# Statistical Machine Learning (BE4M33SSU) Lecture 8: Deep Neural Networks

Jan Drchal

Czech Technical University in Prague Faculty of Electrical Engineering Department of Computer Science

#### **Overview**



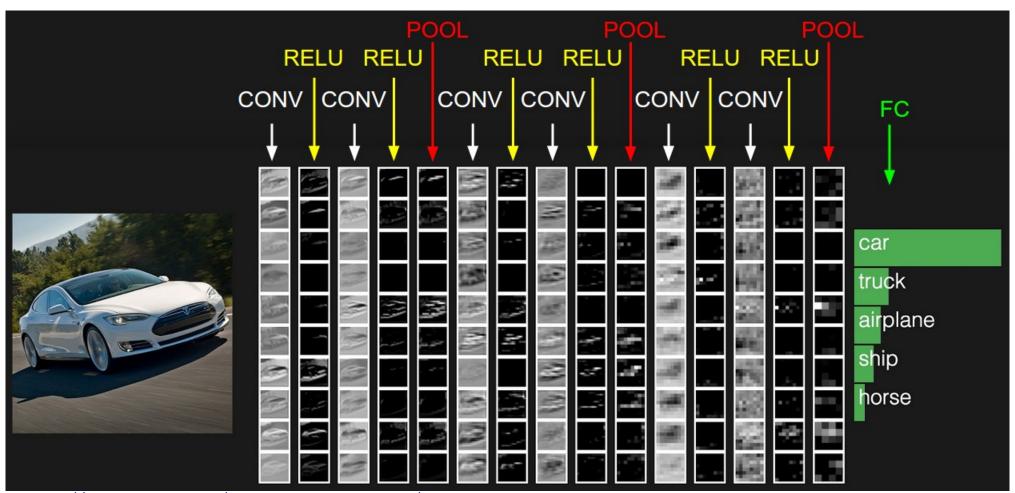
#### Topics covered in the lecture:

- Deep Architectures
- Convolutional Neural Networks (CNNs)
- Transfer learning
- Weight initialization
- Autoencoders and unsupervised pre-training

- We know that deep architectures evolved in Nature (e.g., cortex)
- Universal approximation theorem: one layer is enough so why to bother with more layers?
- Poggio et al: Why and When Can Deep but Not Shallow Networks Avoid the Curse of Dimensionality, 2016:
  - deep networks can be exponentially better (have less units) than shallow networks for learning compositional functions
- Handcrafted features vs. automatic extraction
- Gradually increasing complexity, intermediate representations: each successive layer brings higher abstraction

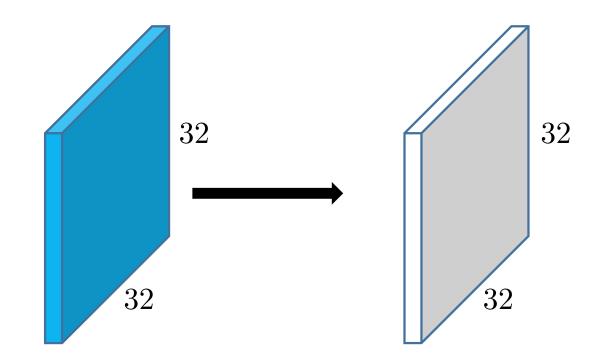
### Convolutional Neural Networks (CNNs)





http://cs231n.github.io/convolutional-networks/

- Topographical mapping in the visual cortex nearby cells represent nearby regions in the visual field
- Input: grayscale image  $32 \times 32$  pixels
- lack Output: layer of  $32 \times 32$  features
- How many parameters do we need when input and output is fully connected?

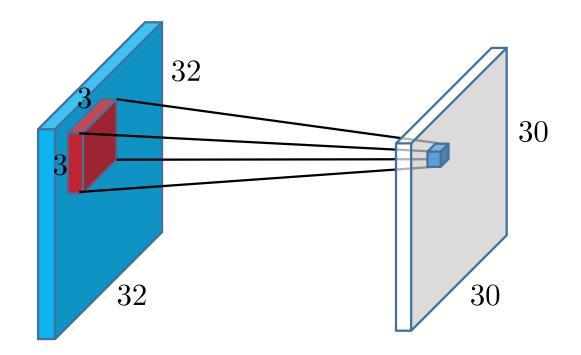


- Topographical mapping in the visual cortex nearby cells represent nearby regions in the visual field
- Input: grayscale image  $32 \times 32$  pixels
- lack Output: layer of  $32 \times 32$  features
- How many parameters do we need when input and output is fully connected?

 $32^2\times (32^2+1)\approx 1\text{M}$  outputs 32 32 32 32

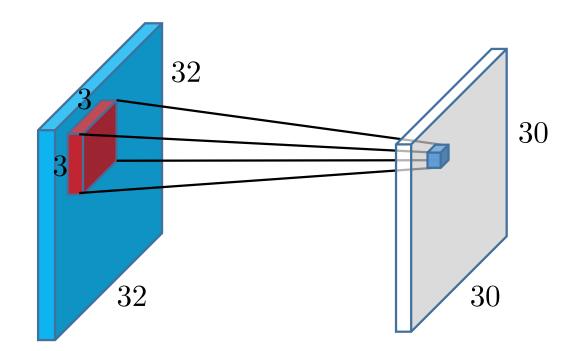
32

- Each neuron has a **receptive field** of  $3 \times 3$  pixels
- It is fully connected only to the corresponding set of 9 inputs
- How many parameters do we need now?

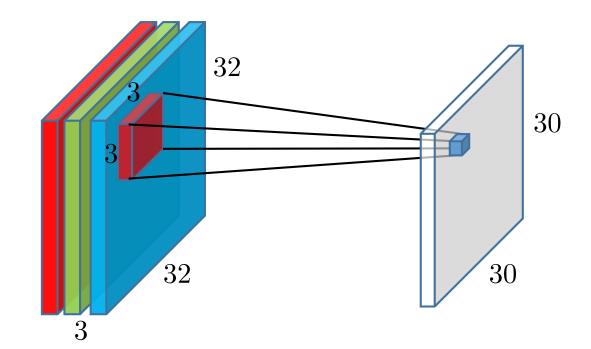


- lacktriangle Each neuron has a **receptive field** of  $3 \times 3$  pixels
- It is fully connected only to the corresponding set of 9 inputs
- How many parameters do we need now?

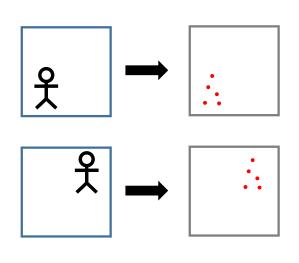
$$30^2 \times (3^2 + 1) = 9 \mathrm{k}$$
 outputs

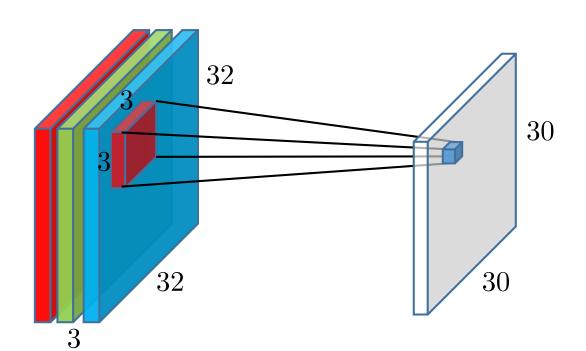


- We can have more input channels, e.g., colors
- ullet Now the input is defined by width, height and depth:  $32 \times 32 \times 3$
- $\bullet$  The number of parameters is  $30^2\times(3\times3^2+1)\approx25\text{k}$

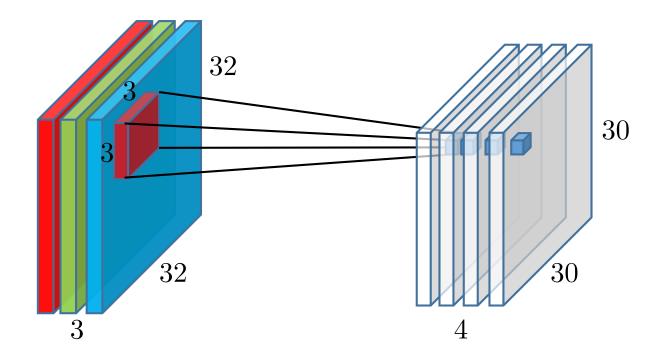


- We can further reduce the number of parameters by sharing weights
- Use the same set of weights and bias for all outputs, define a filter
- lacktriangle The number of parameters drops to  $3\times 3^2 + 1_{\rm bias} = 28$
- Translation equivariance





- Extract multiple different of features
- Use multiple filters to get more feature maps
- $\bullet$  For 4 filters we have  $\underset{\text{filters}}{4}\times(3\times3^2+1)=112$  parameters
- This is the convolutional layer
- Processes volume into volume

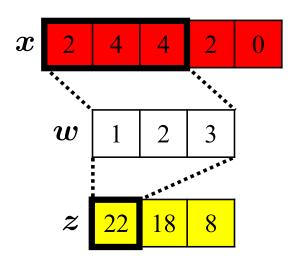


#### **Convolution**

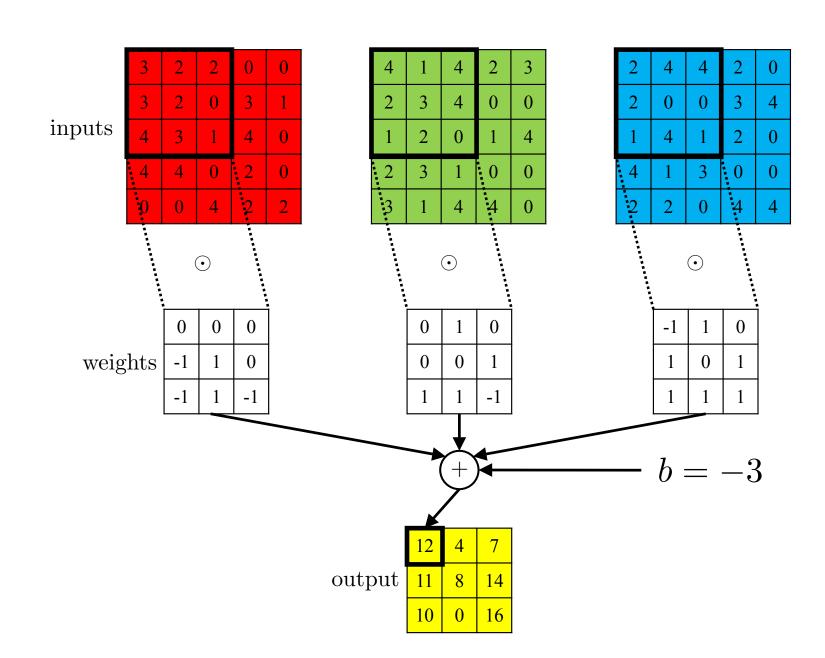
lacktriangle 1D convolution with no bias, single input channel and filter size F:

$$z_{i'} = \sum_{i=1}^F w_i x_{i'+(i-1)}$$
 correlations (similarity)  $z_{i'} = \sum_{i=1}^F ar{w}_i x_{i'-(i-F)}$  convolution

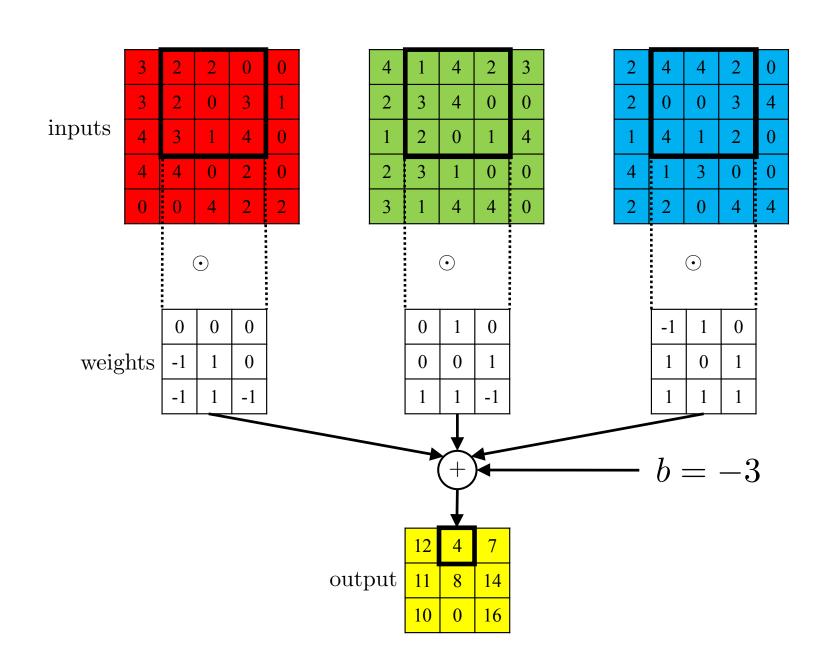
where  $\bar{\boldsymbol{w}}$  is a reverse of  $\boldsymbol{w}$  ( $\bar{w}_i = w_{F-i+1}$ ) and  $i \in \{1, \dots, N-F+1\}$  for the input size N



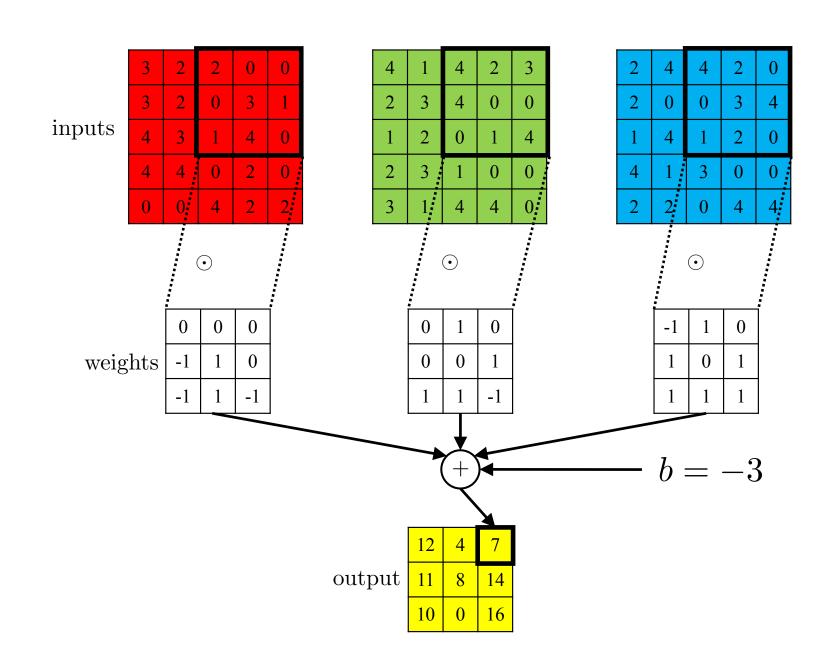




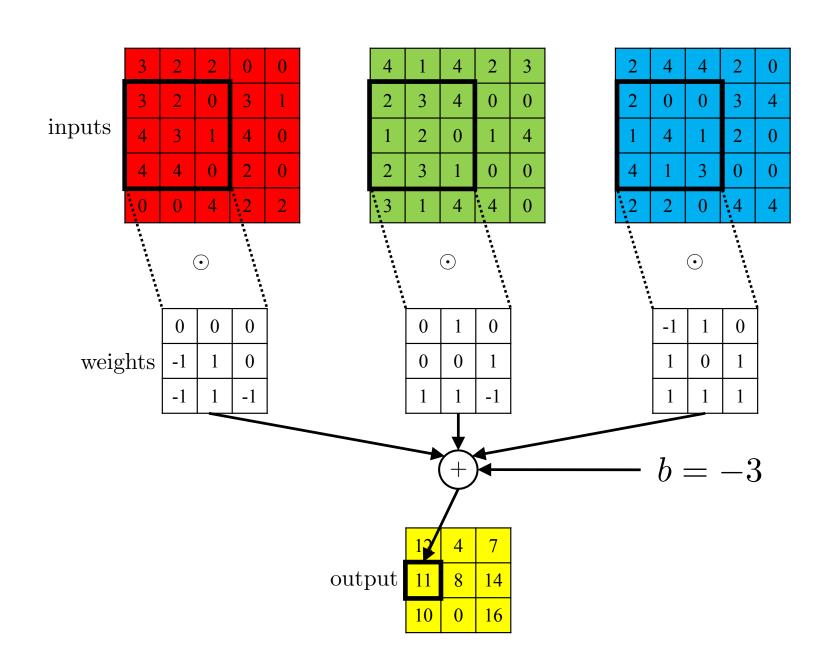






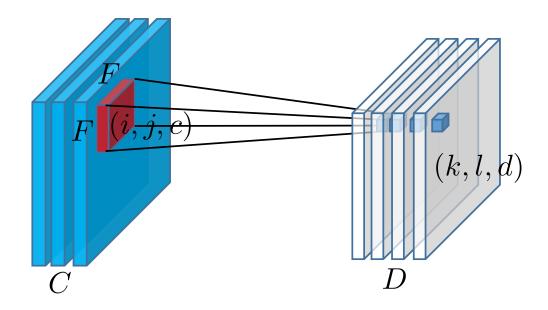






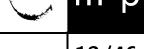
# Convolution in 2D: Forward Message

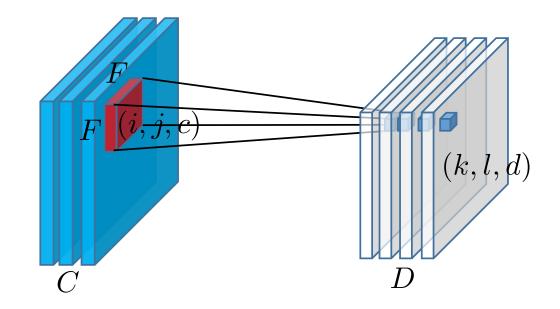




$$z_{kld} = f_{kld}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{b}) = b_d + \sum_{i=1}^{F} \sum_{j=1}^{F} \sum_{c=1}^{C} x_{k+i-1, l+j-1, c} w_{ijcd}$$

#### **Convolution in 2D: Parameter Gradient**

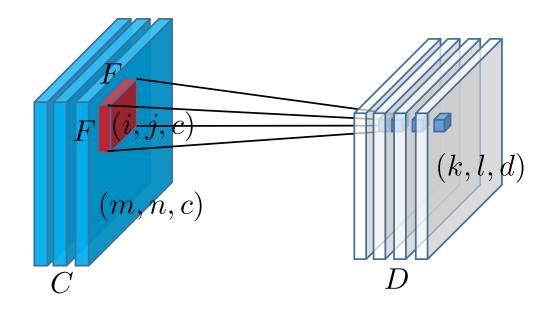




$$z_{kld} = f_{kld}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{b}) = b_d + \sum_{i=1}^{F} \sum_{j=1}^{F} \sum_{c=1}^{C} x_{k+i-1, l+j-1, c} w_{ijcd}$$

$$\frac{\partial \mathcal{L}}{\partial w_{ijcd}} = \sum_{k',l',d'} \frac{\partial \mathcal{L}}{\partial f_{k',l',d'}} \frac{\partial f_{k',l',d'}}{\partial w_{ijcd}} = \sum_{k',l',d'} \delta_{k',l',d'}^{l+1} \frac{\partial f_{k',l',d'}}{\partial w_{ijcd}} = \sum_{k',l'} \delta_{k',l',d'}^{l+1} \frac{\partial f_{k',l',d'}}{\partial w_{ijcd}} = \sum_{k',l'} \delta_{k',l',d}^{l+1} x_{k'+i-1,l'+j-1,c}$$

#### Convolution in 2D: Backward Message

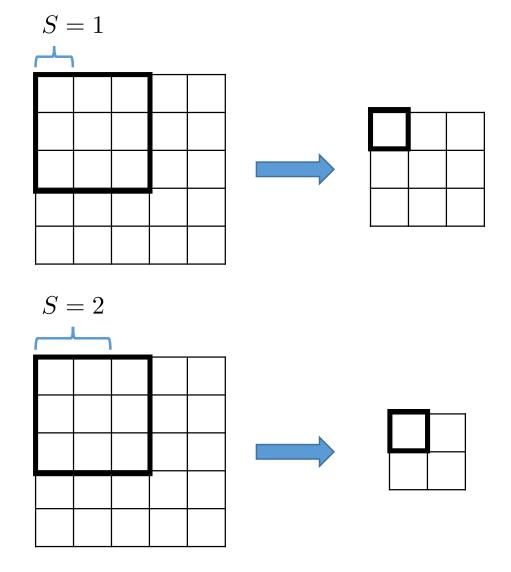


$$z_{kld} = f_{kld}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{b}) = b_d + \sum_{i=1}^{F} \sum_{j=1}^{F} \sum_{c=1}^{C} x_{k+i-1, l+j-1, c} w_{ijcd}$$

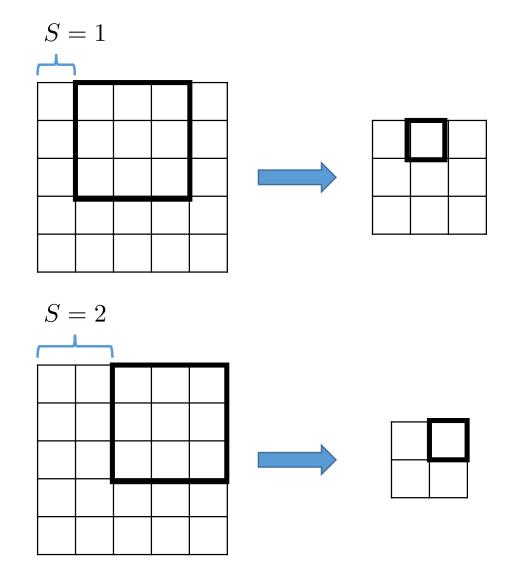
Substitute m = k + i - 1 and n = l + j - 1

$$\delta_{mnc}^{l} = \frac{\partial \mathcal{L}}{\partial x_{mnc}} = \sum_{k',l',d'} \delta_{k',l',d'}^{l+1} \frac{\partial f_{k',l',d'}}{\partial x_{mnc}}$$
$$= \sum_{k',l',d'} \delta_{k',l',d'}^{l+1} w_{m-k'+1,n-l'+1,c,d'}$$

- Stride hyper parameter, typically  $S \in \{1, 2\}$
- Higher stride produces smaller output volumes spatially



- lacktriangle Stride hyper parameter, typically  $S \in \{1,2\}$
- Higher stride produces smaller output volumes spatially



### **Zero Padding**

- Convolutional layer reduces the spatial size of the output w.r.t. the input
- For many layers this might be a problem
- This is often fixed by zero padding the input
- lacktriangle The size of the zero padding is denote P

$$P = 1, S = 1$$

| 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |
|---|---|---|---|---|---|--|--|--|--|
| 0 |   |   |   |   | 0 |  |  |  |  |
| 0 |   |   |   |   | 0 |  |  |  |  |
| 0 |   |   |   |   | 0 |  |  |  |  |
| 0 |   |   |   |   | 0 |  |  |  |  |
| 0 | 0 | 0 | 0 | 0 | 0 |  |  |  |  |

- Input volume:  $W_{\mathsf{input}} \times H_{\mathsf{input}} \times C$
- Output volume:  $W_{\text{output}} \times H_{\text{output}} \times D$
- lacktriangle Having D filters:
  - ullet receptive field of  $F \times F$  units,
  - $\bullet$  stride S
  - ullet zero padding P

$$W_{\text{output}} = (W_{\text{input}} - F + 2P)/S + 1$$
$$H_{\text{output}} = (H_{\text{input}} - F + 2P)/S + 1$$

- lacktriangle Needs  $F^2CD$  weights and D biases
- The number of activations and  $\delta$ s to store:  $W_{\text{output}} \times H_{\text{output}} \times D$

### **Convolution Applied to an Image**



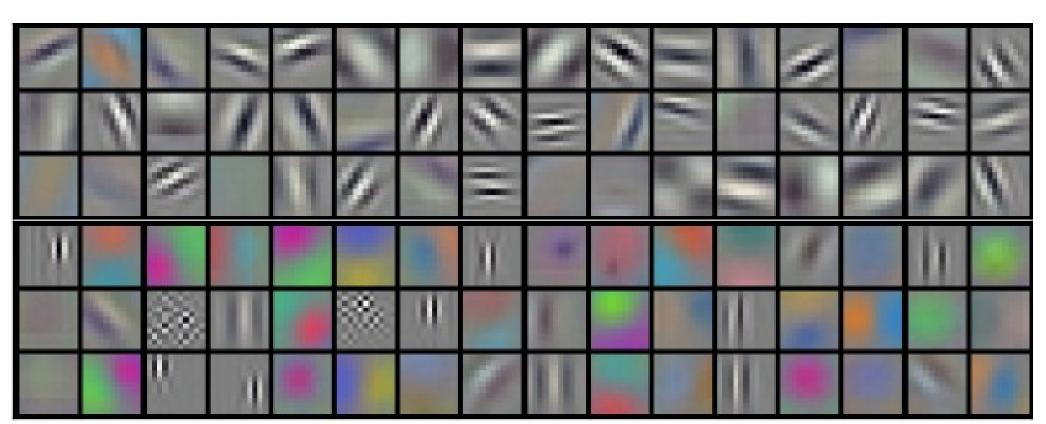
| Identity       | $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$         | Sharpen                                                    | $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$          |  |
|----------------|-----------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------------|--|
|                | $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$       | Box blur<br>(normalized)  Gaussian blur<br>(approximation) | $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$  |  |
| Edge detection | $\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$        |                                                            | 9 [1 1 1]                                                                        |  |
|                | $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$ |                                                            | $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ |  |

https://en.wikipedia.org/wiki/Kernel\_(image\_processing)

### **Convolution: Weights Visualization**



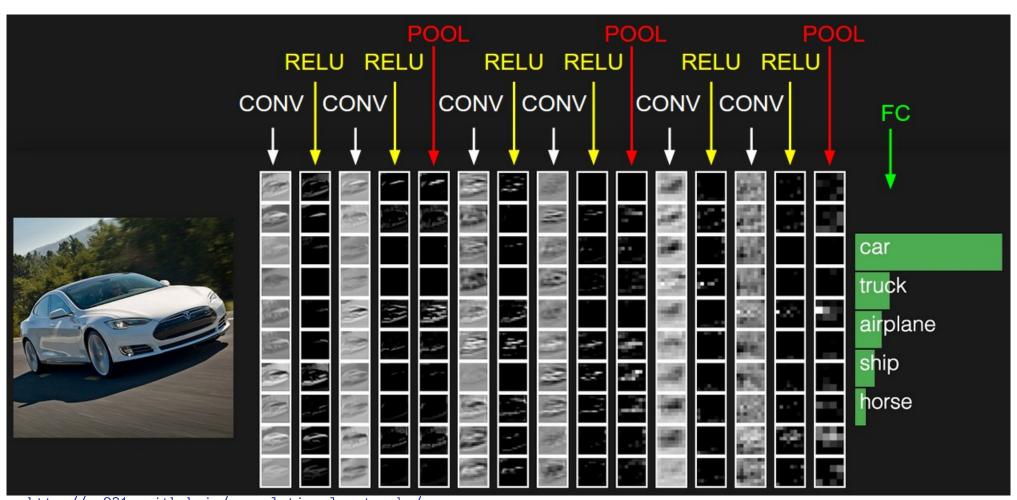
Filters of the first layer



Krizhevsky, Sutskever, Hinton: ImageNet Classification with Deep Convolutional Neural Networks, 2012

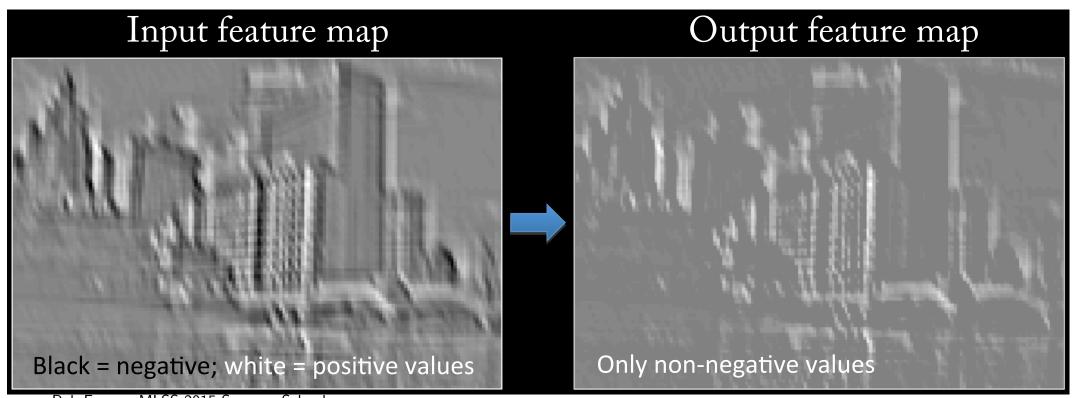
#### **Convolution: Feature Map Visualization**





http://cs231n.github.io/convolutional-networks/

- In most cases a nonlinearity (sigmoid, tanh, ReLU) is applied to the outputs of the convolutional layer
- Example: ReLU units



Rob Fergus: MLSS 2015 Summer School

- lacktriangle Reduces spatial resolution ightarrow less parameters ightarrow helps with overfitting
- Introduces translation invariance
- Depth is not affected

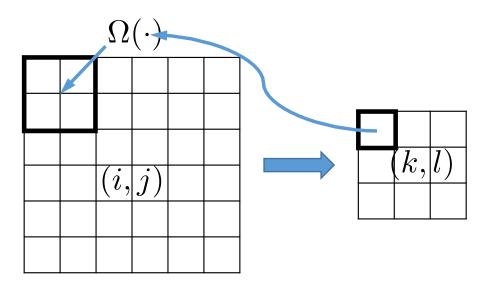
| F = 2, S = 2 |   |   |   |   |   |  |   |   |                  |  |  |  |
|--------------|---|---|---|---|---|--|---|---|------------------|--|--|--|
| 2            | 2 | 0 | 4 | 3 | 4 |  |   |   |                  |  |  |  |
| 0            | 0 | 5 | 0 | 4 | 1 |  | 2 | 5 |                  |  |  |  |
| 4            | 5 | 2 | 5 | 1 | 4 |  | 2 |   | <del>4</del><br> |  |  |  |
| 5            | 2 | 1 | 0 | 2 | 1 |  | 5 | 5 |                  |  |  |  |
| 2            | 3 | 3 | 3 | 5 | 3 |  | 3 | 4 | 5                |  |  |  |
| 0            | 3 | 0 | 4 | 0 | 1 |  |   |   |                  |  |  |  |

### **Max Pooling Gradient**

- No changes to the depth
- Forward message:  $z_{kl} = f_{kl}(\boldsymbol{x}) = \max_{(i,j) \in \Omega(k,l)} x_{ij}$
- Backward message:

$$\delta_{ij}^{l} = \sum_{k',l'} \delta_{k'l'}^{l+1} \frac{\partial f_{k'l'}}{\partial x_{ij}} = \sum_{k',l'} \delta_{k'l'}^{l+1} \mathbb{I} \left\{ (i,j) = \underset{(i',j') \in \Omega(k',l')}{\operatorname{argmax}} x_{i'j'} \right\}$$

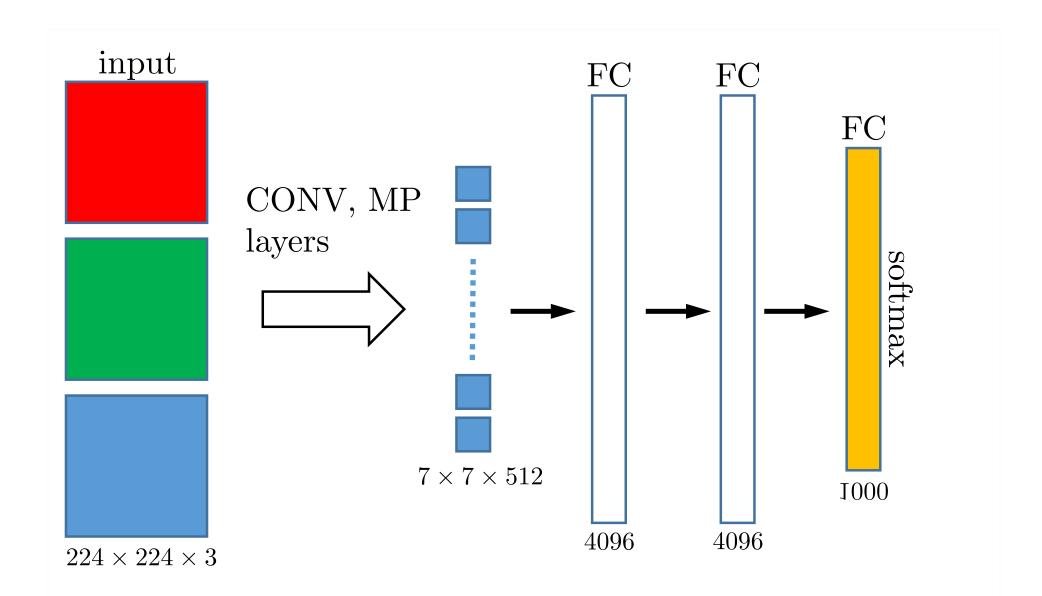
Backward message propagates only for the selected max unit



- lackbox Convolutional layer can be simply transformed to a Fully-connected layer  $\rightarrow$  sparse weight matrix
- ♦ The other direction is also possible: FC layer of D units following a  $F \times F \times C$  convolutional layer can be replaced by a  $1 \times 1 \times D$  convolutional layer using  $F \times F$  filters (P = 0, S = 1)

# Fully-Connected Layer to Convolutional Example

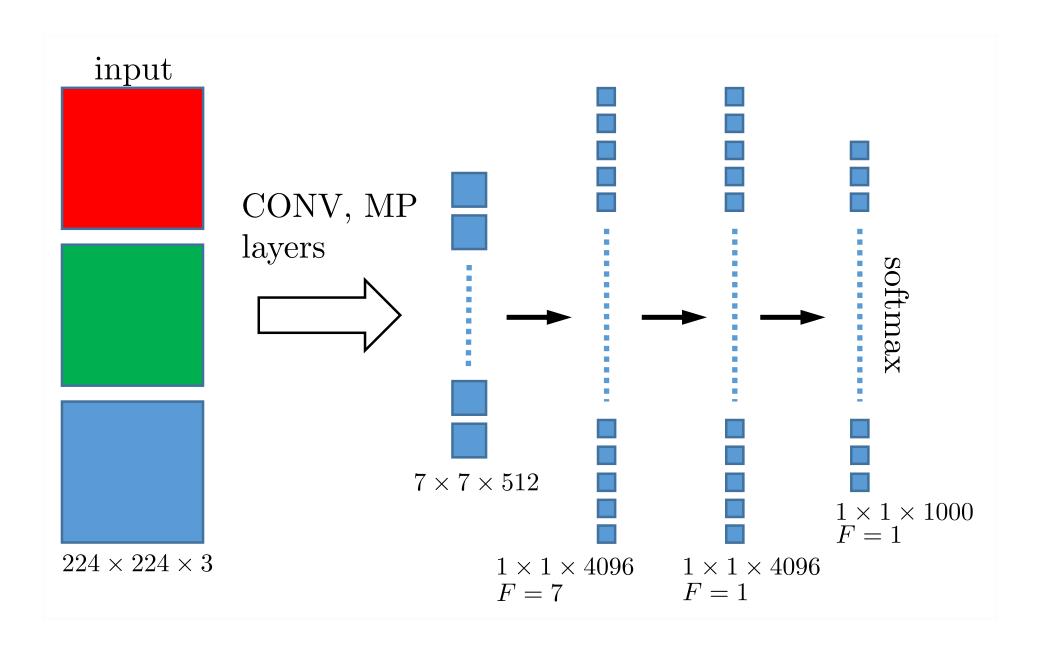




### Fully-Connected Layer to Convolutional Example



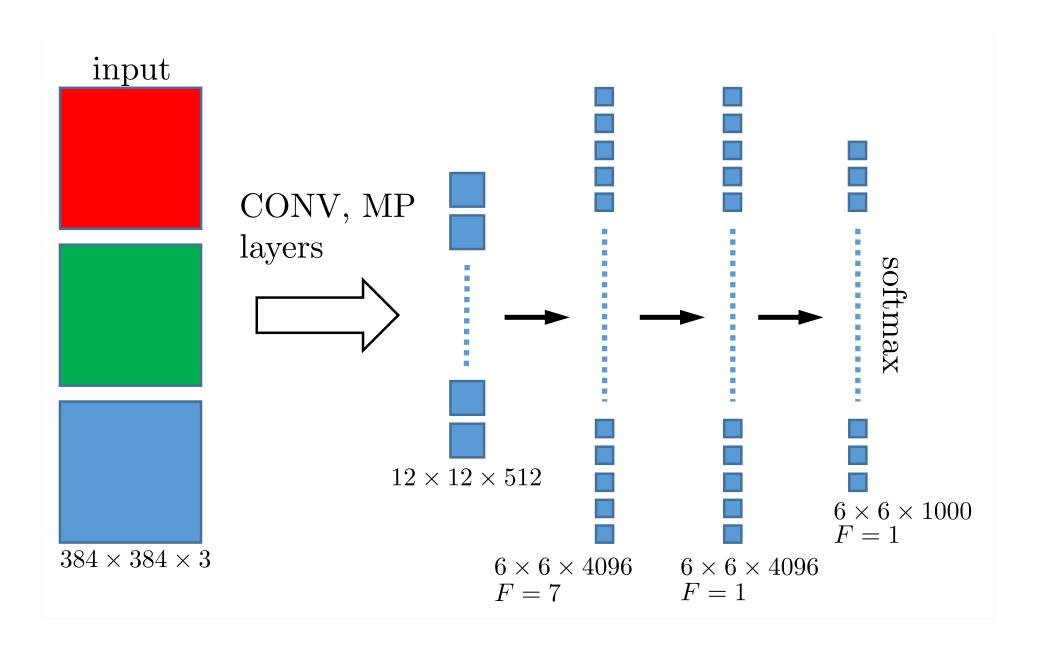
25/46



### Fully-Connected Layer to Convolutional Example



25/46

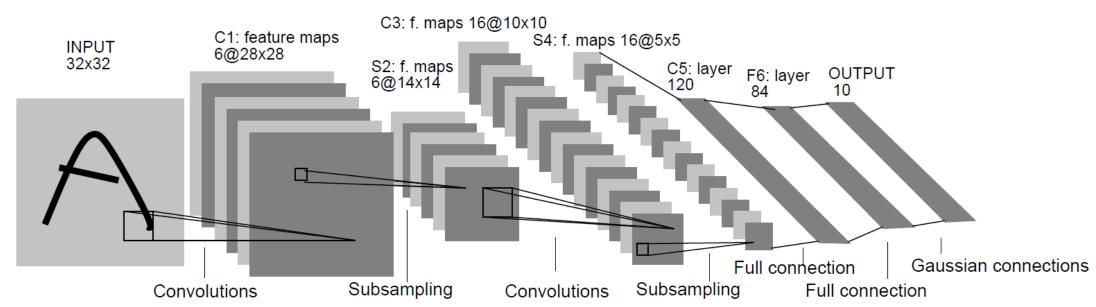


26/46

- Use zero padding to preserve the spatial resolution
- Reduce the resolution only by means of max pooling
- Prefer image size with factorization containing higher power of 2 for pooling with F=2 (e.g.,  $224=2^5\times 7$  for ImageNet networks)
- Set the number of filters to powers of 2 (optimization)
- Read Andrej Karpathy's blog and see his course on CNNs http://cs231n.stanford.edu/

### LeNet-5 (1998)

- Yann LeCun
- CNN for written character recognition dataset MNIST
- $\bullet$  Training set 60,000, testing set 10,000 examples



LeCun et al.: Gradient-based learning applied to document recognition, 1998

#### **Errors by LeNet-5**

- m
  - 28/46

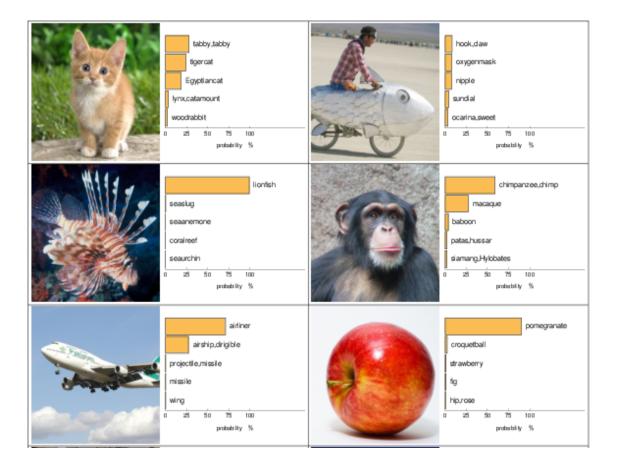
- $\bullet$  82 errors (current best 21)
- lacktriangle Human error expected to be between 20 to 30



LeCun et al.: Gradient-based learning applied to document recognition, 1998

## **ImageNet Dataset**

- Dataset of high-resolution color images: 15M training examples, 22k classes
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC) uses subset of the ImageNet: 1.3M training, 50k validation, 100k testing samples, 1000 classes







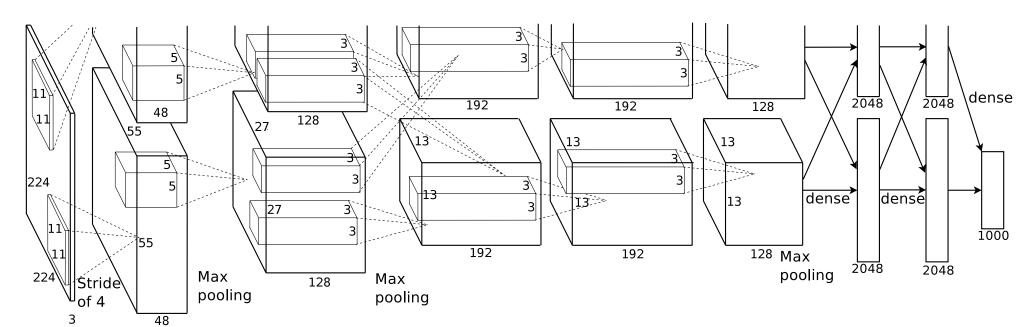
(a) Siberian husky

(b) Eskimo dog

Szegedy et al.: Going deeper with convolutions, 2014

#### AlexNet 2012

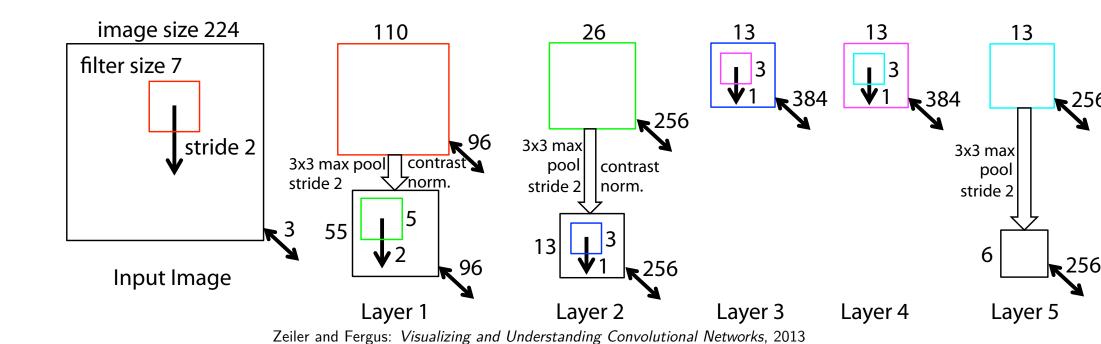
- Two separate streams for 2 GPUs, 60M parameters
- ullet Data augmentation (increasing dataset size):  $224 \times 224$  patches (+ mirrored) of  $256 \times 256$  original images, altering RGB intensities
- Uses ReLU and dropout
- ullet Top five error 18.2% for the basic net decreased to 15.4% for an ensemble of 7 CNNs, pre-CNN best was 25.6%



Krizhevsky et al.: ImageNet Classification with Deep Convolutional Neural Networks, 2012

### **ZFNet 2013**

- Smaller filters for the first convolutional layer CONV1:  $7 \times 7$ , S=2 instead of  $11 \times 11$ , S=4
- CONV3-5: more depth
- $\bullet$  Top five error 16.5%, 14.8% for an ensemble of 6 CNN



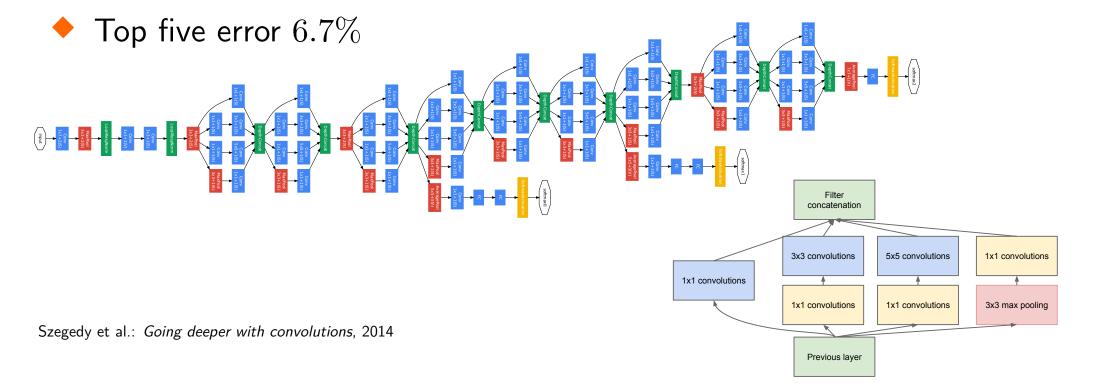
32/46

- Simonyan, Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014
- Simplification: lowering filter spatial resolution ( $F=3,\ S=1,\ P=1$ ), increasing depth
- lacktriangle A sequence of  $3 \times 3$  filters can emulate a single large one
- $\bullet$  Top five error 7.3%, 6.8% for an ensemble of 2 CNNs



# GoogLeNet 2014

- Use of inception layers instead of pure convolutional ones
- Fully connected output layer preceded by the global average pooling: the last layer before average pooling has  $7 \times 7 \times 1024$  it is spatially reduced to  $1 \times 1 \times 1024$
- Only 5M parameters (60M AlexNet)
- Auxiliary classifiers: their losses are added with discount weight



#### ResNet 2015

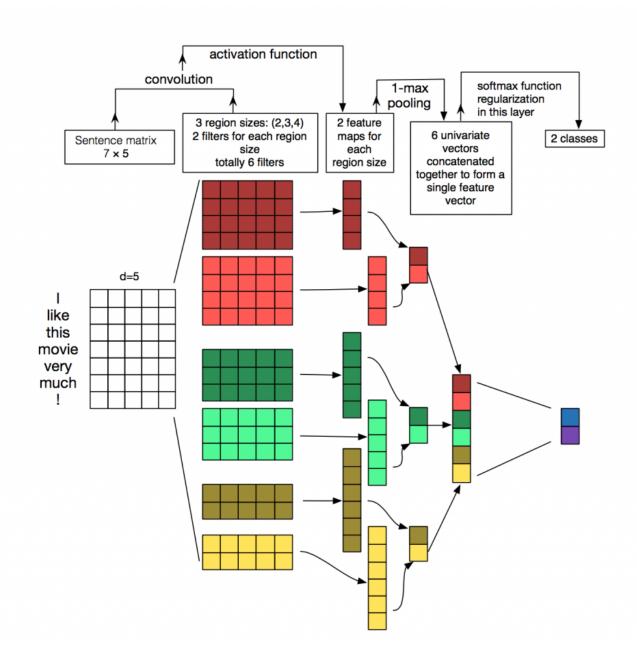


- He et al.: Deep Residual Learning for Image Recognition, 2015
- ◆ 152 layers (2-3 weeks on 8 GPUs)
- Using skip connections
- Batch normalization instead of dropout
- lacktriangle Top five error 3.6% (human performance 5.1% expected)

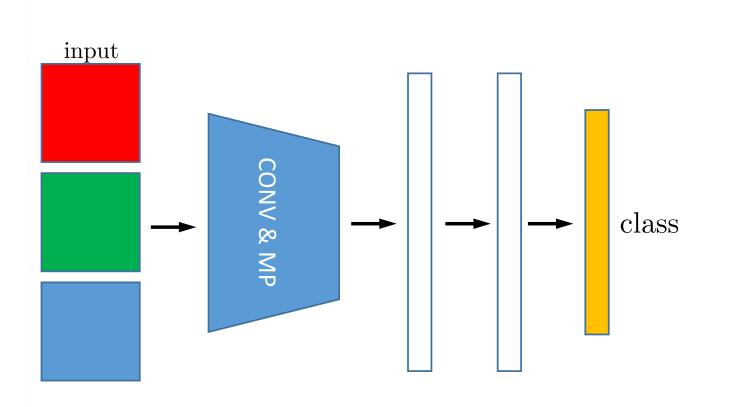
# **CNNs** for Natural Language Processing (NLP)

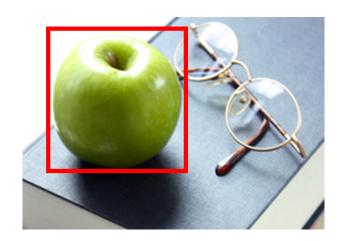


35/46

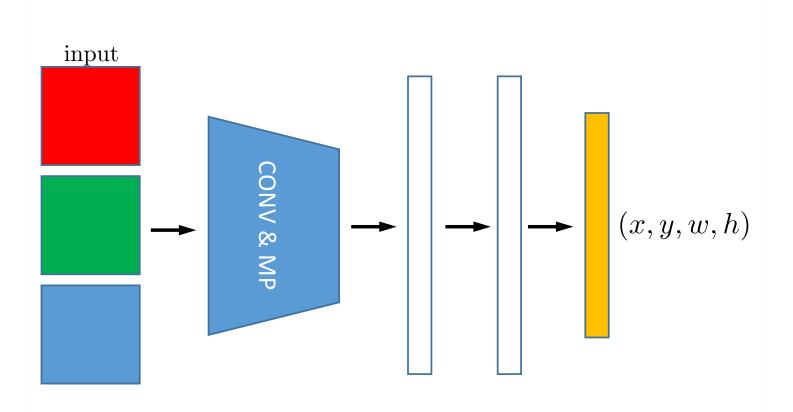


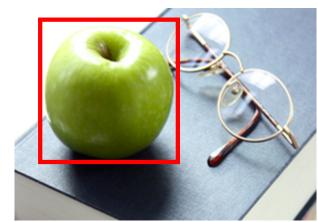
- Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization



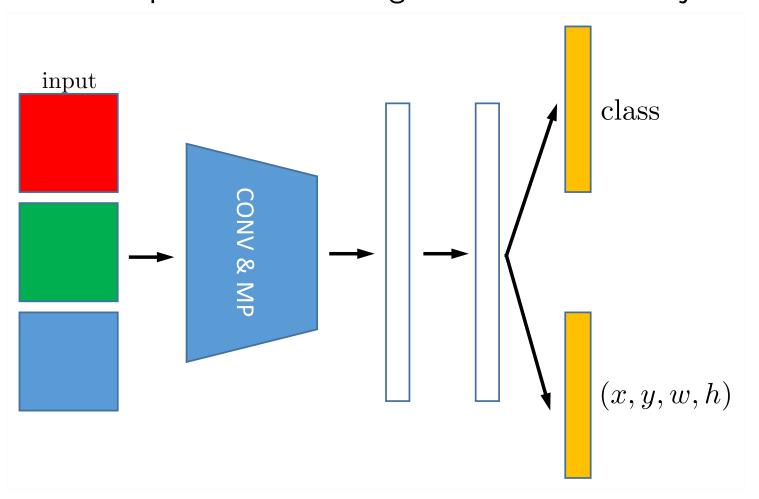


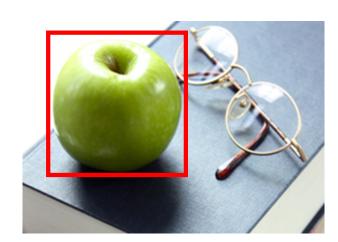
- ◆ Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization



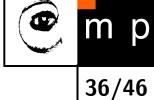


- ◆ Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization





# **Transfer Learning**



- ◆ Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization
- You can:
  - cut the original network at various layers,
  - fix or not the weights of the original network or use different learning rates
  - use different type of model for the head, e.g., linear SVM

### **Parameter Initialization**

37/46

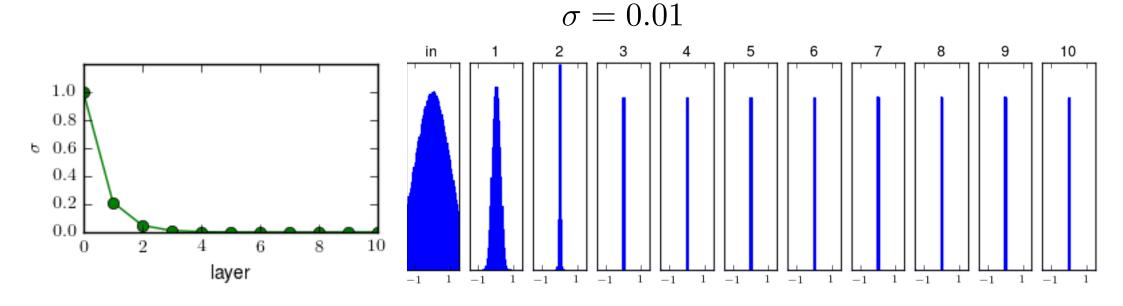
Is it a good idea to set all weights to zero?

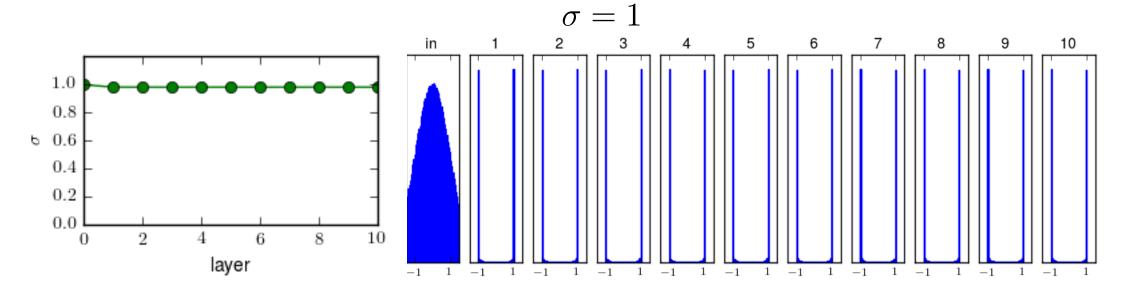
#### **Parameter Initialization**



- Is it a good idea to set all weights to zero?
- ullet No. All neurons would behave the same: the same  $\delta$ s are backpropagated. We need to break the symmetry
- Use small numbers, e.g., sample from a Gaussian distribution with zero mean:
  - works well for shallow networks,
  - for deep networks it is not a good idea

- ullet MLP, ten anh layers, 500 units each. Each input fed with  $\mathcal{N}(0,1)$
- Weights initialized to  $\mathcal{N}(0, \sigma^2)$





- Glorot and Bengio: Understanding the difficulty of training deep feedforward neural networks, 2010
- For the linear neuron  $s = \sum_i w_i x_i$ , let  $w_i$  and  $x_i$  be independent random variables,  $w_i$  and  $x_i$  are i.i.d.,  $E(x_i) = E(w_i) = 0$ :

$$Var(s) = Var\left(\sum_{i} w_{i}x_{i}\right) = \sum_{i} Var(w_{i}x_{i}) =$$

$$= \sum_{i} \left[\mathbb{E}(w_{i})\right]^{2} Var(x_{i}) + \left[\mathbb{E}(x_{i})\right]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i}) =$$

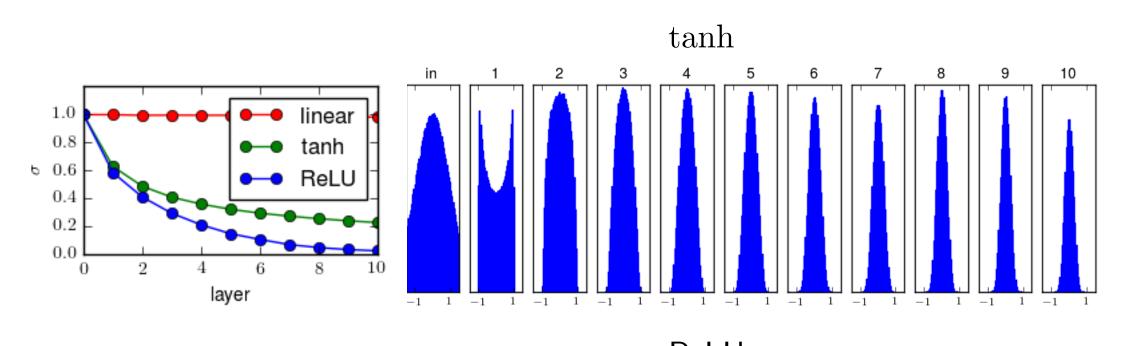
$$= \sum_{i} Var(x_{i}) Var(w_{i}) = n_{\mathsf{in}} Var(x) Var(w)$$

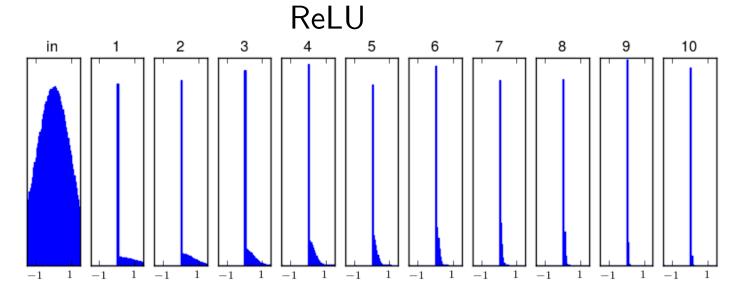
- We want Var(s) = Var(x), so choose  $Var(w) = \frac{1}{n_{in}}$
- Similar analysis for the backpropagated signal:  $Var(w) = \frac{2}{n_{in} + n_{out}}$
- Standardized inputs
- ♦ Works well for tanh as it is linear near zero

# **Xavier Initialization (contd.)**

m p
40/46

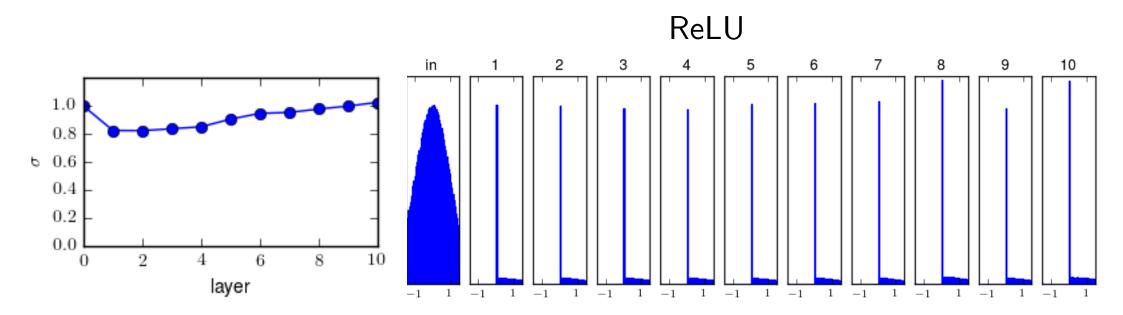
Xavier initialization does not work for ReLU





#### He Initialization

- He et al.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015
- Suggested ReLU initialization
- Uses  $Var(w) = \frac{2}{n_{in}}$



#### **Other Methods**

- Recent data-driven techniques iteratively scaling weights in the network
- Batch normalization:
  - specialized layer which sets unit variance,
  - computes mean and variance estimates over batch,
  - normalizes but allow linear transformation (parameters) of the distribution to better deal with nonlinearities

### **Autoencoders**



- lacktriangle Task: train the network for identity (same targets as inputs  $\mathbf{Y} = \mathbf{X})$
- The number of hidden units is typically less than the number of inputs/outputs
- Compresses the input space
- lacktriangle May have tied weights  $(\mathbf{W}' = \mathbf{W}^{\mathbf{T}})$
- Works as PCA for linear layers and squared loss: Bourlard and Kamp: Auto-Association by Multilayer Perceptrons and Singular Value Decomposition, 1988

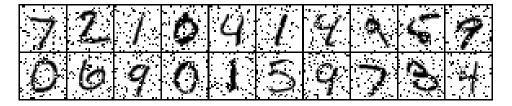
## **Denoising Autoencoders**

Reconstruction from corrupted inputs

## original

| 7 | 2 | / | 0 | 4 | 1 | Ч | ٩ | 1,8 | 9 |
|---|---|---|---|---|---|---|---|-----|---|
| 0 | S | 9 | 0 | j | U | 9 | 7 | Ф   | 4 |

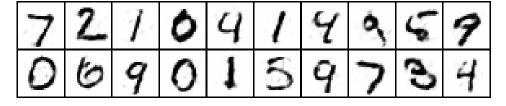
### noise 5%



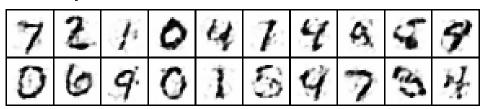
### noise 10%



# ${\rm output}\ 5\%$

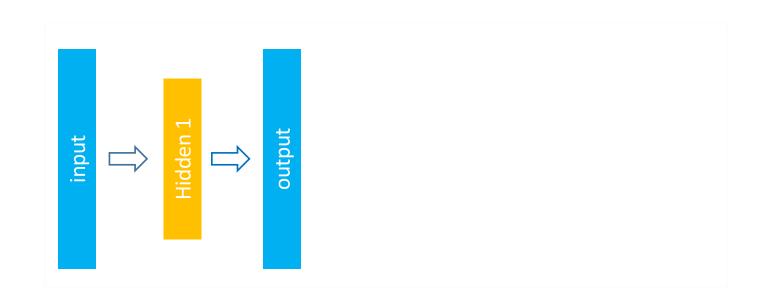


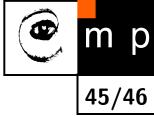
# output 10%



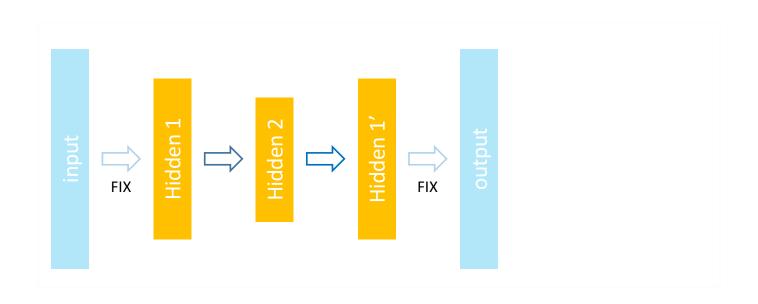
m p

1. Train the first layer as a shallow autoencoder



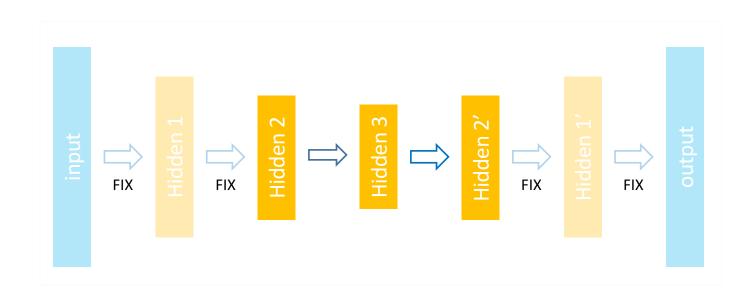


- 1. Train the first layer as a shallow autoencoder
- 2. Use its hidden units' activations to train another shallow autoencoder



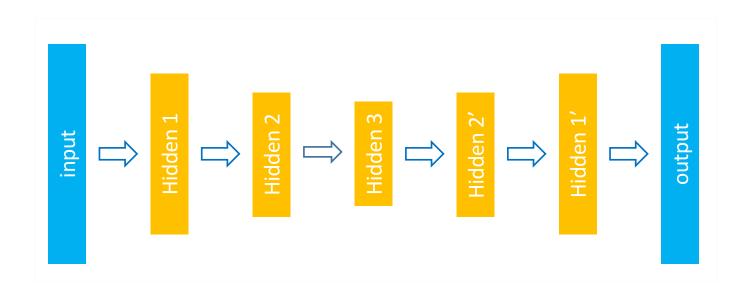


- 1. Train the first layer as a shallow autoencoder
- 2. Use its hidden units' activations to train another shallow autoencoder
- 3. Repeat (2) until the desired number of layers is reached





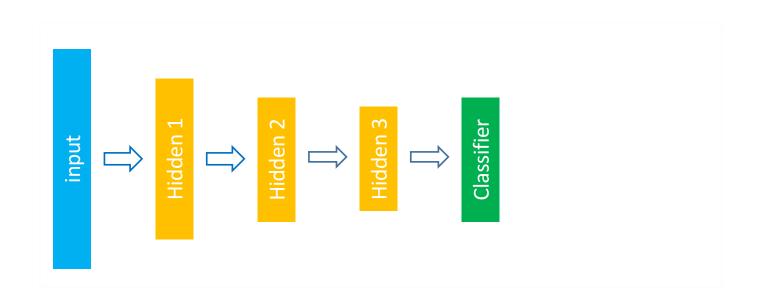
- 1. Train the first layer as a shallow autoencoder
- 2. Use its hidden units' activations to train another shallow autoencoder
- 3. Repeat (2) until the desired number of layers is reached
- 4. Fine-tune all parameters

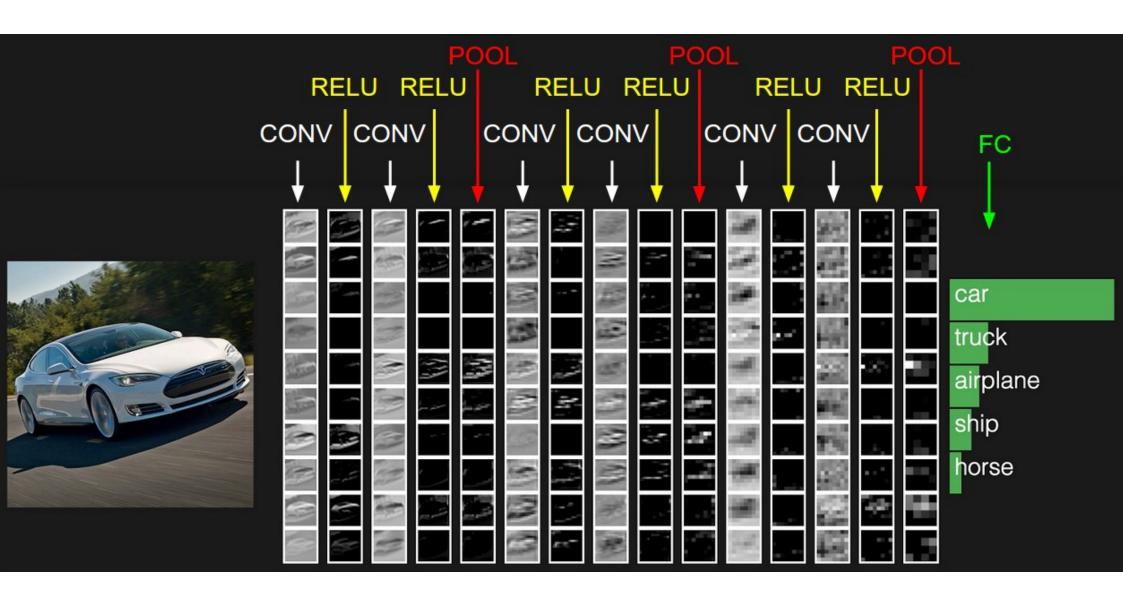


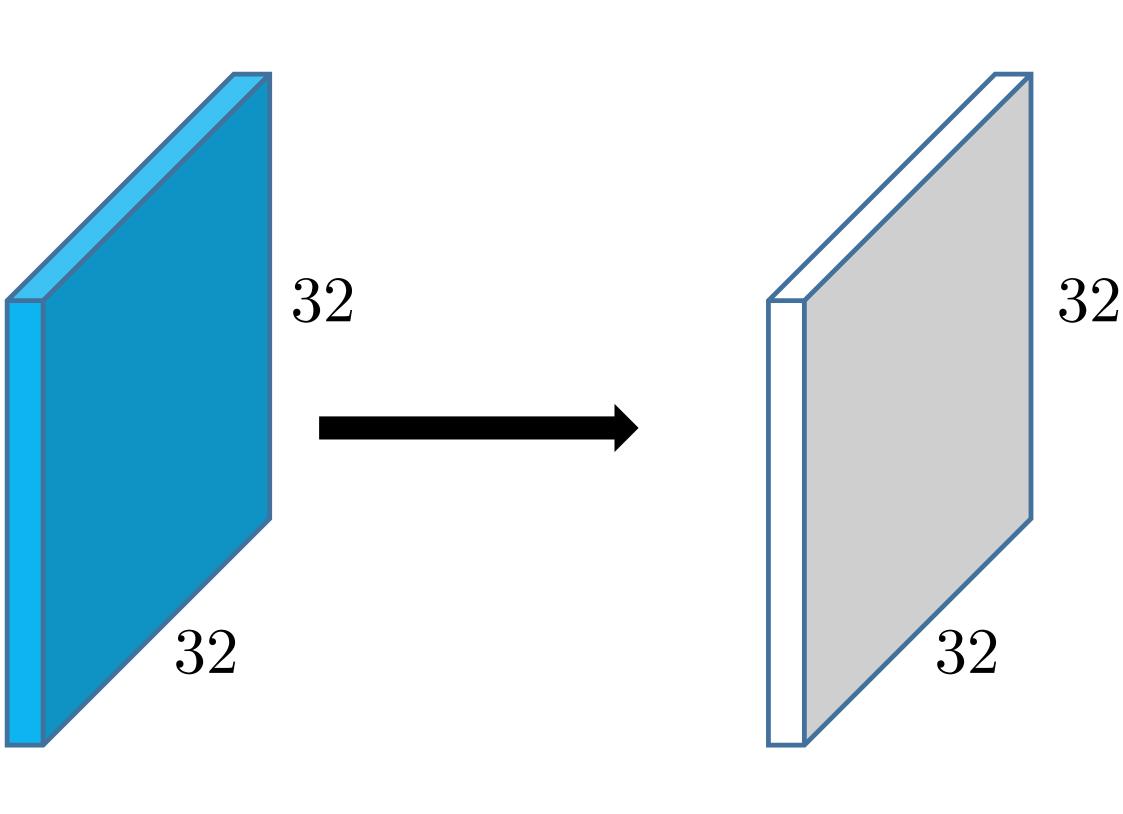
# **Unsupervised Pre-training**

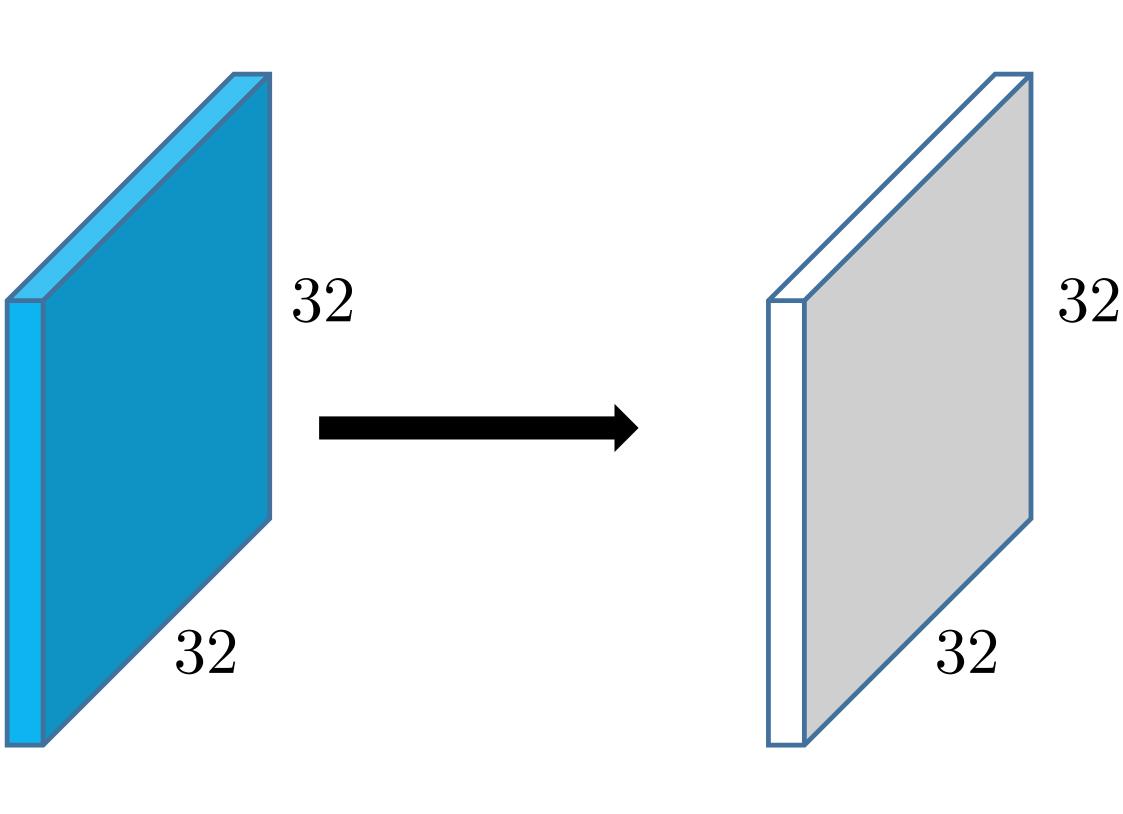


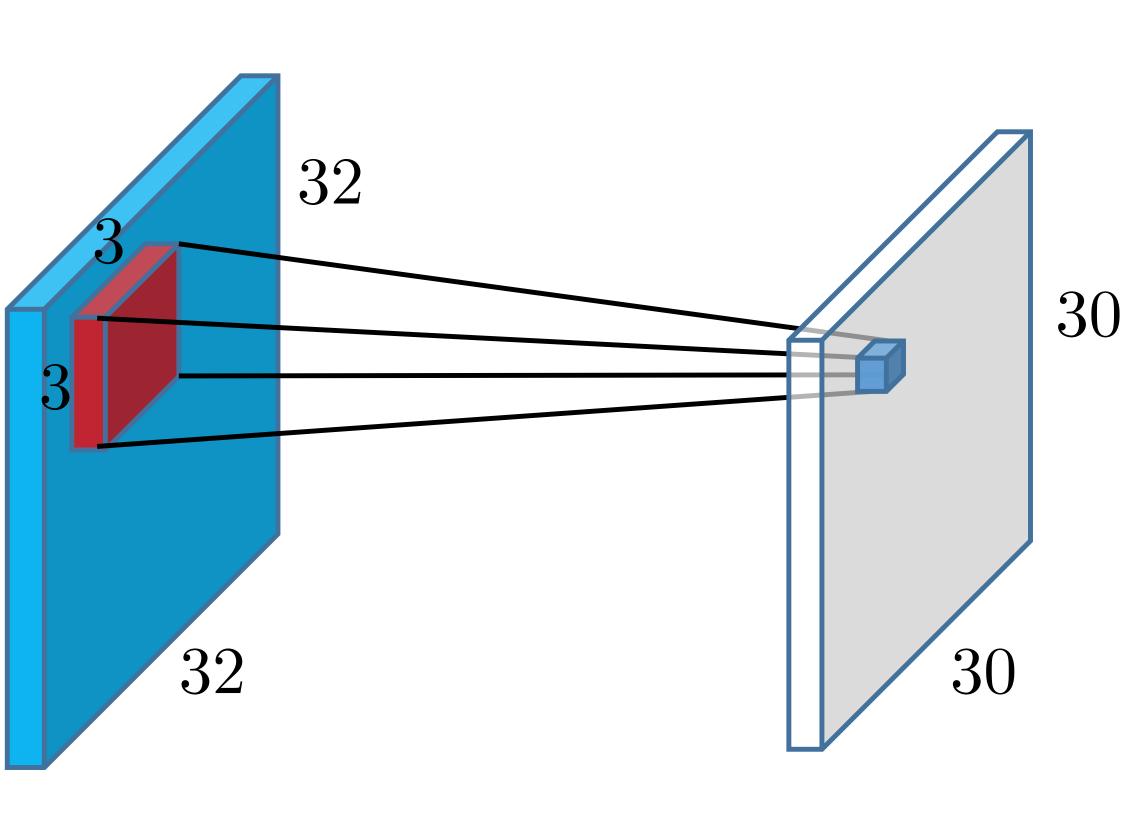
- Use the encoder part of a stacked autoencoder for weight initialization of a different network
- Semi-supervised setup

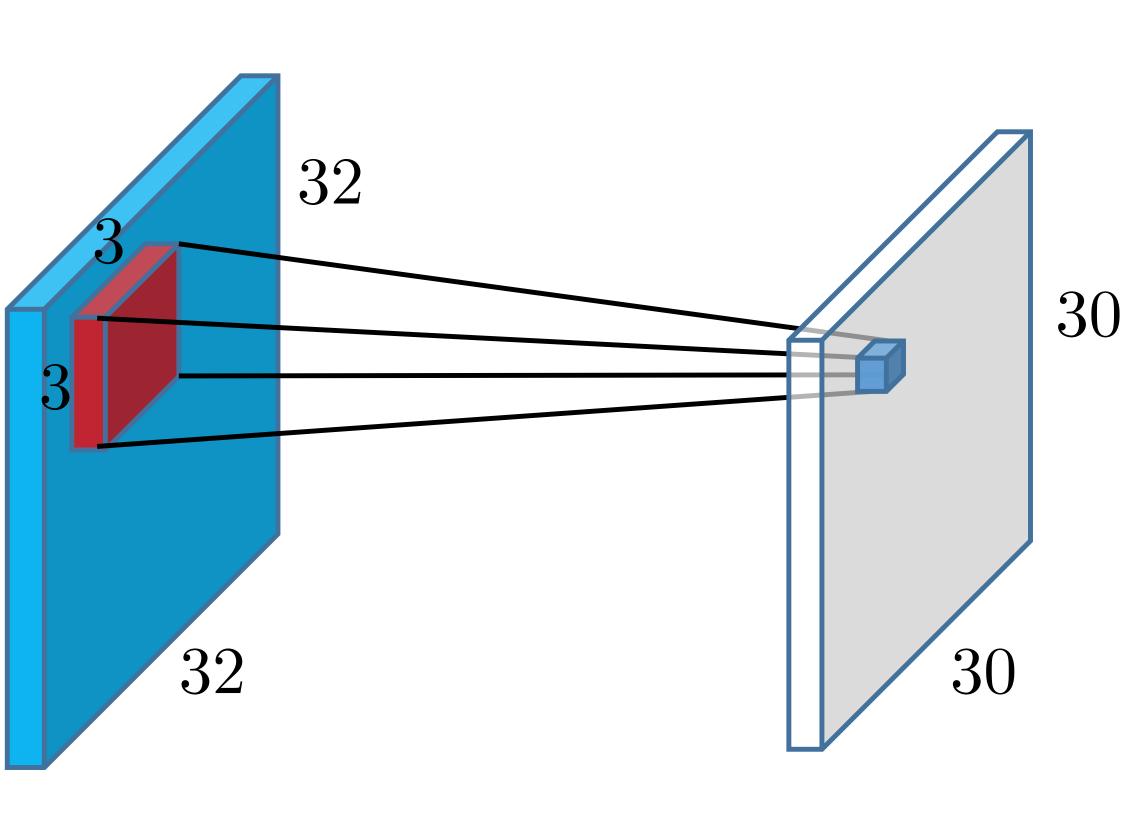


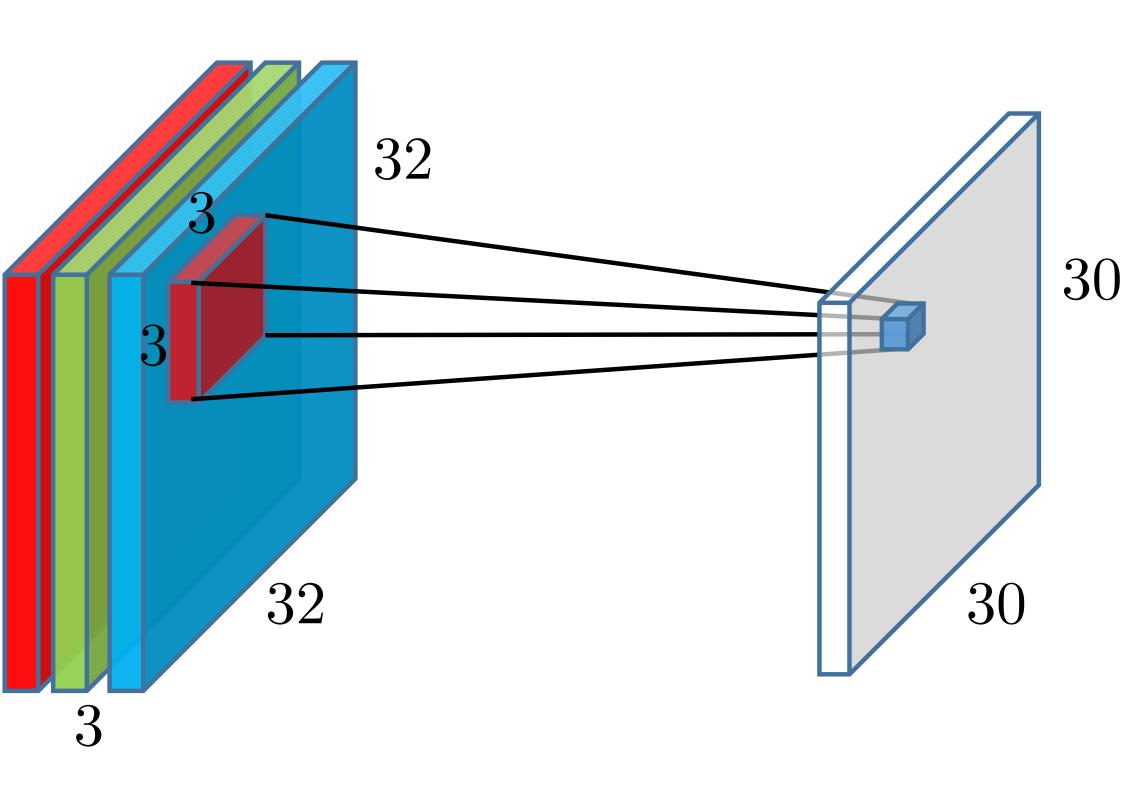


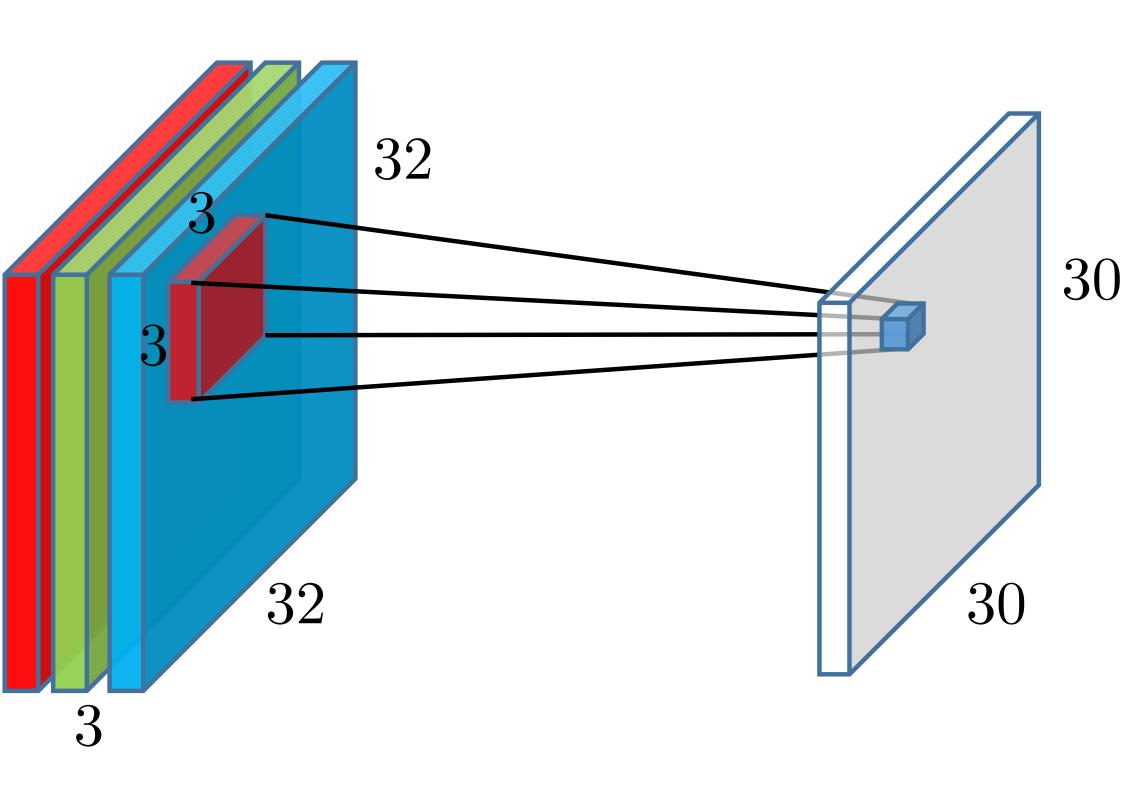


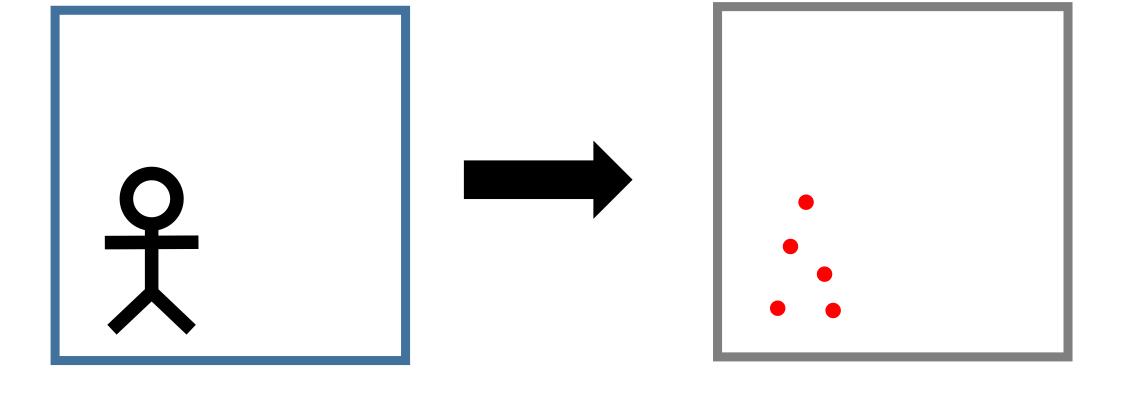


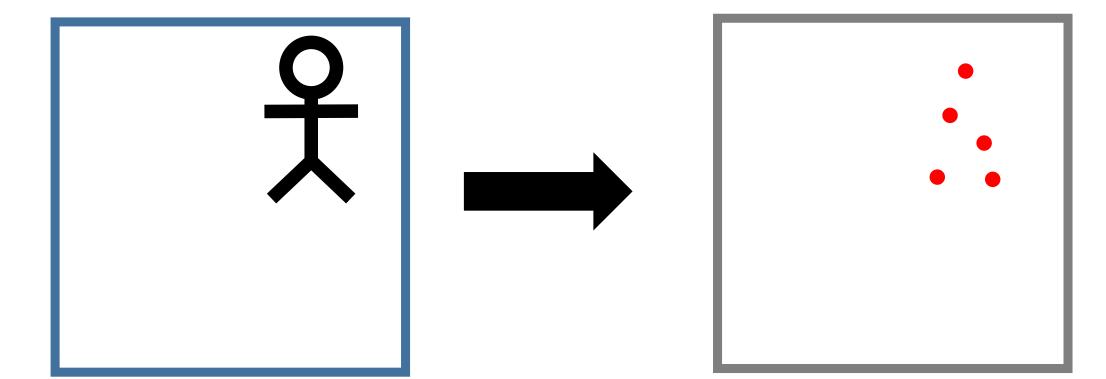


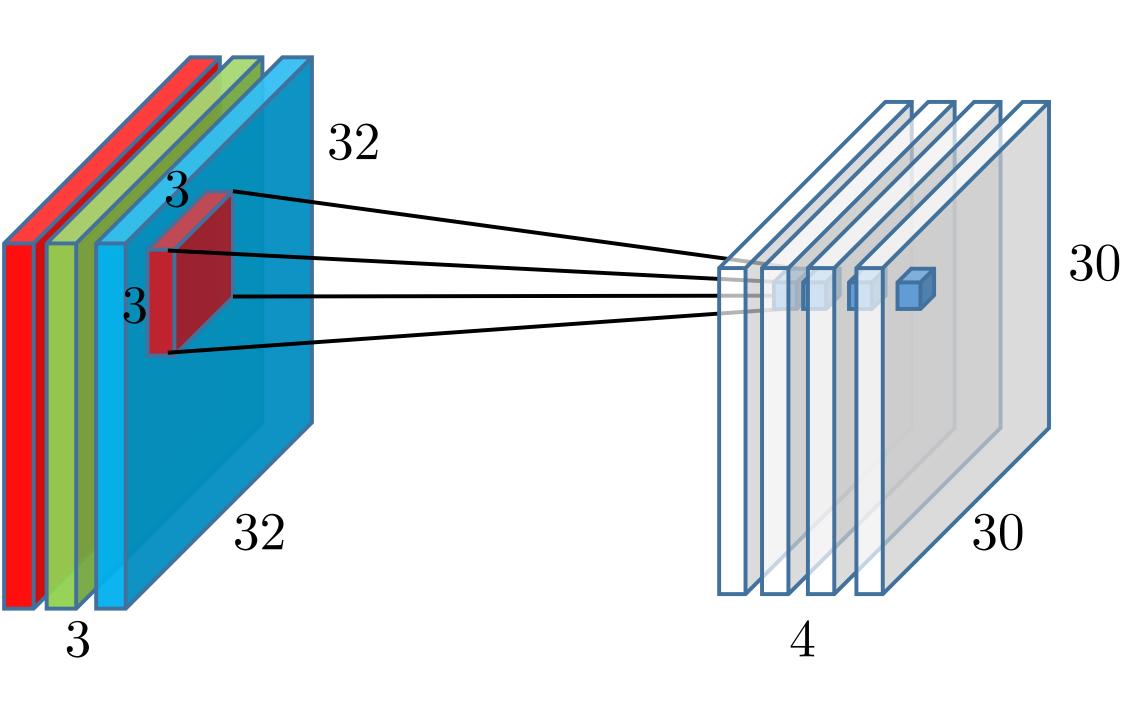


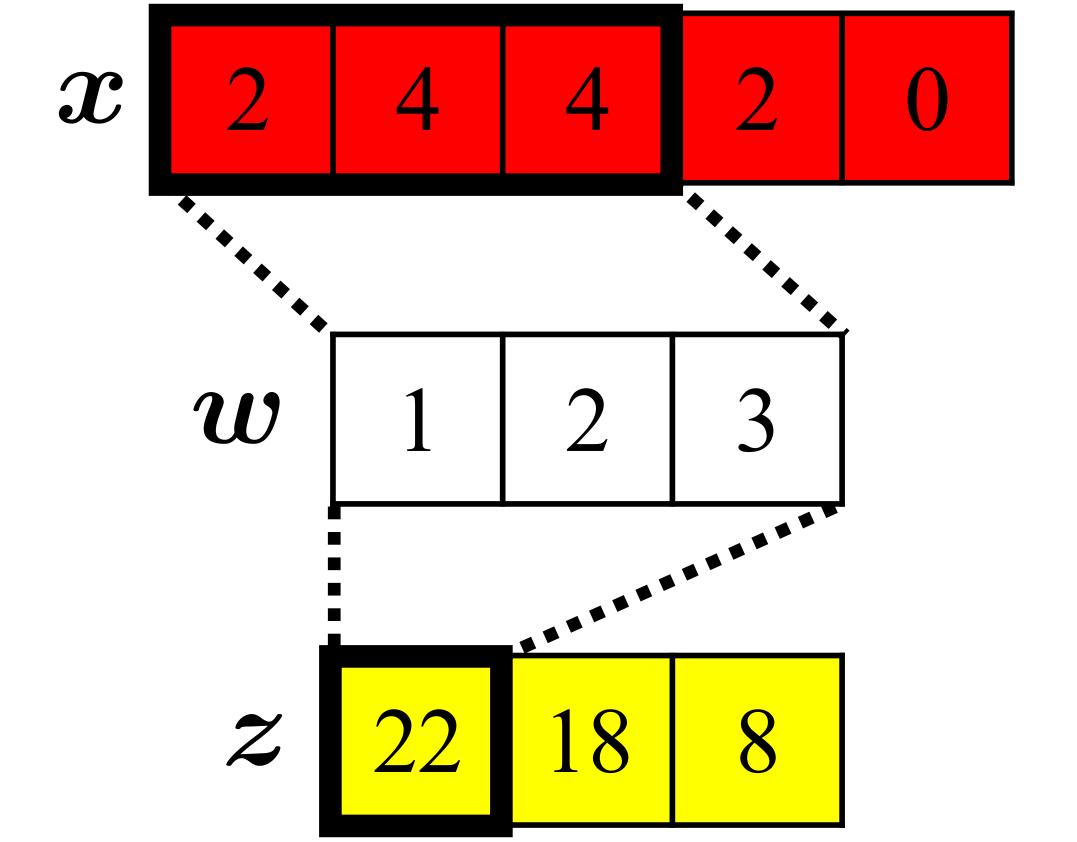


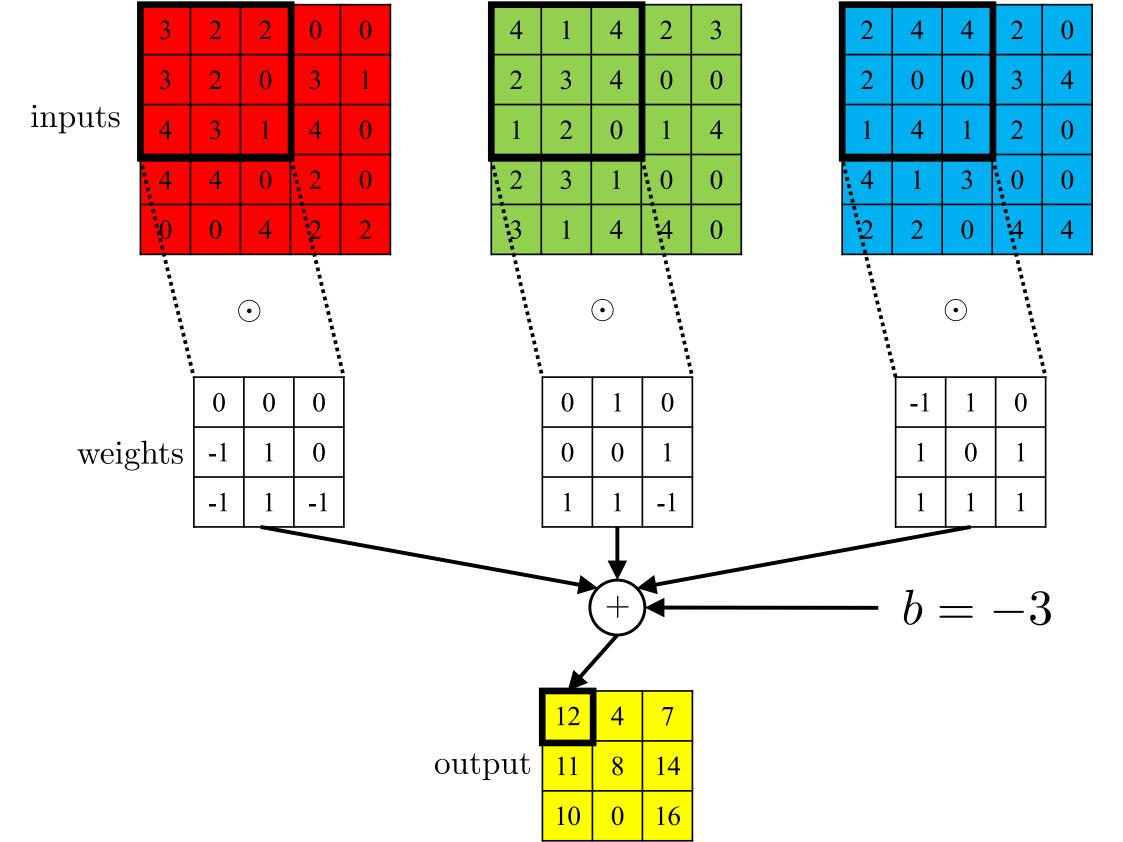


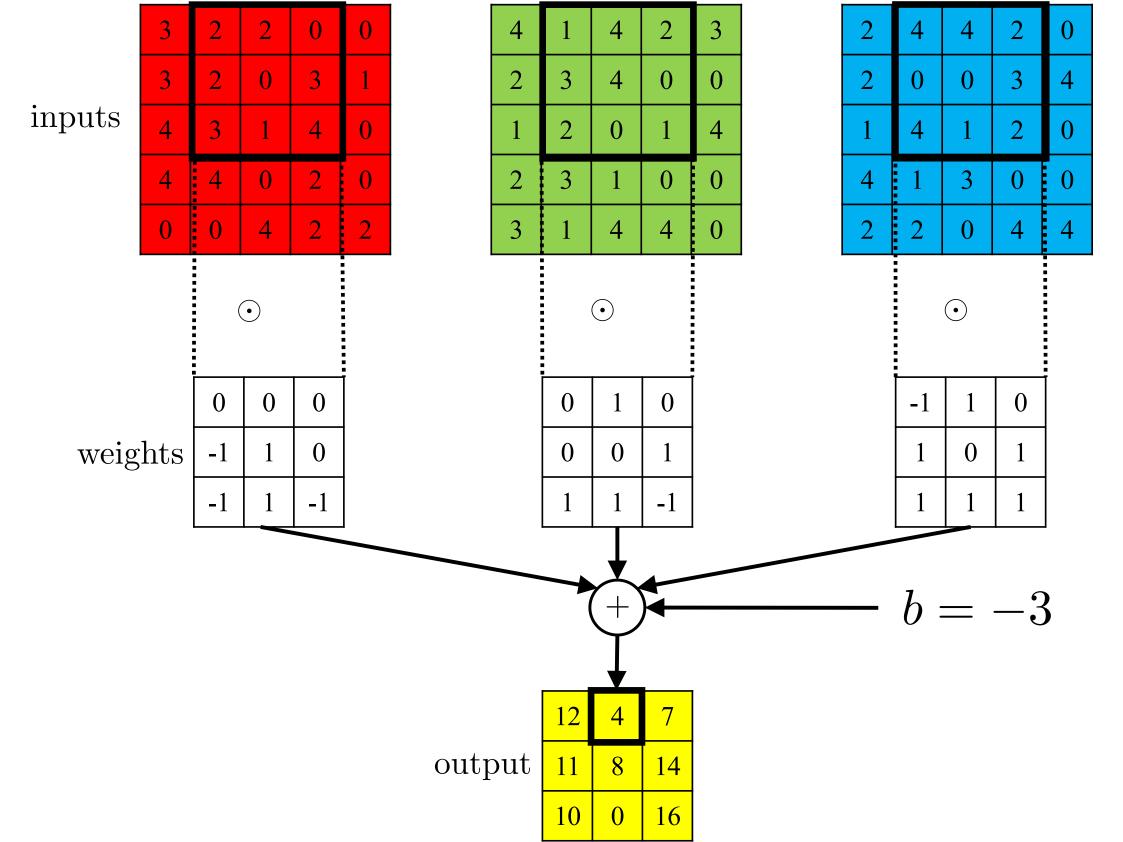


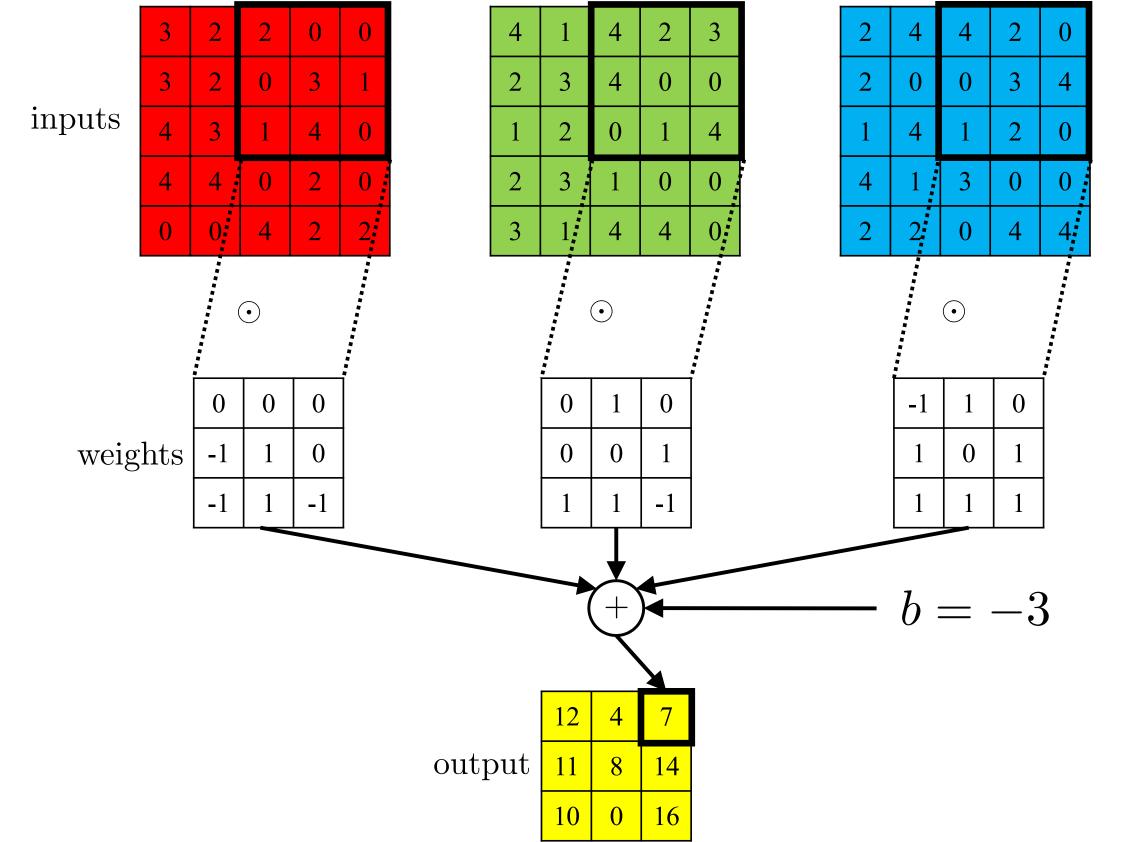


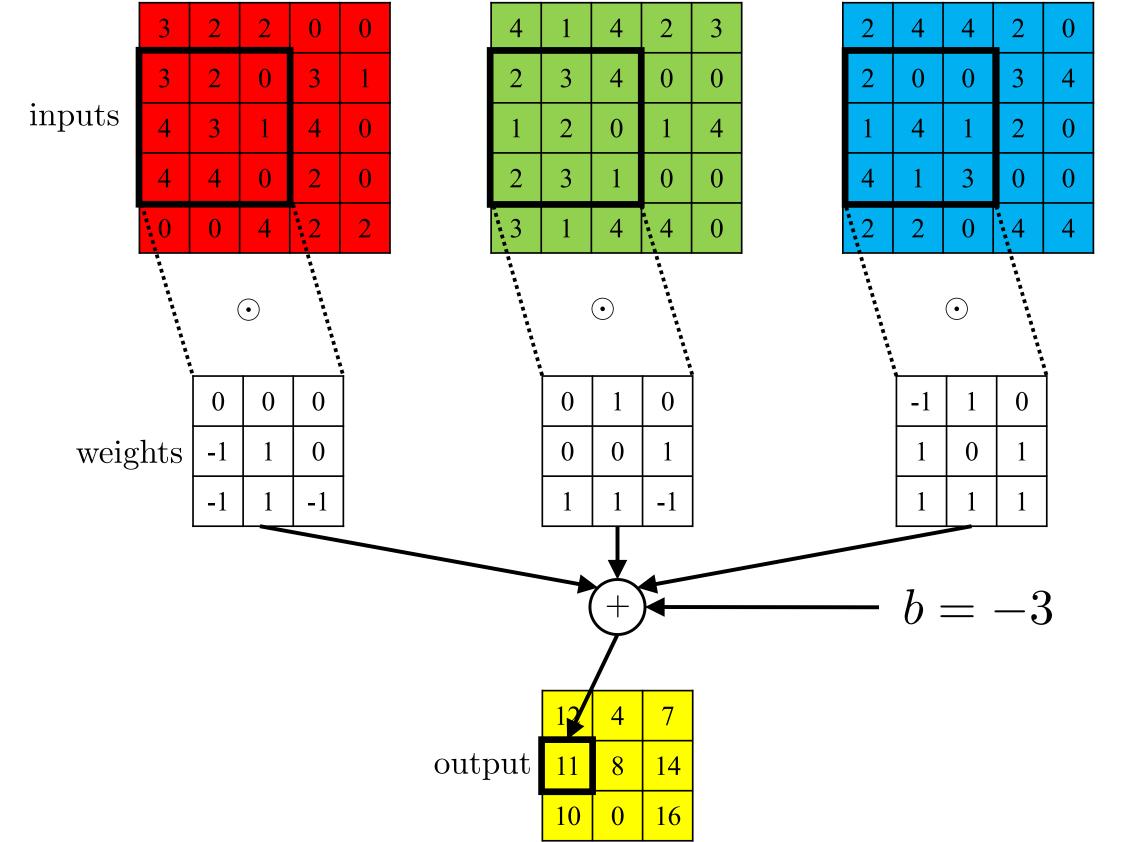


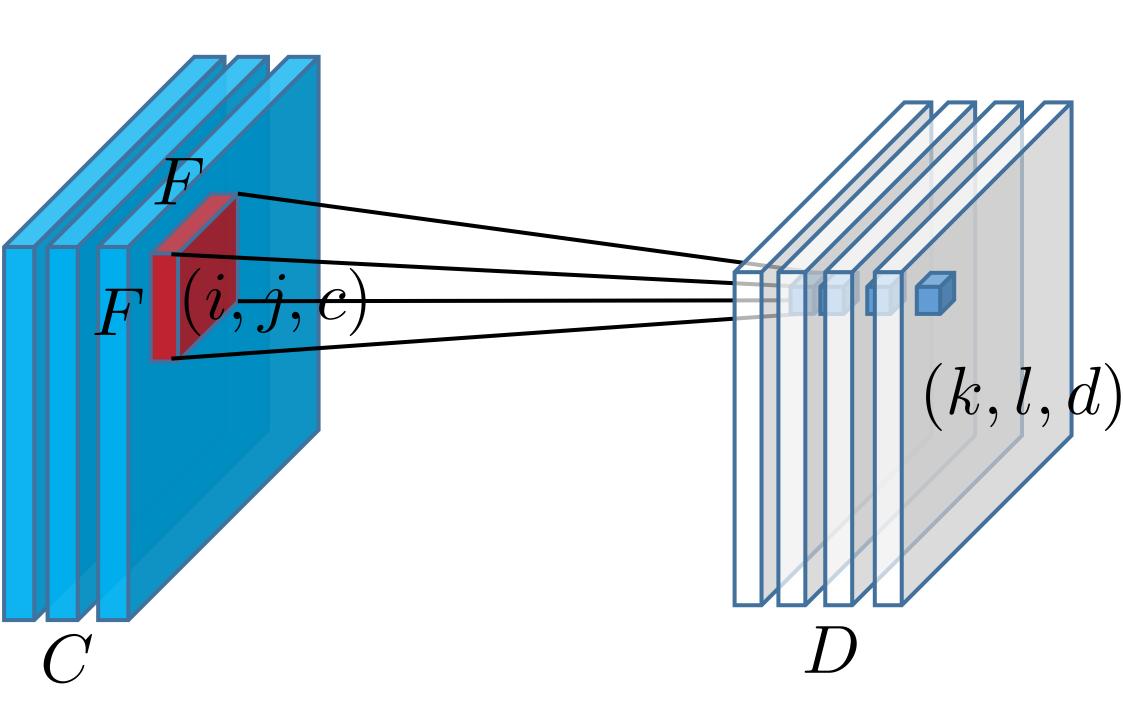


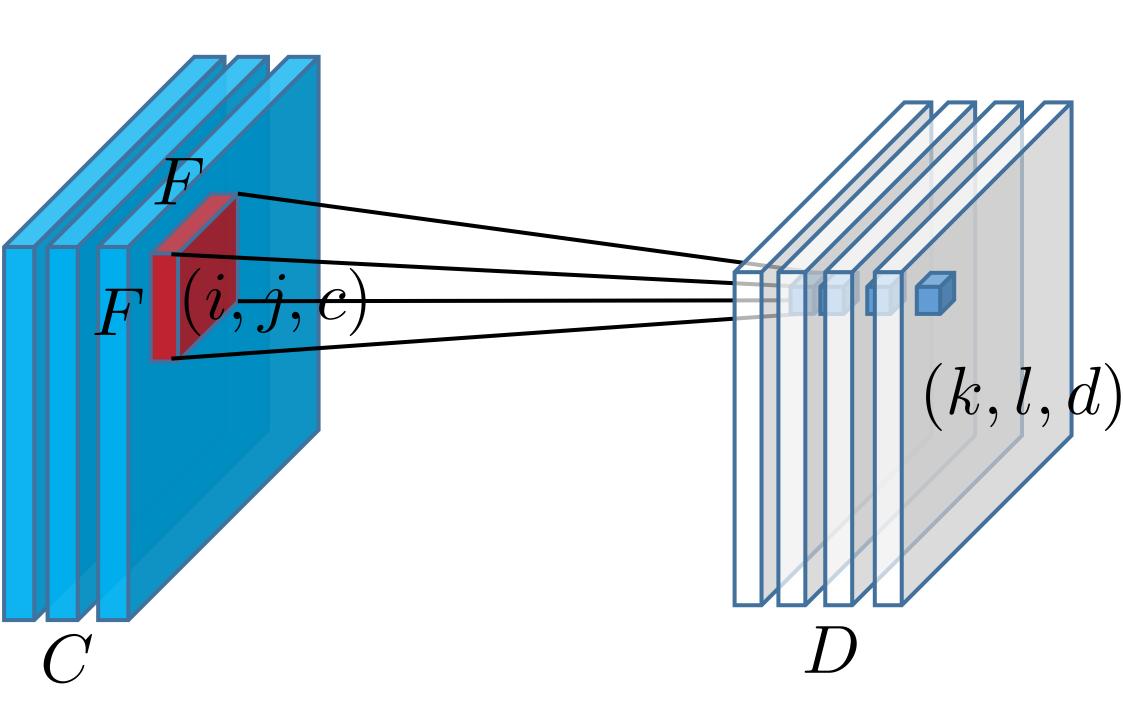


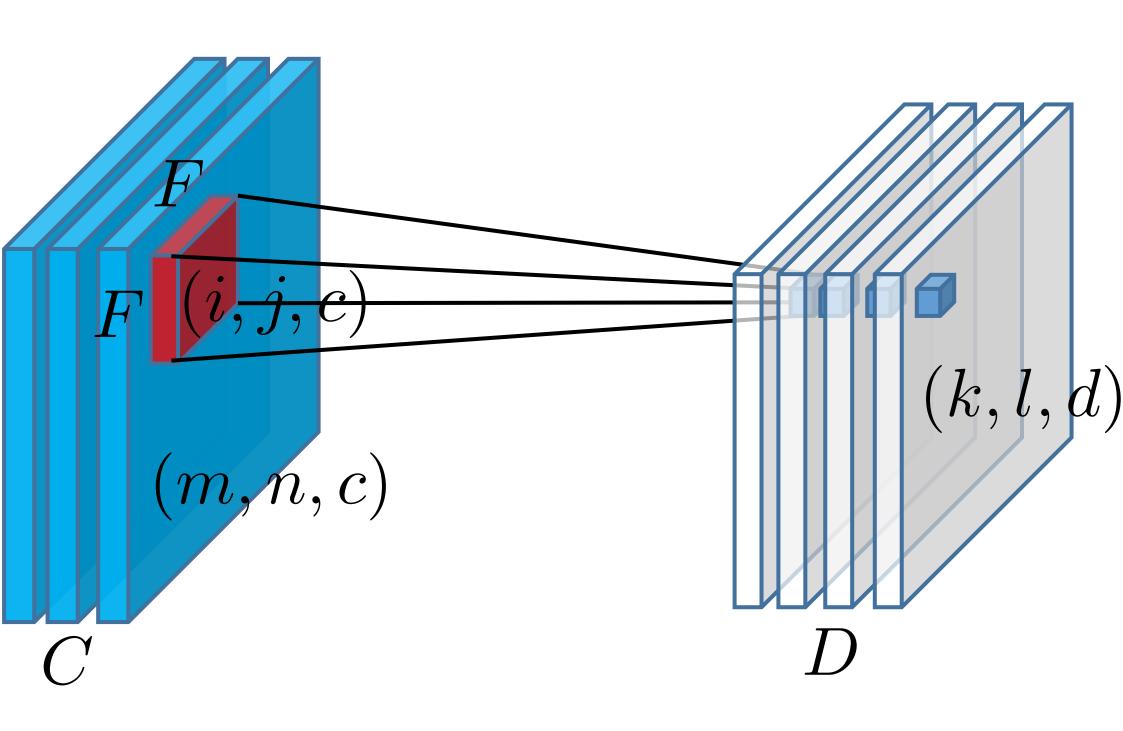












$$S = 1$$

$$S = 2$$

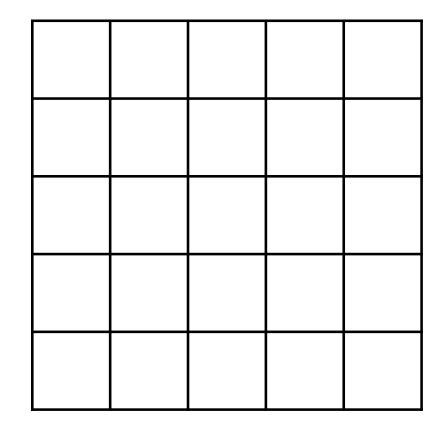
$$S=1$$

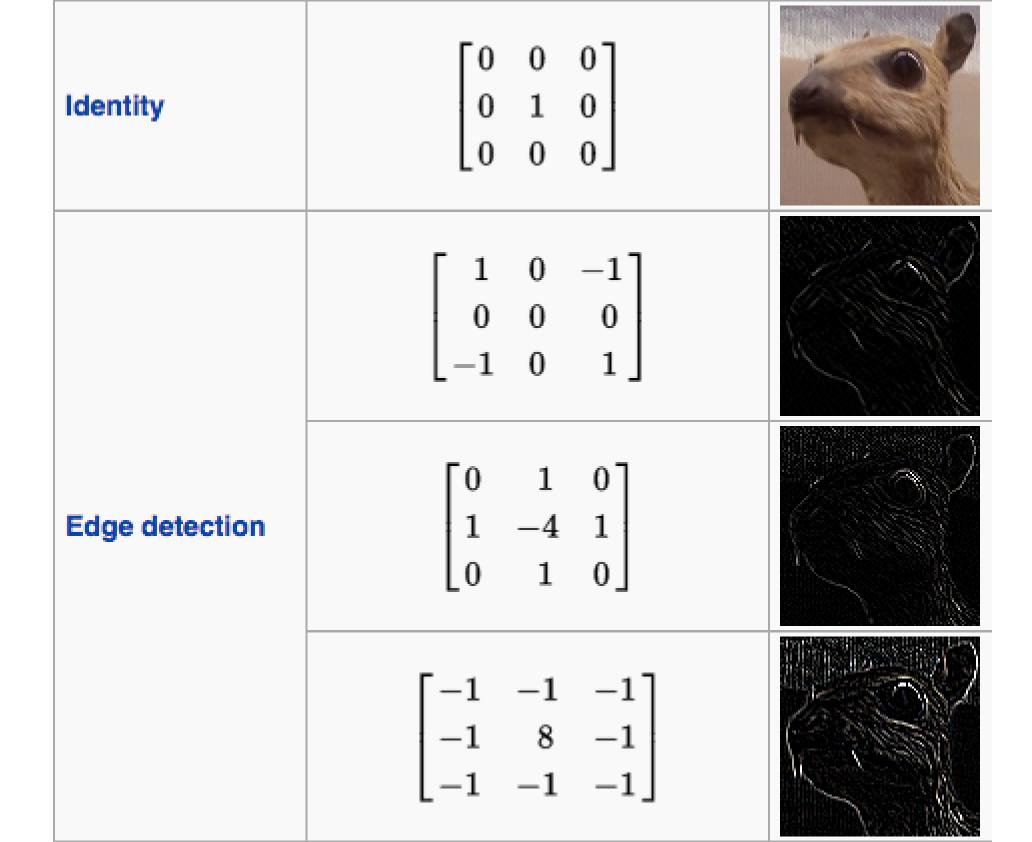
$$S=2$$

$$S=2$$

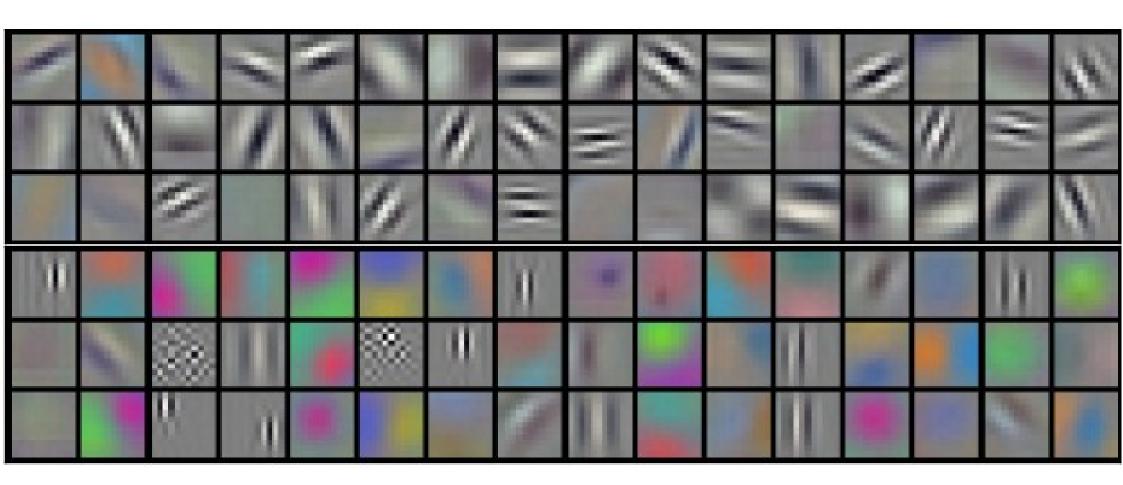
| P | = | 1, | S | = | 1 |
|---|---|----|---|---|---|
|   |   | •  |   |   |   |

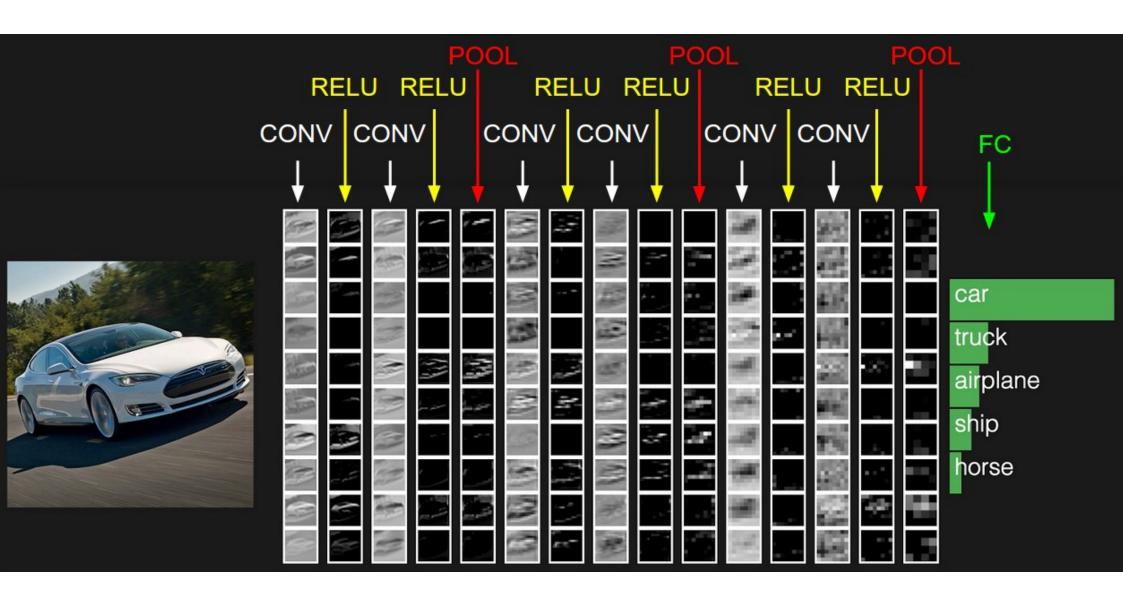
| 0 | 0 | 0 | 0 | 0 | 0 |
|---|---|---|---|---|---|
| 0 |   |   |   |   | 0 |
| 0 |   |   |   |   | 0 |
| 0 |   |   |   |   | 0 |
| 0 |   |   |   |   | 0 |
| 0 | 0 | 0 | 0 | 0 | 0 |





| Sharpen                          | $\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$          |  |
|----------------------------------|----------------------------------------------------------------------------------|--|
| Box blur<br>(normalized)         | $\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$  |  |
| Gaussian blur<br>(approximation) | $\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$ |  |





Input feature map

Output feature map

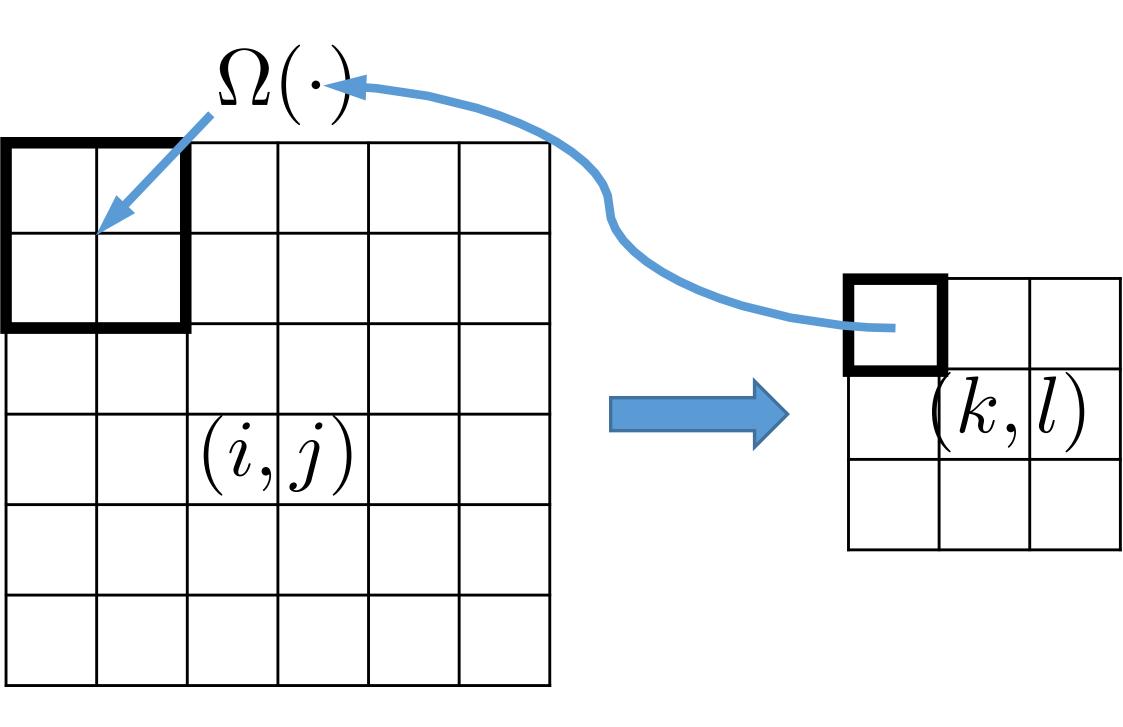
Black = negative; white = positive values

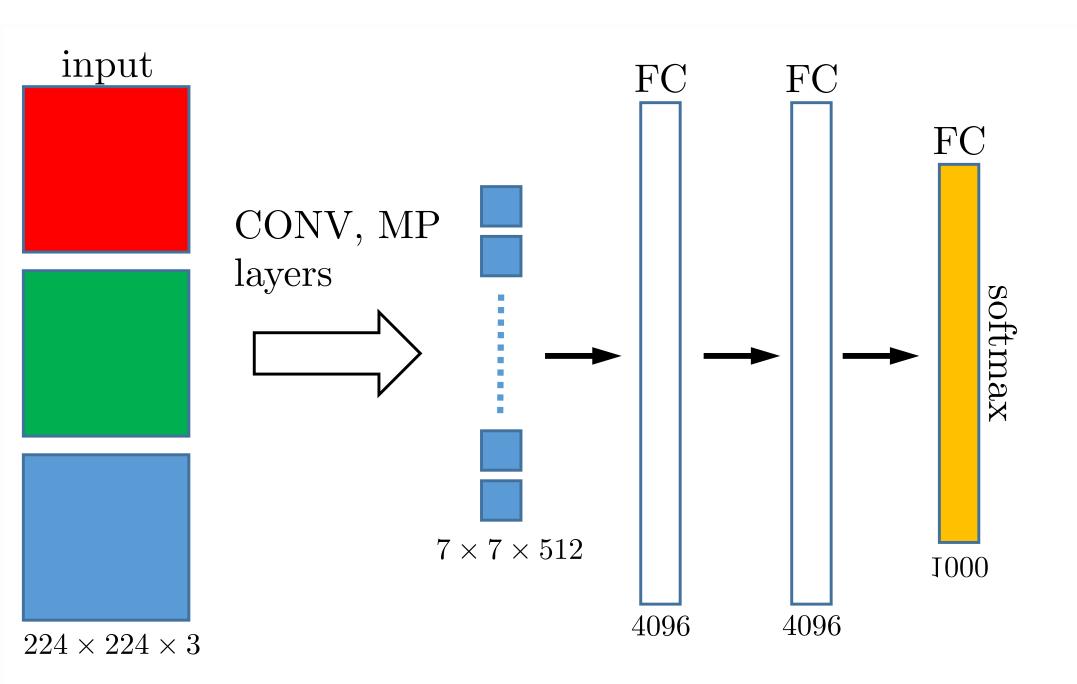
Only non-negative values

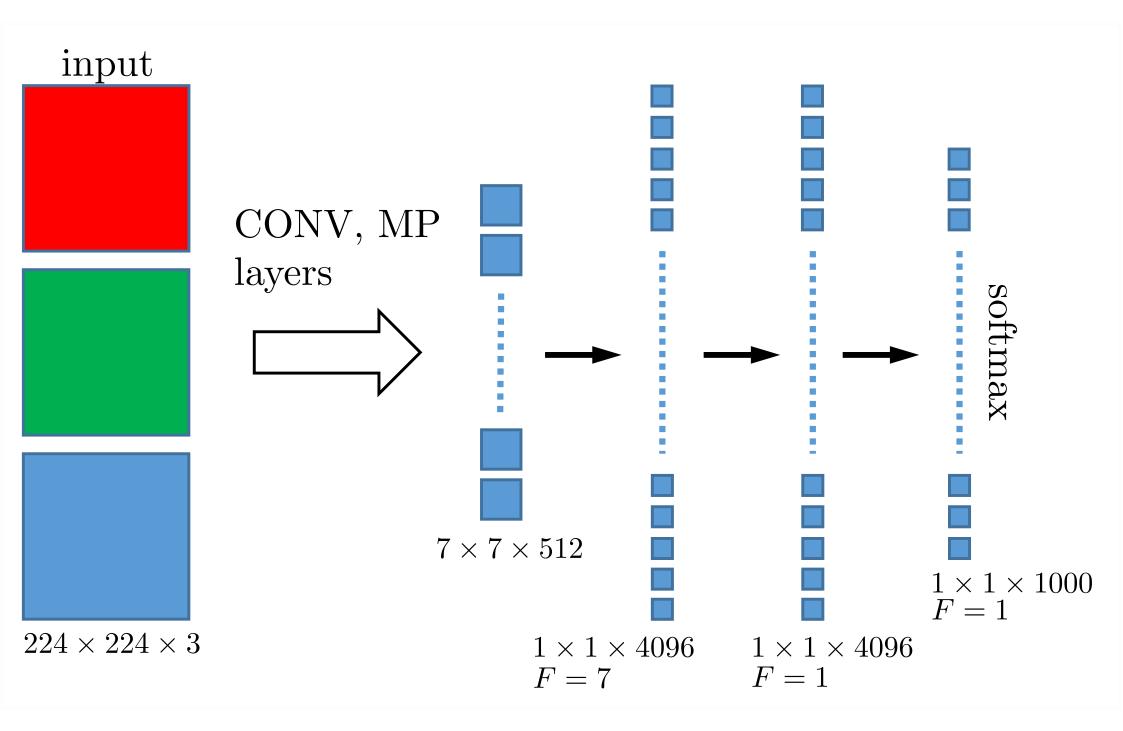
F = 2, S = 2

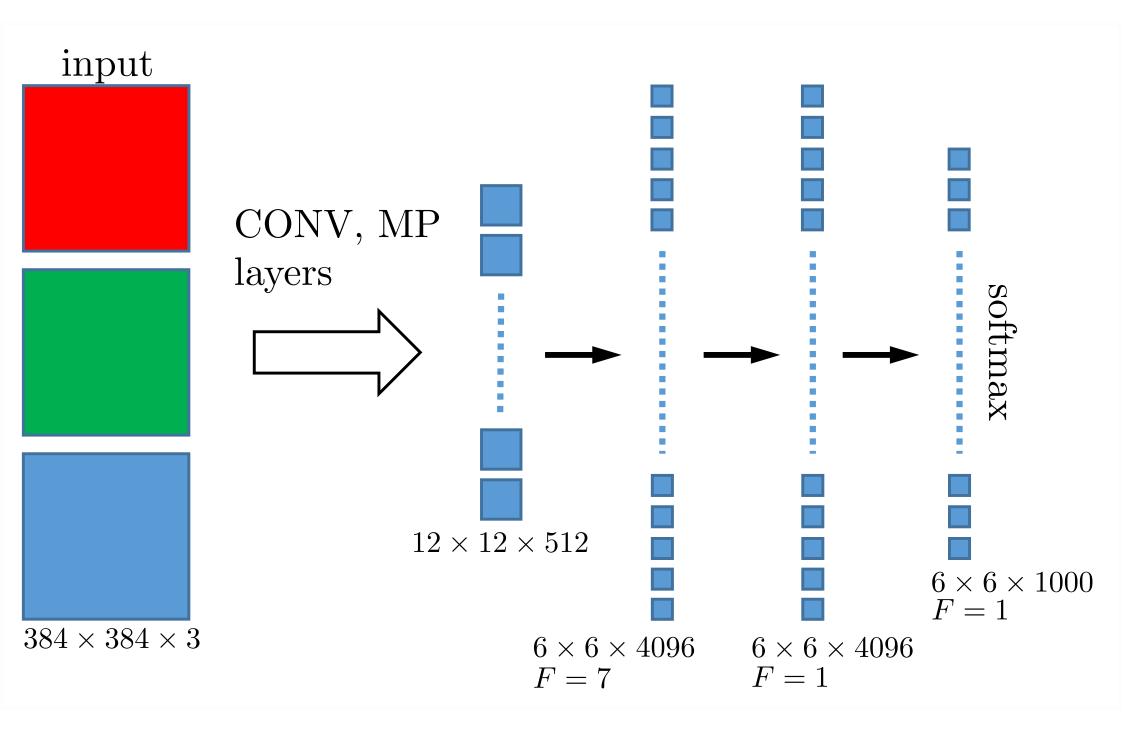
| 2 | 2 | 0 | 4 | 3 | 4 |
|---|---|---|---|---|---|
| 0 | 0 | 5 | 0 | 4 | 1 |
| 4 | 5 | 2 | 5 | 1 | 4 |
| 5 | 2 | 1 | 0 | 2 | 1 |
| 2 | 3 | 3 | 3 | 5 | 3 |
| 0 | 3 | 0 | 4 | 0 | 1 |

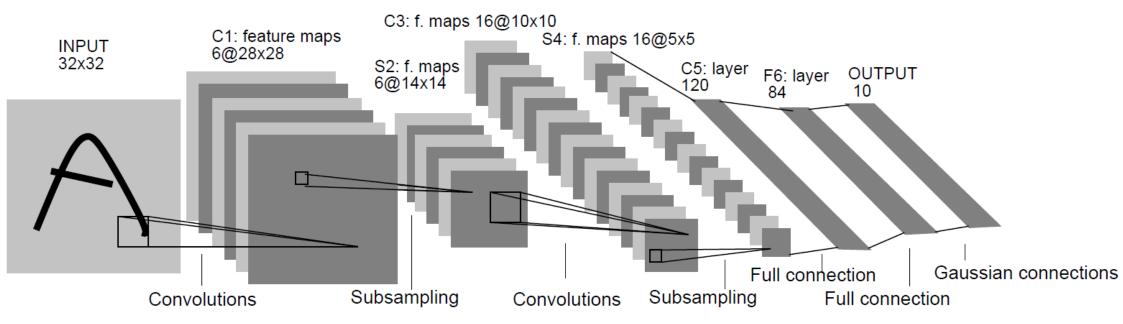
| 2 | 5 | 4 |
|---|---|---|
| 5 | 5 | 4 |
| 3 | 4 | 5 |

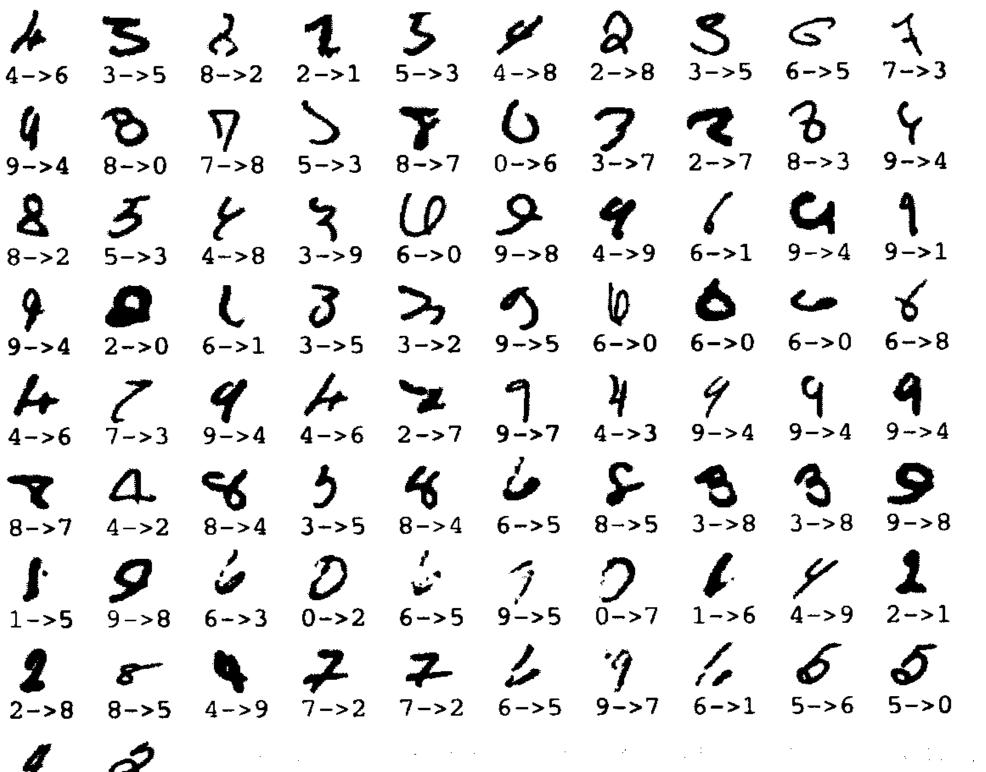




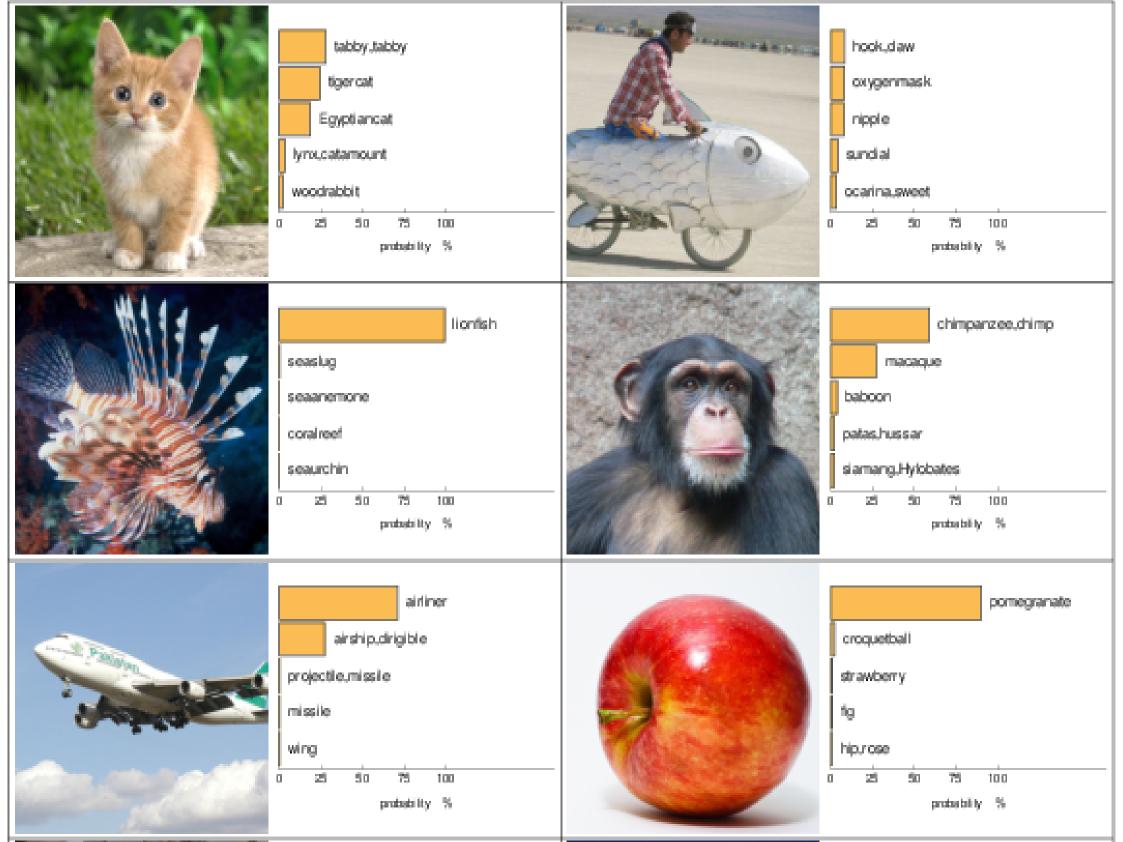








*2* 4->9 2->8

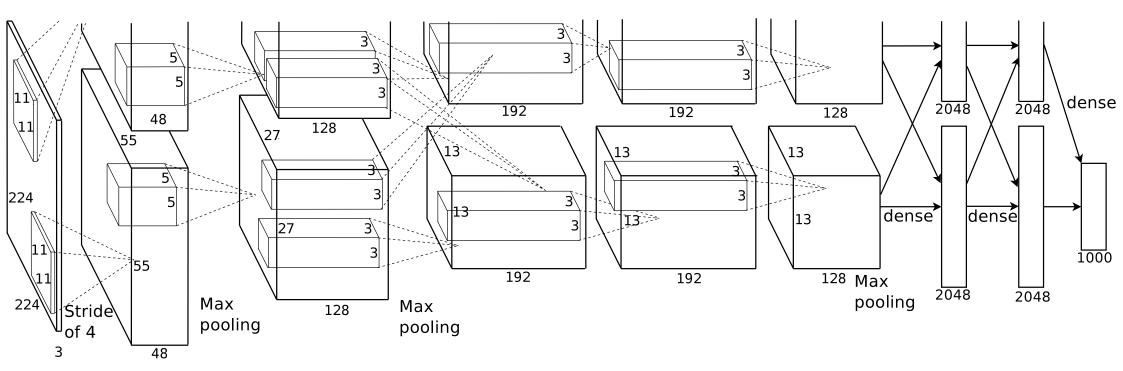


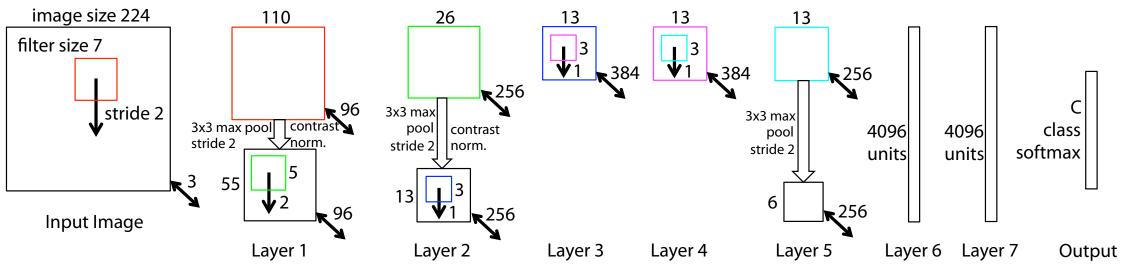


(a) Siberian husky

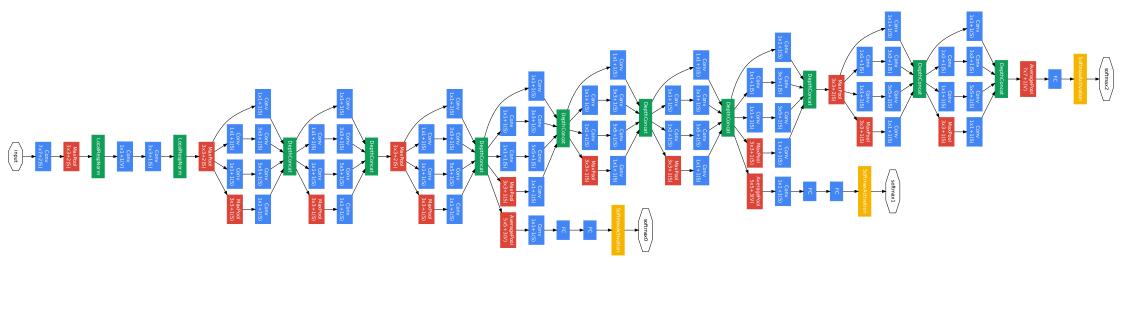


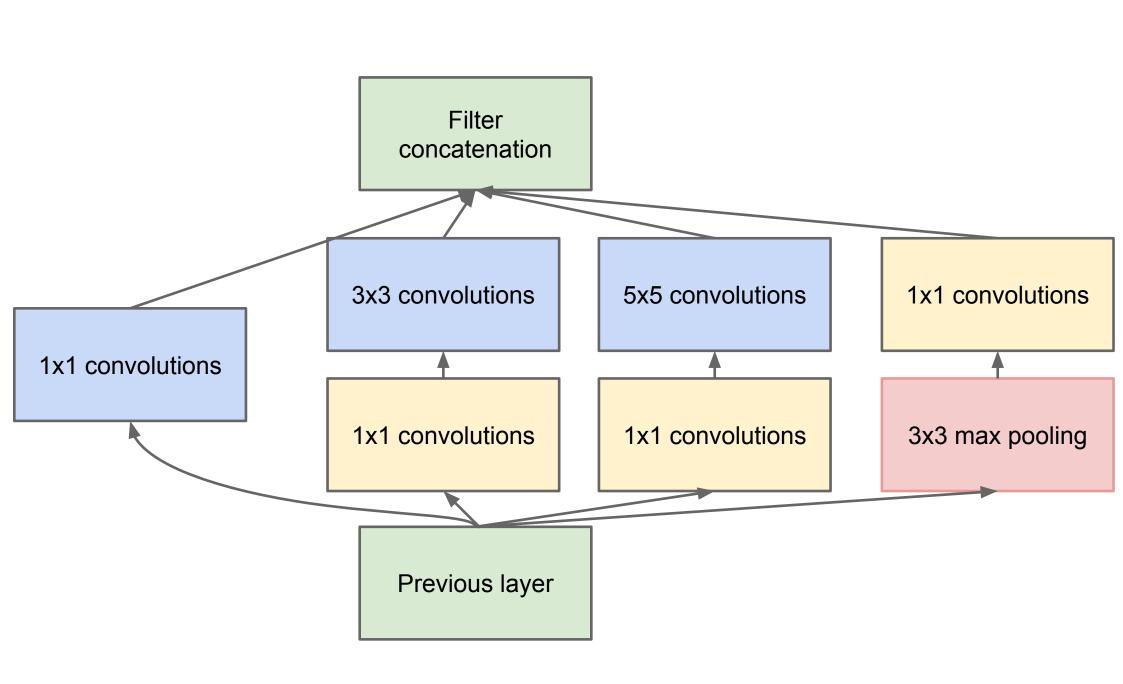
(b) Eskimo dog

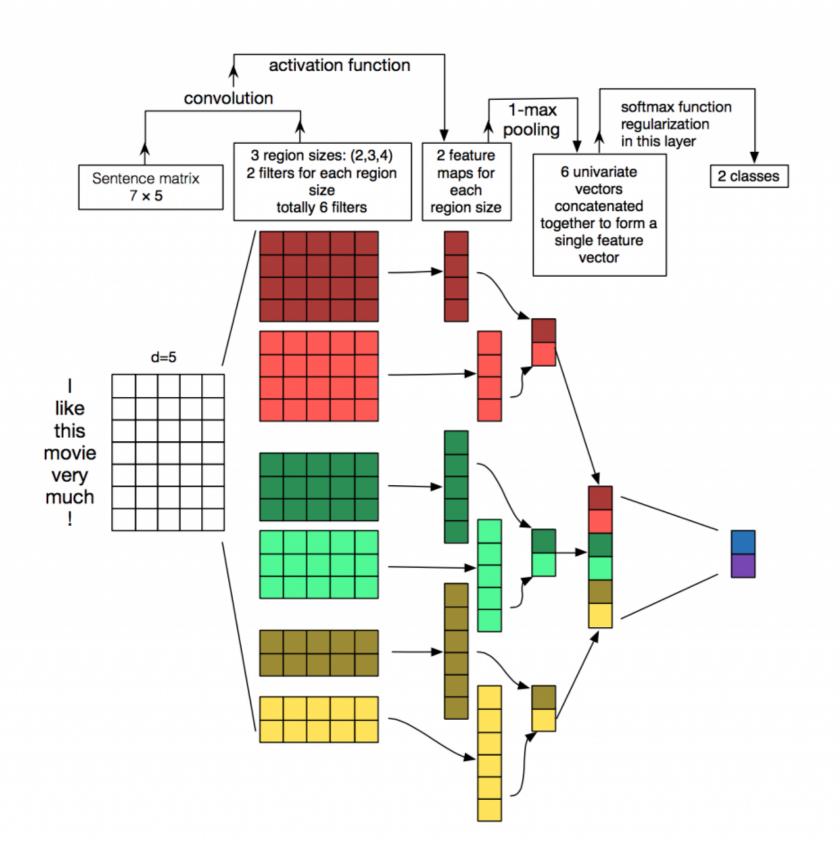


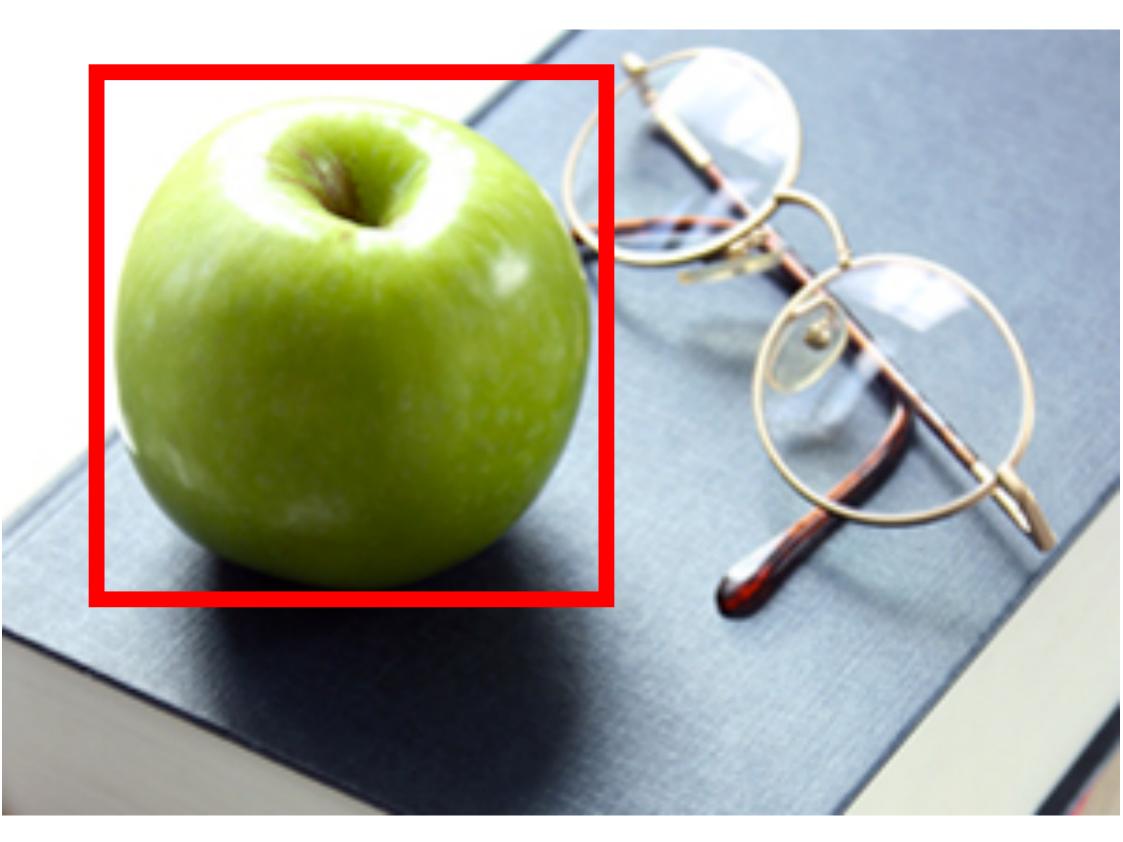


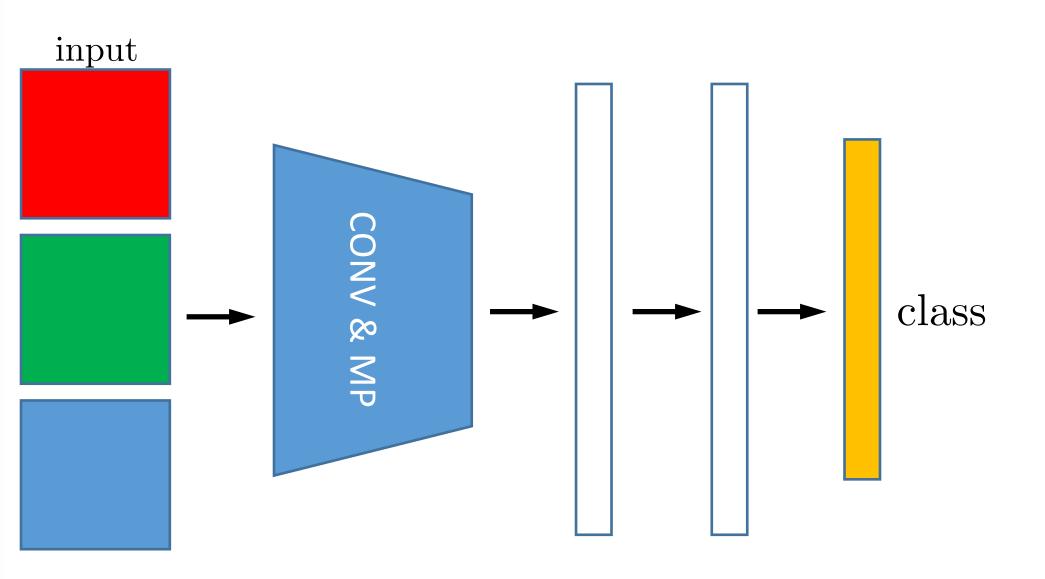
|               | input         | conv3-64       | conv3-64 | MP             | conv3-128   | conv3-128 | MP            | conv3-256     | conv3-256 | conv3-256 | MP            | conv3-512     | conv3-512 | conv3-512 | MP        | conv3-512     | conv3-512 | conv3-512 | MP      | FC - 4096 | FC - 4096    | FC - 1000 | softmax |
|---------------|---------------|----------------|----------|----------------|-------------|-----------|---------------|---------------|-----------|-----------|---------------|---------------|-----------|-----------|-----------|---------------|-----------|-----------|---------|-----------|--------------|-----------|---------|
| parameters    |               | 1.7k           | 37k      |                | 74k         | 147k      |               | 295k          | 590k      | 590k      |               | 1.2M          | 2.4M      | 2.4M      |           | 2.4M          | 2.4M      | 2.4M      |         | 103M      | 16.7M        | 4M        |         |
| activations 1 | 150k          | 3.2M           | 3.2M     | 800k           | 1.6M        | 1.6M      | 400k          | 800k          | 800k      | 800k      | 200k          | 400k          | 400k      | 400k      | 100k      | 100k          | 100k      | 100k      | 25k     | 4096      | 4096         | 1000      | 1000    |
|               | 224 × 224 × 3 | 224 x 224 x 64 |          | 112 x 112 x 64 | 112×112×128 |           | 56 x 56 x 128 | 56 x 56 x 256 |           |           | 28 x 28 x 256 | 28 × 28 × 512 |           |           | 14×14 512 | 14 x 14 x 512 |           |           | 7×7×512 | 1××1×4096 | 1 × 1 × 4096 | 1×1×1000  |         |

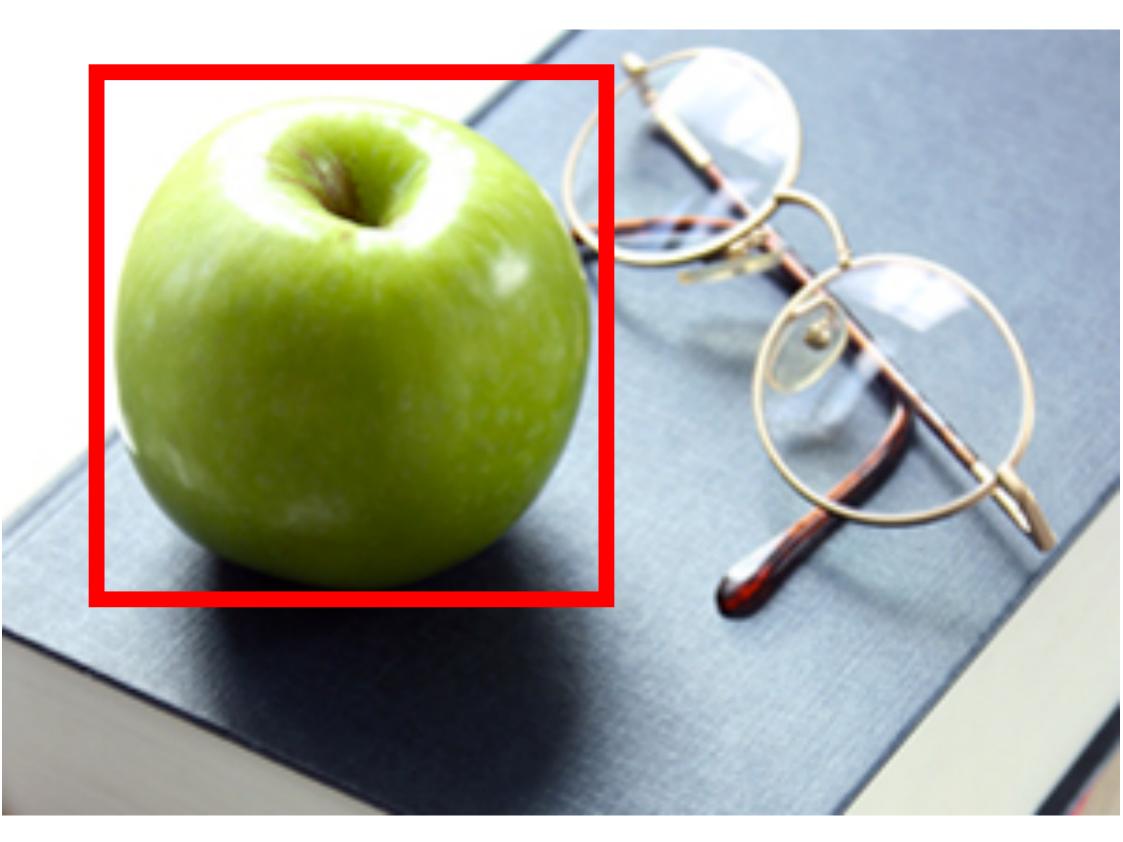


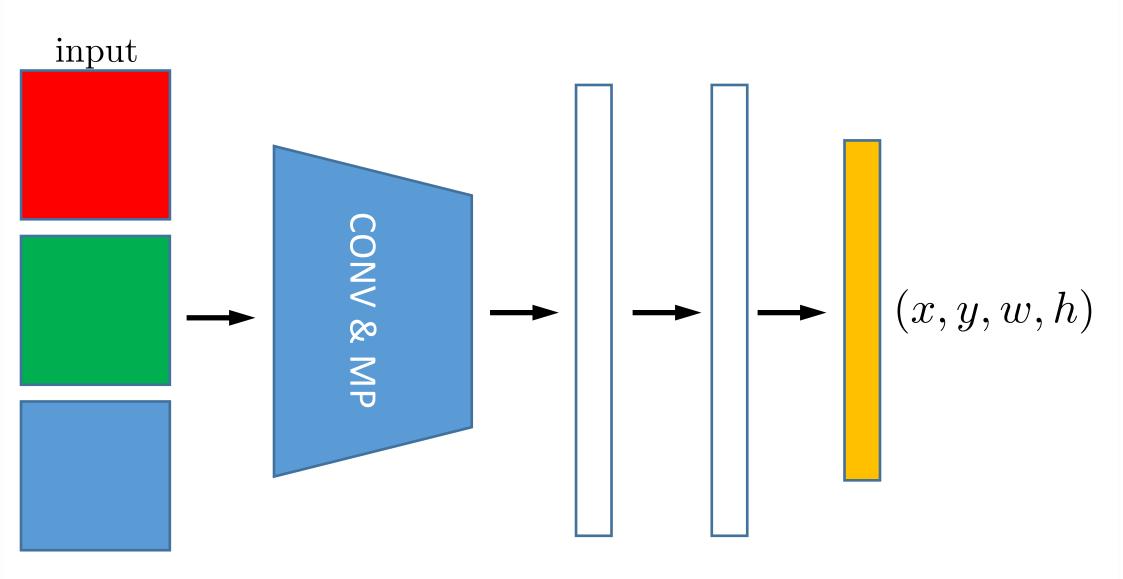


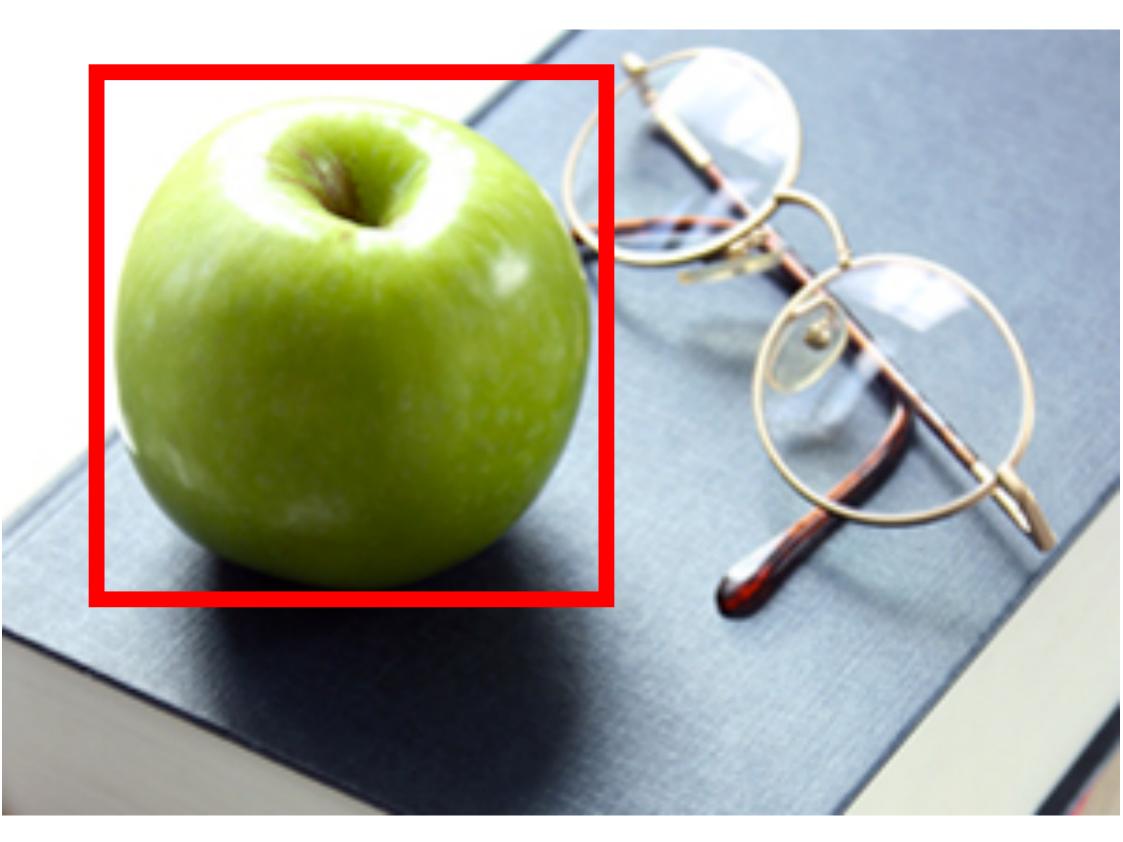


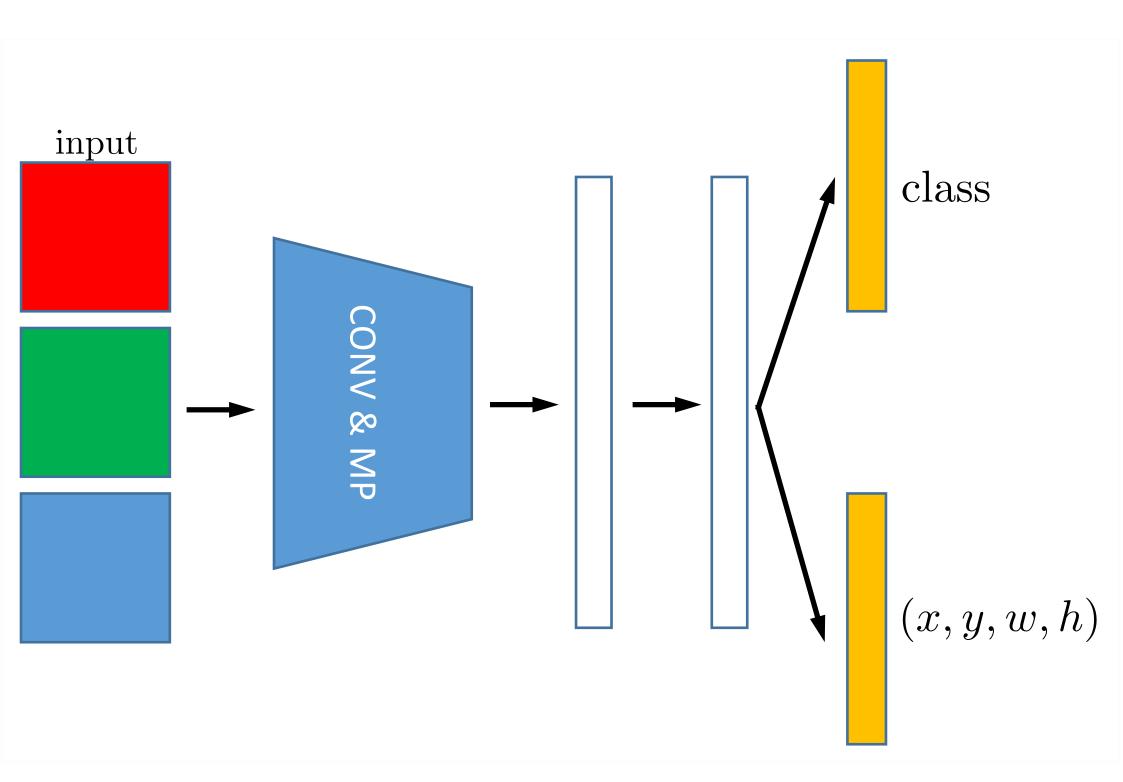


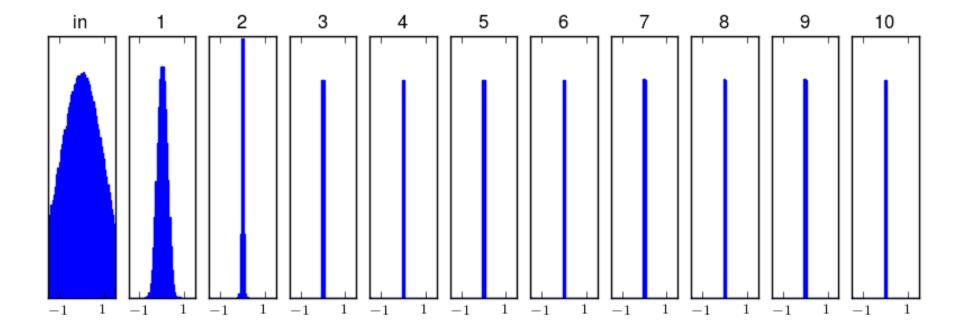


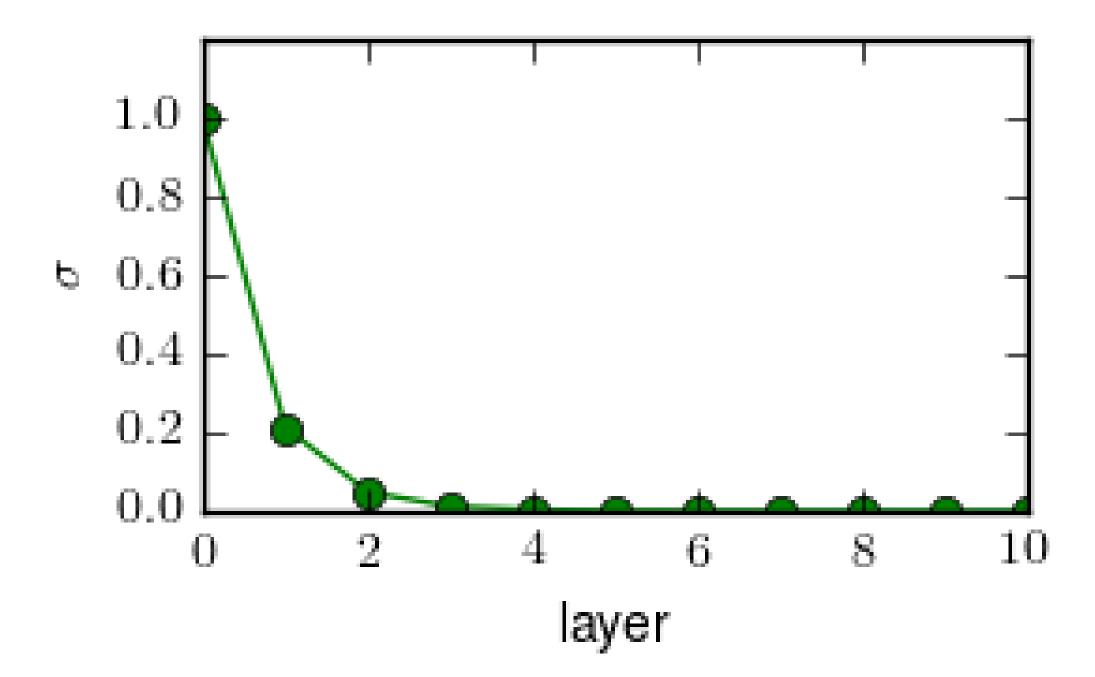


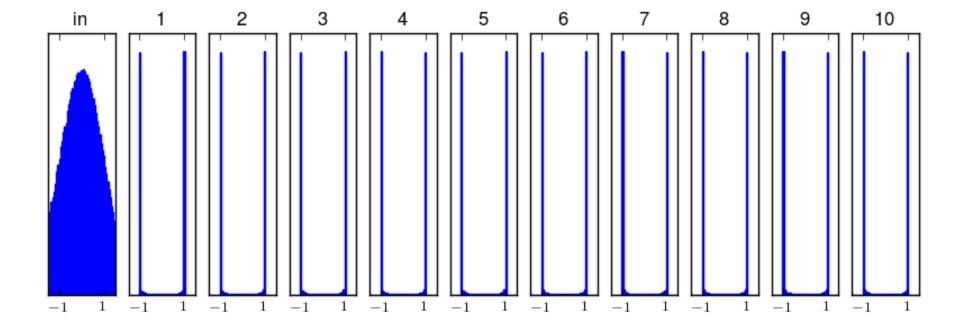


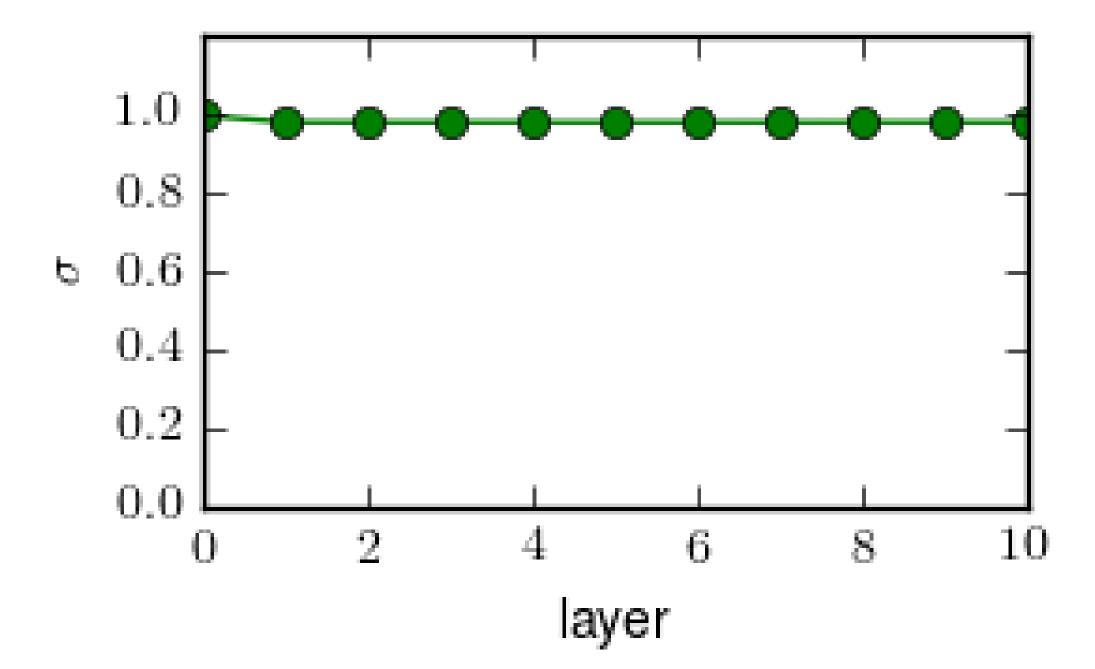


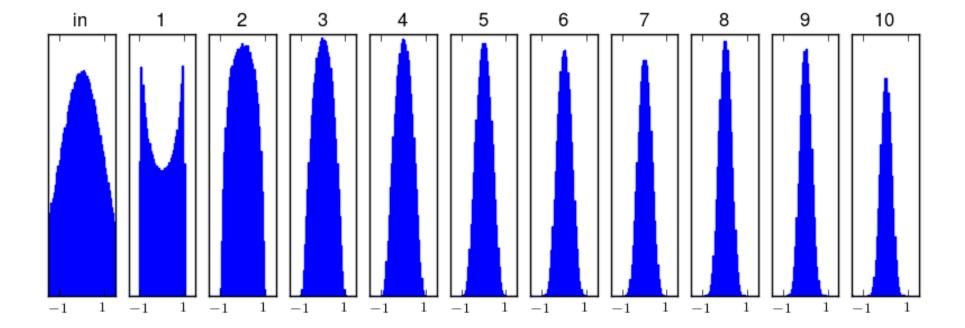


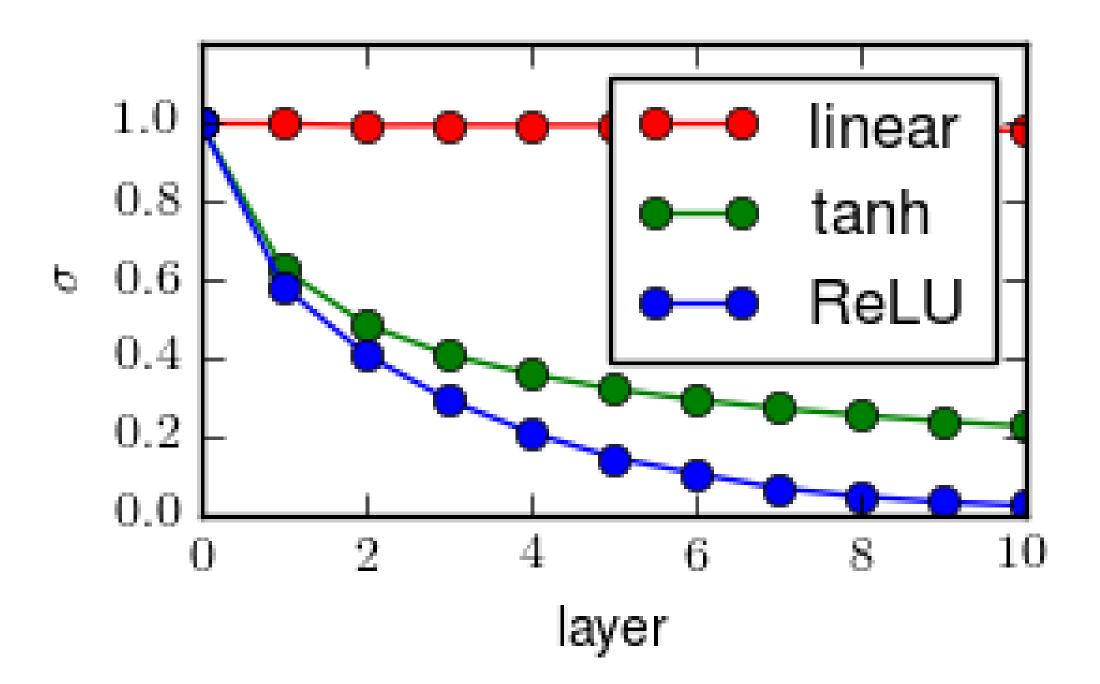


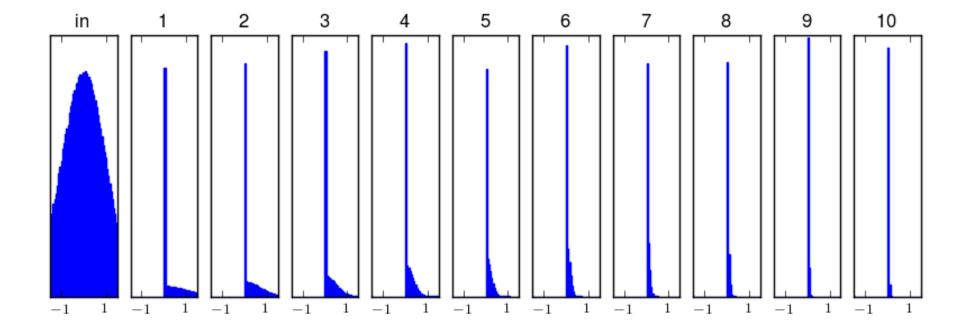


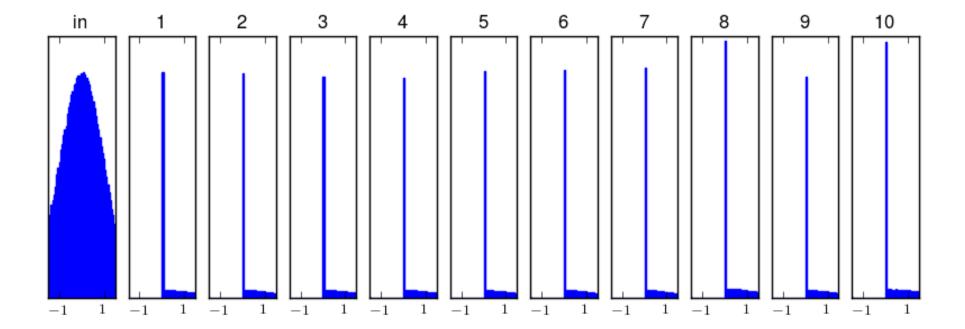


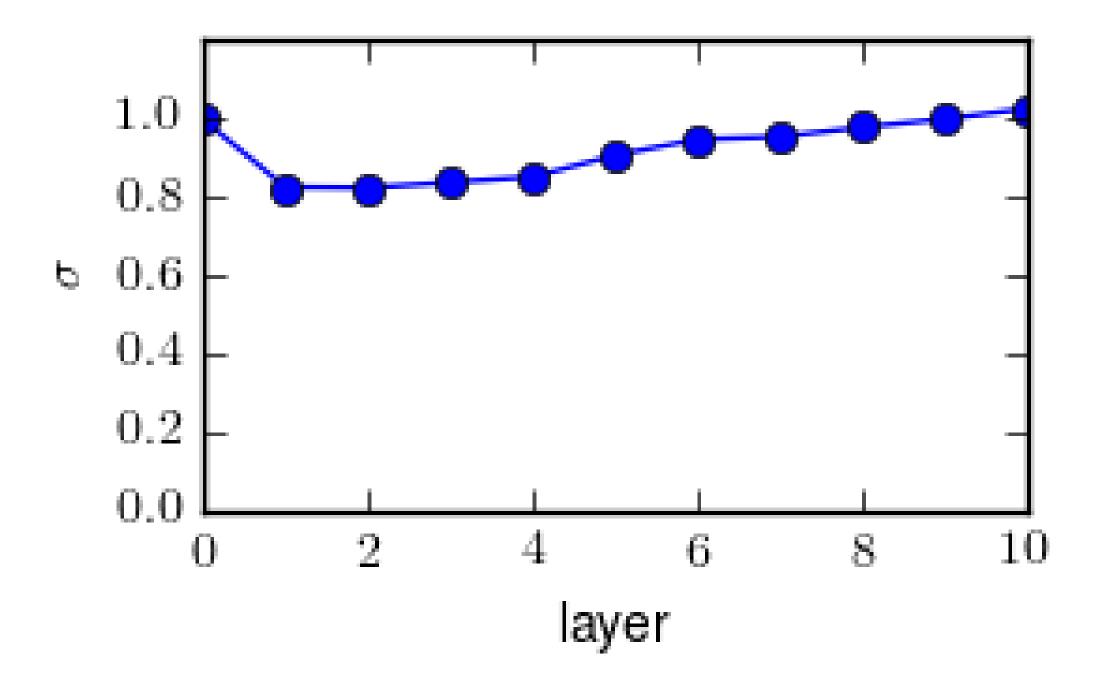




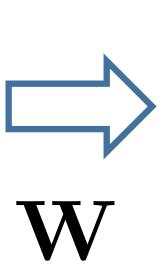








## input



## hidden

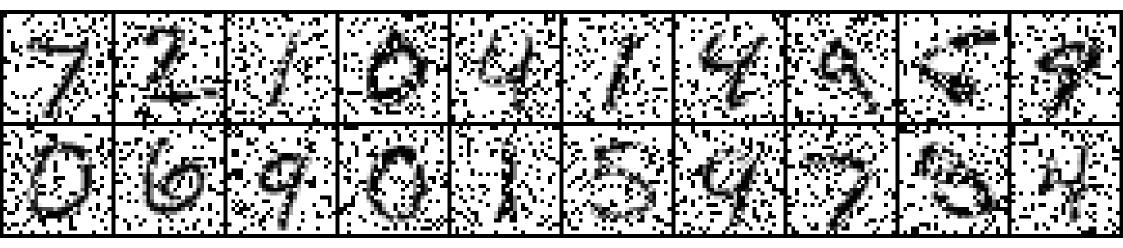


## output

| 7 | 2 | / | 0 | 4 | / | Ч | ٥ | 1,8           | 9 |
|---|---|---|---|---|---|---|---|---------------|---|
| O | 0 | 9 | 0 | j | U | 9 | J | $\mathcal{O}$ | 4 |

## 

|   | 2 |   |   |   |     |   |   |   |   |
|---|---|---|---|---|-----|---|---|---|---|
| 0 | 0 | 9 | 0 | 1 | ()) | 9 | 7 | Ø | 4 |

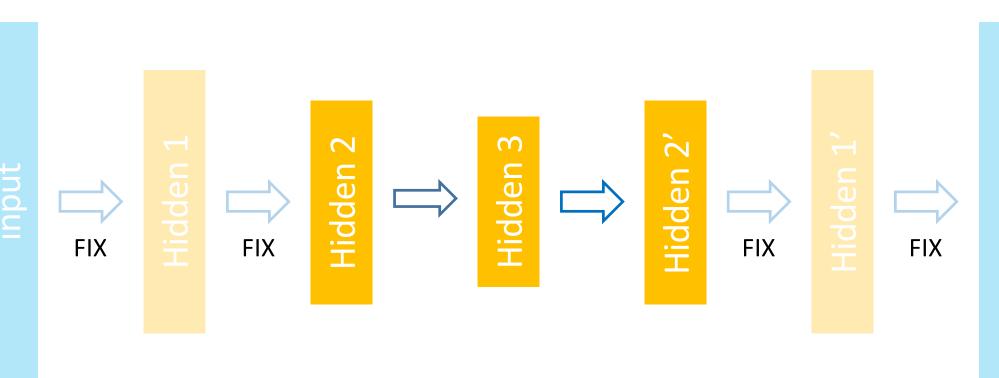


| 7 | 2 | F | 0 | 14 | 1 | 4 | 4 | 5   | 9 |
|---|---|---|---|----|---|---|---|-----|---|
| 3 | 6 | 9 | 0 | -  | 3 | 4 | 4 | (3) | 1 |



Hidden 1









Hidden 1



Hidden 2



Hidden 3



Hidden 2'



Hidden 1'





Hidden 1



Hidden 2



Hidden 3



Classifier