Statistical Machine Learning (BE4M33SSU)
 Lecture 8: Deep Neural Networks

Jan Drchal
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Overview

Topics covered in the lecture:

- Deep Architectures
- Convolutional Neural Networks (CNNs)
- Transfer learning
- Weight initialization
- Autoencoders and unsupervised pre-training

Why Deep Architectures?

- Is it better to use deep architectures rather than the shallow ones for complex nonlinear mappings?
- We know that deep architectures evolved in Nature (e.g., cortex)
- Universal approximation theorem: one layer is enough so why to bother with more layers?
- Poggio et al: Why and When Can Deep - but Not Shallow - Networks Avoid the Curse of Dimensionality, 2016:
- deep networks can be exponentially better (have less units) than shallow networks for learning compositional functions
- Handcrafted features vs. automatic extraction
- Gradually increasing complexity, intermediate representations: each successive layer brings higher abstraction

Processing Images

- Topographical mapping in the visual cortex - nearby cells represent nearby regions in the visual field
- Input: grayscale image 32×32 pixels
- Output: layer of 32×32 features
- How many parameters do we need when input and output is fully connected?

Processing Images

- Topographical mapping in the visual cortex - nearby cells represent nearby regions in the visual field
- Input: grayscale image 32×32 pixels
- Output: layer of 32×32 features
- How many parameters do we need when input and output is fully connected?

$$
\underset{\text { outputs }}{32^{2}} \times\left(\underset{\text { inputs }}{32^{2}}+\underset{\text { biases }}{1}\right) \approx 1 \mathrm{M}
$$

Locally Connected Layer

- Each neuron has a receptive field of 3×3 pixels
- It is fully connected only to the corresponding set of 9 inputs
- How many parameters do we need now?

Locally Connected Layer

- Each neuron has a receptive field of 3×3 pixels
- It is fully connected only to the corresponding set of 9 inputs
- How many parameters do we need now?
$\underset{\text { outputs }}{30^{2}} \times\left(\underset{\text { inputs }}{3^{2}}+\underset{\text { bias }}{1}\right)=9 \mathrm{k}$

Multiple Input Channels

- We can have more input channels, e.g., colors
- Now the input is defined by width, height and depth: $32 \times 32 \times 3$

The number of parameters is $30^{2} 3 \times(\underset{\text { chatputs }}{3} \times \underset{\text { inputs }}{3}+\underset{\text { bias }}{1}) \approx 25 \mathrm{k}$

Sharing Parameters

- We can further reduce the number of parameters by sharing weights
- Use the same set of weights and bias for all outputs, define a filter
- The number of parameters drops to $\underset{\text { inputs }}{ } \times 3^{2}+\underset{\text { bias }}{1}=28$
- Translation equivariance

Multiple Output Channels

- Extract multiple different of features
- Use multiple filters to get more feature maps
- For 4 filters we have $\underset{\text { filters }}{4} \times\left(\underset{\text { inputs }}{ } \times 3^{2}+\underset{\text { bias }}{1}\right)=112$ parameters

This is the convolutional layer

- Processes volume into volume

1D convolution with no bias, single input channel and filter size F :

$$
\begin{array}{ll}
z_{i^{\prime}} & =\sum_{i=1}^{F} w_{i} x_{i^{\prime}+(i-1)} \\
\text { correlations (similarity) } \\
z_{i^{\prime}} & =\sum_{i=1}^{F} \bar{w}_{i} x_{i^{\prime}-(i-F)} \\
\text { convolution }
\end{array}
$$

where $\overline{\boldsymbol{w}}$ is a reverse of $\boldsymbol{w}\left(\bar{w}_{i}=w_{F-i+1}\right)$ and $i \in\{1, \ldots, N-F+1\}$ for the input size N

Convolution in 2D: Example

- Input volume $5 \times 5 \times 3$, single 3×3 filter, $3 \times 3^{2}+1=28$ parameters

Convolution in 2D: Example

- Input volume $5 \times 5 \times 3$, single 3×3 filter, $3 \times 3^{2}+1=28$ parameters

Convolution in 2D: Example

- Input volume $5 \times 5 \times 3$, single 3×3 filter, $3 \times 3^{2}+1=28$ parameters

Convolution in 2D: Example

- Input volume $5 \times 5 \times 3$, single 3×3 filter, $3 \times 3^{2}+1=28$ parameters

Convolution in 2D: Forward Message

$$
z_{k l d}=f_{k l d}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{b})=b_{d}+\sum_{i=1}^{F} \sum_{j=1}^{F} \sum_{c=1}^{C} x_{k+i-1, l+j-1, c} w_{i j c d}
$$

Convolution in 2D: Parameter Gradient

$z_{k l d}=f_{k l d}(\boldsymbol{x}, \boldsymbol{w}, \boldsymbol{b})=b_{d}+\sum_{i=1}^{F} \sum_{j=1}^{F} \sum_{c=1}^{C} x_{k+i-1, l+j-1, c} w_{i j c d}$

$$
\begin{aligned}
\frac{\partial \mathcal{L}}{\partial w_{i j c d}} & =\sum_{k^{\prime}, l^{\prime}, d^{\prime}} \frac{\partial \mathcal{L}}{\partial f_{k^{\prime}, l^{\prime}, d^{\prime}}} \frac{\partial f_{k^{\prime}, l^{\prime}, d^{\prime}}}{\partial w_{i j c d}}=\sum_{k^{\prime}, l^{\prime}, d^{\prime}} \delta_{k^{\prime}, l^{\prime}, d^{\prime}}^{l+1} \frac{\partial f_{k^{\prime}, l^{\prime}, d^{\prime}}}{\partial w_{i j c d}}= \\
& =\sum_{k^{\prime}, l^{\prime}} \delta_{k^{\prime}, l^{\prime}, d}^{l+1} x_{k^{\prime}+i-1, l^{\prime}+j-1, c}
\end{aligned}
$$

Convolution in 2D: Backward Message

Substitute $m=k+i-1$ and $n=l+j-1$

$$
\begin{aligned}
\delta_{m n c}^{l} & =\frac{\partial \mathcal{L}}{\partial x_{m n c}}=\sum_{k^{\prime}, l^{\prime}, d^{\prime}} \delta_{k^{\prime}, l^{\prime}, d^{\prime}}^{l+1} \frac{\partial f_{k^{\prime}, l^{\prime}, d^{\prime}}}{\partial x_{m n c}} \\
& =\sum_{k^{\prime}, l^{\prime}, d^{\prime}} \delta_{k^{\prime}, l^{\prime}, d^{\prime}}^{l+1} w_{m-k^{\prime}+1, n-l^{\prime}+1, c, d^{\prime}}
\end{aligned}
$$

Stride

- Stride hyper parameter, typically $S \in\{1,2\}$
- Higher stride produces smaller output volumes spatially

$S=2$

Stride

- Stride hyper parameter, typically $S \in\{1,2\}$
- Higher stride produces smaller output volumes spatially

$S=2$

Zero Padding

- Convolutional layer reduces the spatial size of the output w.r.t. the input
- For many layers this might be a problem

This is often fixed by zero padding the input
The size of the zero padding is denote P

$P=1, S=1$					
0	0	0	0	0	0
0					0
0					0
0					0
0					0
0	0	0	0	0	0

Convolutional Layer Summary

- Input volume: $W_{\text {input }} \times H_{\text {input }} \times C$
- Output volume: $W_{\text {output }} \times H_{\text {output }} \times D$
- Having D filters:
- receptive field of $F \times F$ units,
- stride S
- zero padding P

$$
\begin{aligned}
W_{\text {output }} & =\left(W_{\text {input }}-F+2 P\right) / S+1 \\
H_{\text {output }} & =\left(H_{\text {input }}-F+2 P\right) / S+1
\end{aligned}
$$

- Needs $F^{2} C D$ weights and D biases
- The number of activations and δ s to store: $W_{\text {output }} \times H_{\text {output }} \times D$

Convolution Applied to an Image

mp
18/46

Filters of the first layer

Krizhevsky, Sutskever, Hinton: ImageNet Classification with Deep Convolutional Neural Networks, 2012

http://cs231n.github.io/convolutional-networks/

Convolutional Layer: Nonlinearities

- In most cases a nonlinearity (sigmoid, tanh, ReLU) is applied to the outputs of the convolutional layer

Example: ReLU units

Max Pooling

- Reduces spatial resolution \rightarrow less parameters \rightarrow helps with overfitting
- Introduces translation invariance
- Depth is not affected
$F=2, S=2$

2	2	0	4	3	4
0	0	5	0	4	1
4	5	2	5	1	4
5	2	1	0	2	1
2	3	3	3	5	3
0	3	0	4	0	1

2	5	4
5	5	4
3	4	5

- No changes to the depth
- Forward message: $z_{k l}=f_{k l}(\boldsymbol{x})=\max _{(i, j) \in \Omega(k, l)} x_{i j}$
- Backward message:

$$
\delta_{i j}^{l}=\sum_{k^{\prime}, l^{\prime}} \delta_{k^{\prime} l^{\prime}}^{l+1} \frac{\partial f_{k^{\prime} l^{\prime}}}{\partial x_{i j}}=\sum_{k^{\prime}, l^{\prime}} \delta_{k^{\prime} l^{\prime}}^{l+1} \mathbb{I}\left\{(i, j)=\underset{\left(i^{\prime}, j^{\prime}\right) \in \Omega\left(k^{\prime}, l^{\prime}\right)}{\operatorname{argmax}} x_{i^{\prime} j^{\prime}}\right\}
$$

- Backward message propagates only for the selected max unit

Convolutional vs. Fully-Connected Layers

- Convolutional layer can be simply transformed to a Fully-connected layer \rightarrow sparse weight matrix

The other direction is also possible:
FC layer of D units following a $F \times F \times C$ convolutional layer can be replaced by a $1 \times 1 \times D$ convolutional layer using $F \times F$ filters $(P=0$, $S=1$)

Fully-Connected Layer to Convolutional Example

Fully-Connected Layer to Convolutional Example

Fully-Connected Layer to Convolutional Example

CONV, MP layers

$12 \times 12 \times 512$

- Use zero padding to preserve the spatial resolution
- Reduce the resolution only by means of max pooling
- Prefer image size with factorization containing higher power of 2 for pooling with $F=2$ (e.g., $224=2^{5} \times 7$ for ImageNet networks)
- Set the number of filters to powers of 2 (optimization)
- Read Andrej Karpathy's blog and see his course on CNNs http://cs231n.stanford.edu/

LeNet-5 (1998)

- Yann LeCun
- CNN for written character recognition dataset MNIST
- Training set 60,000 , testing set 10,000 examples

LeCun et al.: Gradient-based learning applied to document recognition, 1998

Errors by LeNet-5

- 82 errors (current best 21)

Human error expected to be between 20 to 30

LeCun et al.: Gradient-based learning applied to document recognition, 1998

ImageNet Dataset

- Dataset of high-resolution color images: 15M training examples, 22k classes
- ImageNet Large Scale Visual Recognition Challenge (ILSVRC) uses subset of the ImageNet: 1.3 M training, 50 k validation, 100 k testing samples, 1000 classes

(a) Siberian husky

(b) Eskimo dog

AlexNet 2012

- Two separate streams for 2 GPUs, 60M parameters
- Data augmentation (increasing dataset size): 224×224 patches (+ mirrored) of 256×256 original images, altering RGB intensities
- Uses ReLU and dropout
- Top five error 18.2% for the basic net decreased to 15.4% for an ensemble of 7 CNNs, pre-CNN best was 25.6%

Krizhevsky et al.: ImageNet Classification with Deep Convolutional Neural Networks, 2012

ZFNet 2013

- Smaller filters for the first convolutional layer CONV1: $7 \times 7, S=2$ instead of $11 \times 11, S=4$
- CONV3-5: more depth
- Top five error $16.5 \%, 14.8 \%$ for an ensemble of 6 CNN

VGGNet 2014

- Simonyan, Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014
- Simplification: lowering filter spatial resolution $(F=3, S=1, P=1)$, increasing depth
- A sequence of 3×3 filters can emulate a single large one Top five error $7.3 \%, 6.8 \%$ for an ensemble of 2 CNNs

GoogLeNet 2014

- Use of inception layers instead of pure convolutional ones
- Fully connected output layer preceded by the global average pooling: the last layer before average pooling has $7 \times 7 \times 1024$ it is spatially reduced to $1 \times 1 \times 1024$
- Only 5M parameters (60M AlexNet)
- Auxiliary classifiers: their losses are added with discount weight
- Top five error 6.7%

ResNet 2015

- He et al.: Deep Residual Learning for Image Recognition, 2015
- 152 layers (2-3 weeks on 8 GPUs)
- Using skip connections
- Batch normalization instead of dropout
- Top five error 3.6% (human performance 5.1% expected)

CNNs for Natural Language Processing (NLP)

Transfer Learning

- Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization

Transfer Learning

- Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization

Transfer Learning

- Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization

- Idea: use an existing model as a base to solve a similar problem
- Often used when not enough data available to solve the target problem directly
- Example: reuse an ImageNet network for object localization
- You can:
- cut the original network at various layers,
- fix or not the weights of the original network or use different learning rates
- use different type of model for the head, e.g., linear SVM

Parameter Initialization

- Is it a good idea to set all weights to zero?

Parameter Initialization

- Is it a good idea to set all weights to zero?
- No. All neurons would behave the same: the same δ s are backpropagated. We need to break the symmetry
- Use small numbers, e.g., sample from a Gaussian distribution with zero mean:
- works well for shallow networks,
- for deep networks it is not a good idea

Gaussian Initialization

- MLP, ten tanh layers, 500 units each. Each input fed with $\mathcal{N}(0,1)$
- Weights initialized to $\mathcal{N}\left(0, \sigma^{2}\right)$

Xavier Initialization

- Glorot and Bengio: Understanding the difficulty of training deep feedforward neural networks, 2010
- For the linear neuron $s=\sum_{i} w_{i} x_{i}$, let w_{i} and x_{i} be independent random variables, w_{i} and x_{i} are i.i.d., $E\left(x_{i}\right)=E\left(w_{i}\right)=0$:

$$
\begin{aligned}
\operatorname{Var}(s) & =\operatorname{Var}\left(\sum_{i} w_{i} x_{i}\right)=\sum_{i} \operatorname{Var}\left(w_{i} x_{i}\right)= \\
& =\sum_{i}\left[\mathbb{E}\left(w_{i}\right)\right]^{2} \operatorname{Var}\left(x_{i}\right)+\left[\mathbb{E}\left(x_{i}\right)\right]^{2} \operatorname{Var}\left(w_{i}\right)+\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right)= \\
& =\sum_{i} \operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(w_{i}\right)=n_{\text {in }} \operatorname{Var}(x) \operatorname{Var}(w)
\end{aligned}
$$

- We want $\operatorname{Var}(s)=\operatorname{Var}(x)$, so choose $\operatorname{Var}(w)=\frac{1}{n_{\text {in }}}$
- Similar analysis for the backpropagated signal: $\operatorname{Var}(w)=\frac{2}{n_{\text {in }}+n_{\text {out }}}$
- Standardized inputs
- Works well for tanh as it is linear near zero
- Xavier initialization does not work for ReLU

ReLU

He Initialization

- He et al.: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification, 2015
- Suggested ReLU initialization
- Uses $\operatorname{Var}(w)=\frac{2}{n_{\text {in }}}$

Other Methods

- Recent data-driven techniques iteratively scaling weights in the network
- Batch normalization:
- specialized layer which sets unit variance,
- computes mean and variance estimates over batch,
- normalizes but allow linear transformation (parameters) of the distribution to better deal with nonlinearities

Autoencoders

- Task: train the network for identity (same targets as inputs $\mathbf{Y}=\mathbf{X}$)
- The number of hidden units is typically less than the number of inputs/outputs
- Compresses the input space
- May have tied weights $\left(\mathbf{W}^{\prime}=\mathbf{W}^{\mathbf{T}}\right)$
- Works as PCA for linear layers and squared loss: Bourlard and Kamp: Auto-Association by Multilayer Perceptrons and Singular Value Decomposition, 1988

Denoising Autoencoders

- Reconstruction from corrupted inputs

Stacked Autoencoders

1. Train the first layer as a shallow autoencoder

Stacked Autoencoders

1. Train the first layer as a shallow autoencoder
2. Use its hidden units' activations to train another shallow autoencoder

Stacked Autoencoders

1. Train the first layer as a shallow autoencoder
2. Use its hidden units' activations to train another shallow autoencoder
3. Repeat (2) until the desired number of layers is reached

Stacked Autoencoders

1. Train the first layer as a shallow autoencoder
2. Use its hidden units' activations to train another shallow autoencoder
3. Repeat (2) until the desired number of layers is reached
4. Fine-tune all parameters

- Use the encoder part of a stacked autoencoder for weight initialization of a different network
- Semi-supervised setup

POOL POOL POOL

32

32

$S=1$

$S=1$

Sharpen

Box blur
(normalized)

$$
\frac{1}{9}\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

$\frac{1}{16}\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1\end{array}\right]$
Gaussian blur (approximation)

$$
\left[\begin{array}{rrr}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0
\end{array}\right]
$$

POOL POOL POOL

Input feature map

Output feature map

$F=2, S=2$

2	2	0	4	3	4
0	0	5	0	4	1
4	5	2	5	1	4
5	2	1	0	2	1
2	3	3	3	5	3
0	3	0	4	0	1

2	5	4
5	5	4
3	4	5

input
CONV, MP
layers
input

$$
\begin{aligned}
& \underset{4-99}{\substack{2 \rightarrow 8}}
\end{aligned}
$$

(a) Siberian husky

(b) Eskimo dog

input

input

input

$\stackrel{\rightharpoonup}{2}$
$\stackrel{\rightharpoonup}{3}$
$\stackrel{3}{3}$

7	2	1	0	4	1	4	9	5
0	6	9	0	1	5	9	7	3

7	2	1	0	4	1	4	9	5
0	6	9	0	1	5	9	7	3

72	0	4	7	4	9	8
0	6	9	0	1	5	4

