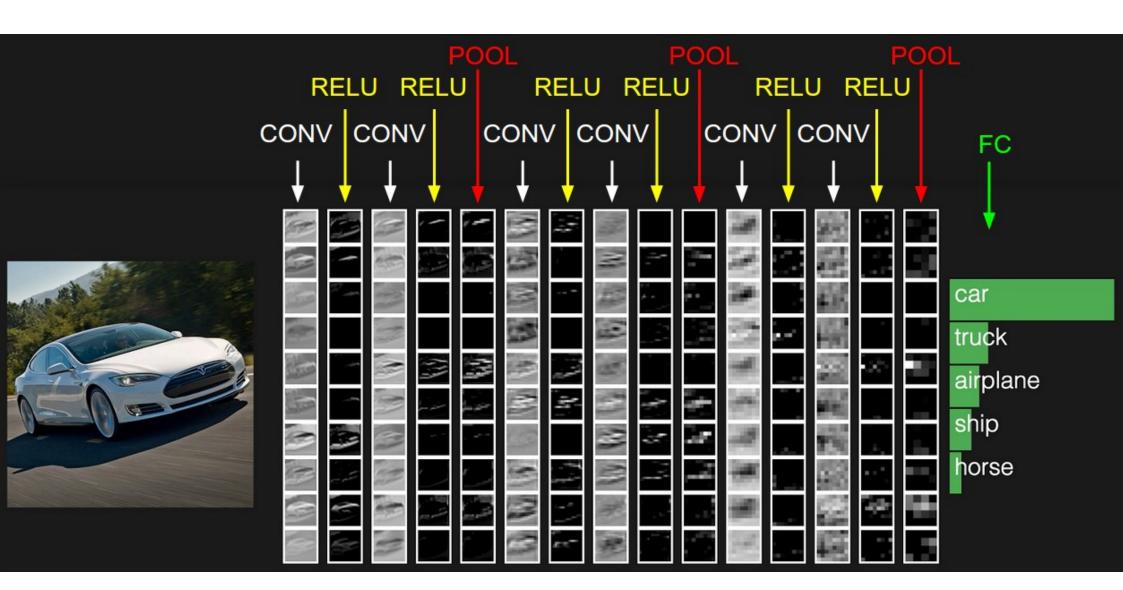
Black = negative; white = positive values

Only non-negative values

F = 2, S = 2

2	2	0	4	3	4
0	0	5	0	4	1
4	5	2	5	1	4
5	2	1	0	2	1
2	3	3	3	5	3
0	3	0	4	0	1

2	5	4
5	5	4
3	4	5



	input	conv3-64	conv3-64	MP	conv3-128	conv3-128	MP	conv3-256	conv3-256	conv3-256	MP	conv3-512	conv3-512	conv3-512	MP	conv3-512	conv3-512	conv3-512	MP	FC - 4096	FC - 4096	FC - 1000	softmax
parameters		1.7k	37k		74k	147k		295k	590k	590k		1.2M	2.4M	2.4M		2.4M	2.4M	2.4M		103M	16.7M	4M	
activations 1	150k	3.2M	3.2M	800k	1.6M	1.6M	400k	800k	800k	800k	200k	400k	400k	400k	100k	100k	100k	100k	25k	4096	4096	1000	1000
	224 × 224 × 3	224 x 224 x 64		112 x 112 x 64	112×112×128		56 x 56 x 128	56 x 56 x 256			28 x 28 x 256	28 × 28 × 512			14×14 512	14 x 14 x 512			7×7×512	1××1×4096	1 × 1 × 4096	1×1×1000	

