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Overview

Topics covered in the lecture:

� Deep Architectures

� Parameter initialization

� Convolutional Neural Networks (CNNs)

� Transfer learning

http://cmp.felk.cvut.cz
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Why Deep Architectures?

� Is it better to use deep architectures rather than the shallow ones for
complex nonlinear mappings?

� We know that deep architectures evolved in Nature (e.g., cortex)
� Universal approximation theorem: one layer is enough so why to bother
with more layers?

� Mhaskar et al: Learning Functions: When Is Deep Better Than Shallow,
2016:
• deep neural networks can have exponentially less units than shallow

networks for learning the same function
• functions such as those realized by current deep convolutional

neural networks are considered
� Handcrafted features vs. automatic extraction
� Gradually increasing complexity, intermediate representations: each
successive layer brings higher abstraction

http://cmp.felk.cvut.cz
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Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.

Zeiler and Fergus: Visualizing and Understanding Convolutional Networks, 2013
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Parameter Initialization

� Is it a good idea to set all weights to zero?

� No. All neurons would behave the same: the same δs are
backpropagated. We need to break the symmetry

� Use small numbers, e.g., sample from a Gaussian distribution with zero
mean:

• works well for shallow networks,

• for deep networks we might get into trouble

http://cmp.felk.cvut.cz
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Gaussian Initialization Example

� MLP, ten tanh layers, 500 units each. Each input fed with N (0, 1)

� Weights initialized to N (0, σ2)

http://cmp.felk.cvut.cz
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Vanishing Gradient

� For large σ (saturation) the tanh derivative is almost zero

� For small σ (output close to zero):

• the derivative is at most 1,

• the weights are very small and ∂zl+1
j

∂zl
i

= wij holds for the preceding
linear layer

� In both cases: δ → 0 as the number of layers increases

http://cmp.felk.cvut.cz
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Xavier Initialization

� Glorot and Bengio: Understanding the difficulty of training deep
feedforward neural networks, 2010

� For the linear neuron s =
∑

iwixi, let wi and xi be independent
random variables, wi and xi are i.i.d., E(xi) = E(wi) = 0:

Var(s) = Var

(∑
i

wixi

)
=
∑

i

Var(wixi) =

=
∑

i

E
(
[wixi − E(wixi)]

2
)
=
∑

i

E
(
[wixi − E(wi)E(xi)]

2
)
=

=
∑

i

E(w2
ix

2
i ) =

∑
i

E(w2
i )E(x2i ) =

=
∑

i

E([wi − E(wi)]
2
)E([xi − E(xi)]

2
) =

=
∑

i

Var(xi)Var(wi) = ninVar(x)Var(w)
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Xavier Initialization (contd.)

� We have Var(s) = ninVar(x)Var(w)

� We want Var(s) = Var(x)

� Choose Var(w) = 1
nin

� Works well for tanh as it is linear near zero

� Do not forget to standardize ANN input data

http://cmp.felk.cvut.cz
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Processing Images

� Input: grayscale image 32× 32 pixels

� Output: layer of 32× 32 features

� How many parameters do we need when input and output is fully
connected?

http://cmp.felk.cvut.cz
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Processing Images

� Input: grayscale image 32× 32 pixels

� Output: layer of 32× 32 features

� How many parameters do we need when input and output is fully
connected?
322

outputs
× ( 322

inputs
+ 1

biases
) ≈ 1M
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Locally Connected Layer

� Motivation: topographical mapping in the visual cortex - nearby cells
process nearby regions in the visual field

� Each neuron has a receptive field of 3× 3 pixels

� It is fully connected only to the corresponding set of 9 inputs

� How many parameters do we need now?

http://cmp.felk.cvut.cz
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Locally Connected Layer

� Motivation: topographical mapping in the visual cortex - nearby cells
process nearby regions in the visual field

� Each neuron has a receptive field of 3× 3 pixels

� It is fully connected only to the corresponding set of 9 inputs

� How many parameters do we need now?
302

outputs
× ( 32

inputs
+ 1

bias
) = 9k
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Multiple Input Channels

� We can have more input channels, e.g., colors

� Now the input is defined by width, height and depth: 32× 32× 3

� The number of parameters is 302
outputs

× ( 3
channels

× 32
inputs

+ 1
bias

) ≈ 25k
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Sharing Parameters

� We can further reduce the number of parameters by sharing weights

� Use the same set of weights and bias for all outputs, define a filter

� The number of parameters drops to 3× 32
inputs

+ 1
bias

= 28

� Translation equivariance

http://cmp.felk.cvut.cz
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Multiple Output Channels

� Extract multiple different of features

� Use multiple filters to get more feature maps

� For 4 filters we have 4
filters
× (3× 32

inputs
+ 1

bias
) = 112 parameters

� This is the convolutional layer

� Processes volume into volume

http://cmp.felk.cvut.cz
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Convolution Applied to an Image

https://en.wikipedia.org/wiki/Kernel_(image_processing)
http://cmp.felk.cvut.cz
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Convolution in 2D: Forward Message

F

F

D

(k, l, d)

(i, j, c)

C

zkld = fkld(x,w, b) = bd +

F∑
i=1

F∑
j=1

C∑
c=1

xk+i−1,l+j−1,c wijcd
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Stride

� Stride hyper parameter, typically S ∈ {1, 2}

� Higher stride produces smaller output volumes spatially

http://cmp.felk.cvut.cz
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Zero Padding

� Convolutional layer reduces the spatial size of the output w.r.t. the input

� For many layers this might be a problem

� This is often fixed by zero padding the input

� The size of the zero padding is denoted P

0 0 0 0 0 0

0 0

0 0

0 0

0 0

0 0 0 0 0 0

P = 1, S = 1

http://cmp.felk.cvut.cz
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Convolutional Layer Summary

� Input volume: Winput ×Hinput × C

� Output volume: Woutput ×Houtput ×D

� Having D filters:

• receptive field of F × F units,

• stride S

• zero padding P

Woutput = (Winput − F + 2P )/S + 1

Houtput = (Hinput − F + 2P )/S + 1

� Needs F 2CD weights and D biases

� The number of activations and δs to store: Woutput ×Houtput ×D

http://cmp.felk.cvut.cz


Non-Linearity 

P  Rectified linear function 
– Applied per-pixel 
– output = max(0,input) 

Input feature map	   Output feature map	  

Black	  =	  nega�ve;	  white	  =	  posi�ve	  values	   Only	  non-‐nega�ve	  values	  
Rob Fergus: MLSS 2015 Summer School
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Convolutional Layer: Nonlinearities

� In most cases a nonlinearity (sigmoid, tanh, ReLU) is applied to the
outputs of the convolutional layer

� Example: ReLU units

http://cmp.felk.cvut.cz
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Max Pooling

� Reduces spatial resolution → less parameters → helps with overfitting

� Introduces translation invariance and invariance to small rotations

� Depth is not affected

2 2 0 4 3 4

0 0 5 0 4 1

4 5 2 5 1 4

5 2 1 0 2 1

2 3 3 3 5 3

0 3 0 4 0 1

2 5 4

5 5 4

3 4 5

F = 2, S = 2
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Convolutional Neural Networks (CNNs)

http://cs231n.github.io/convolutional-networks/
http://cmp.felk.cvut.cz
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VGGNet 2014

� Simonyan, Zisserman: Very Deep Convolutional Networks for
Large-Scale Image Recognition, 2014

� Lowering filter spatial resolution (F = 3, S = 1, P = 1), increasing
depth

� A sequence of 3× 3 filters can emulate a single large one

� Top five error 7.3%, 6.8% for an ensemble of 2 CNNs

http://cmp.felk.cvut.cz
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Convolutional vs. Fully-Connected Layers

� Convolutional layer can be simply transformed to a Fully-connected layer
→ sparse weight matrix

� The other direction is also possible:
FC layer of D units following a F × F × C convolutional layer can be
replaced by a 1× 1×D convolutional layer using F × F filters (P = 0,
S = 1)

� In both cases you do not have to recompute the weights, you just
rearrange them

http://cmp.felk.cvut.cz
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Fully-Connected Layer to Convolutional Example
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Fully-Connected Layer to Convolutional Example
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Fully-Connected Layer to Convolutional Example
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Transfer Learning

� Idea: use an existing model as a base to solve a similar problem

� Often used when not enough data available to solve the target problem
directly

� Example: reuse an ImageNet network for object localization
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Transfer Learning

� Idea: use an existing model as a base to solve a similar problem

� Often used when not enough data available to solve the target problem
directly

� Example: reuse an ImageNet network for object localization

� You can:

• cut the original network at various layers,

• fix or not the weights of the original network or use different
learning rates

• use different type of model instead of the output layers, e.g., linear
SVM

http://cmp.felk.cvut.cz
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Fig. 2. Visualization of features in a fully trained model. For layers 2-5 we show the top
9 activations in a random subset of feature maps across the validation data, projected
down to pixel space using our deconvolutional network approach. Our reconstructions
are not samples from the model: they are reconstructed patterns from the validation set
that cause high activations in a given feature map. For each feature map we also show
the corresponding image patches. Note: (i) the the strong grouping within each feature
map, (ii) greater invariance at higher layers and (iii) exaggeration of discriminative
parts of the image, e.g. eyes and noses of dogs (layer 4, row 1, cols 1). Best viewed in
electronic form. The compression artifacts are a consequence of the 30Mb submission
limit, not the reconstruction algorithm itself.
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Non-Linearity 

P  Rectified linear function 
– Applied per-pixel 
– output = max(0,input) 

Input feature map	   Output feature map	  

Black	  =	  nega�ve;	  white	  =	  posi�ve	  values	   Only	  non-‐nega�ve	  values	  
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