ARMKEI

Microcontroller Tools

Getting Started

Create Applications with MDK Version 5
for ARM® Cortex®-M Microcontrollers

kA wvision
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
=2 I - | ® | & za- Ha# @le & &
& (5 ¥3 | sms2ra07 Flash EEIN 3
Project + B8 Blinky.c* [] Abstracttxt - X
=50 STMB2F207 Flash L a
-§54 Flash OPT + OTP
2] STM32F25¢ OPT.s void SysTick Handler (veid) {
] STM3ZF20c_OTP. static uint32_t ticks:
23 Source Files pd Sva
Blinky.c e [syscre puc urzmurz .
&5 Documentation 35 SYSCEC Typeer
A Al oconcozacioce]
& Board Suppert 31 ¢ SystemCoreGlockUpdate
A P % SystemInit -
[%] LED.c (MCBSTM32F200:LED) 32
& Cusis 330 if (vicks > 1
- Device 4 Manage Run-Time Environment ===
[$] GPIO_STM32F2u.c (GPIO)
[2] RTE_Device.h (Startup) Software Component Sel. Variant Version Description
startup _stm32(2cs (Startup] 54 Device Stertup, System Setup
%ft”"—;‘;;‘ﬂ;z‘*-‘ (Startup) @ DMA r DMA driver used by RTE Drivers for STM32F2 Series E
ti .|
5 st x;‘h @ B r EXTI driver used by RTE Drivers for STM32F2 Series
core_em
[stdinch @ FsMc r FSMC driver used by RTE Drivers for STM32F2 Series
5] core_cmnstrn @ 6pIo |7 GPIO driver used by RTE Drivers for STM32F2 Series
%} core_cmFunch @ Startup " System Startup for STMicroelectronics STM32F2 Series
L. [B] system_stm322och & Drivers Unified Device Drivers
-4 Graphics 4 File System MDK-Pro 504 File Access on various storage devices
% GULCM3_Liib (CORE) @ Graphics MDK-Pro 5221 User Interface on graphical LCD displays
[3] GULX RTE. (CORE) = 4 Network MDK-Pro [-]504 1P Networking using Ethemet or Serial protocols
GUIConf.c (CORE) @ CoRe ™ Debug [=]504 Networking Core for Cortex-M (Debug)
& Interface Connection Mechanism
& Service Network Services
€ Socket Network protocal
% uss MDK-Pro 504 USB Communication with various device classes
Eeroject | G5 ¥ Functions | 0y Tem Validation Output Description
Build Output /44 Segger.MDK-Pro::Graphics:CORE Additional software compenents required =]
[=)- require CMSISRTOS Select component from list [l
@ ARME:CMSIS:RTOS:Keil RTX CMSIS-RTOS RTX implementation for Cortex-M, SC000, and SC300

26 C6 CAP NUM| SCRL OVR RAW

ULINK2/ME Cortex Debugger

Preface

Information in this document is subject to change without notice and does not
represent a commitment on the part of the manufacturer. The software described
in this document is furnished under license agreement or nondisclosure
agreement and may be used or copied only in accordance with the terms of the
agreement. It is against the law to copy the software on any medium except as
specifically allowed in the license or nondisclosure agreement. The purchaser
may make one copy of the software for backup purposes. No part of this manual
may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or information storage and
retrieval systems, for any purpose other than for the purchaser’s personal use,
without written permission.

Copyright © 1997-2015 ARM Germany GmbH
All rights reserved.

Keil®, uVision®, Cortex®, CoreSight™ and ULINK™ are trademarks or
registered trademarks of ARM Germany GmbH and ARM Ltd.

Microsoft® and Windows™ are trademarks or registered trademarks of Microsoft
Corporation.

PC® is a registered trademark of International Business Machines Corporation.

NOTE
We assume you are familiar with Microsoft Windows, the hardware, and the
instruction set of the Cortex®-M processor.

Every effort was made to ensure accuracy in this manual and to give appropriate
credit to persons, companies, and trademarks referenced herein.

Getting Started: Create Applications with MDK Version 5

Preface

Thank you for using the MDK Version 5 Microcontroller Development Kit
available from ARM® Keil®. To provide you with the very best software tools
for developing Cortex-M processor based embedded applications we design our
tools to make software engineering easy and productive. ARM also offers
therefore complementary products such as the ULINK™ debug and trace
adapters and a range of evaluation boards. MDK is expandable with various third
party tools, starter Kits, and debug adapters.

Chapter Overview

The book starts with the installation of MDK and describes the software
components along with complete workflow from starting a project up to
debugging on hardware. It contains the following chapters:

MDK Introduction provides an overview about the MDK Core, the Software
Packs, and describes the product installation along with the use of example
projects.

CMSIS is a software framework for embedded applications that run on Cortex-M
based microcontrollers. It provides consistent software interfaces and hardware
abstraction layers that simplify software reuse.

Software Component Compiler describes the retargeting of 1/0O functions for
various standard 1/O channels.

Create Applications guides you towards creating and modifying projects using
CMSIS and device-related software components. A hands-on tutorial shows the
main configuration dialogs for setting tool options.

Debug Applications describes the process of debugging applications on real
hardware and explains how to connect

Middleware gives further details on the middleware that is available for users of
the MDK-Professional edition.

Using Middleware explains how to create applications that use the middleware
available with MDK-Professional and contains essential tips and tricks to get you
started quickly.

Contents

Contents
PIETACE ... ettt 3
(0] 01 (=] | £ PO TR TP UPRURTRTRRTR 4
MDK INTrOAUCTION ... 7
IMIDIK COFE ..ttt b e b bbbt e rae e sbe e aeesnbe e 7
SOTEWAIE PACKSevieeieie et sttt s nee e 7
MDK EGITIONS.eeiiiiiieiieieesse sttt 8
INSTAITALION ...t se e te et sreer e ntenne s 9
Software and Hardware REQUITEMENTScoviiirienieiieieieisesese e 9
INSEAIl IMDIK COFE ...ttt 9
INStall SOFtWAre PACKS........cviiiiiiiiiiiiieieiee e 10
MDK-Professional Trial LICENSE........cccvvveierieiiierierireie e 11
Verify Installation using Example Projectsccocevvvvivieieseesesecieseenas 12
USE SOFtWAIE PACKSoiviiviiiie e 16
ACCESS DOCUMENTALION ..ottt e nee e 20
REQUEST ASSISTANCE ...ttt 20
Learning PIatfOrmMcooiiiii i 21
L0\ 1] 1 TR 22
CMSIS-CORE ..ottt ettt 23
USING CMSIS-CORE ..ottt 23
CMSIS-RTOS RTX .ottt ettt 26
SOTEWAIE CONCEPLS ...ecviiieiie ettt sttt te e sbe et sbenre s 26
USING CMSIS-RTOS RTX ..ottt e 27
CMSIS-RTOS RTX API FUNCLIONS.......ccveiiiieiesiniie e sie e 32
CMSIS-RTOS User Code TeMPIALEScvevviiieiiiiiiececeee e 33
CIMSIS-DSP....eiieiete ettt ettt r et sre et nee e neens 43
Software Component Compilercccoooviieiiiic e 45
Create APPHCATIONS.......ccoiiiiiiiiiieee e 47
Blinky With CMSIS-RTOS RTX....cueiiiiieieisisie e eens 47
Blinky with Infinite LOOP DESIGN......ccoiiiiiiieeieeee e 56
Device Startup VariationS..........ccoeoeieieieinisise e 58
Example: Infineon XMC1000 using DAVE..........ccccooiiiieiiniiieeieieee e 58
Example: STM32CUDEccooiieii e 61
Debug APPHICALIONS ..o 64

Debugger CONNEBCHIONooieiiiee ettt 64

Getting Started: Create Applications with MDK Version 5

USING the DEDUGUETeveieiecie ettt ne e re e 65
DebUg TOOIDAN ..o e 66
CommMAaNd WINUOWcoeiiiieiiiieie et nee e 67
Disassembly WINAOWccooiiiiiiiice e 67
BreakPOINTSccviiieiie e 68
WaALCh WINAOW ...t 69
Call Stack and Locals WINOW............cccoeiiiiiniriie s 69
RegiSter WINAOWccvviiiiecicc st 70
MEMOIY WINUOW ...ttt 70
Peripheral REQISIENSviiiiieie s 71

TTACE ettt bbb bttt et nh e e e n e e 72

Trace with Serial Wire OUIPUL..........cooiiiiiiiiicecc e s 73
Trace EXCEPLIONS ..ottt 75
EVENT VIBWET ...t et 76
LOGIC ANAIYZET ..ot 77
Debug (Printf) VIBWETcoiiiiiiiciees s 78
EVENT COUNTETS. ..ttt sttt et sreeneee s 79

Trace With 4-Pin OUIPULcoveiiieccce e s 80

Trace with ONn-Chip Trace BUFTEr.........coeiiiiiiiiieeeeeee e 80

MIAAIBWATE ... e 81

NETWOrK COMPONENL. ...ttt 83

File System COMPONENT.........coviiiiiiiiie s 85

USB DeVice COMPONENL.......c.coiiieieiieeieiie et sre st sre e sbe e be e resre e 86

USB HOSt COMPONENTeiiiiiiecie ettt srae e e e e nnes 87

GraphiCcS COMPONENTc.veuiiiieiisiieie ettt 88

Driver COMPONENES.......coviiiiiieieceeie ettt sre et besreere e besreeresre e 89

FTP Server EXampPle......cvo oottt 90

USING MIdAIEWArEccviiieecceee e 92

USB HID EXAMPIE ...t et 94

Add SOTtware COMPONENTS.........ciuiriiiiieieieise st 95

Configure MIIBWAE.ooie e ee 97

(000 01 1o [0) T £ 99

AdJUSE SYSTEM RESOUITES ..ot 100

Implement Application FEATUIES...........oovviiiiiiiie e 101

Build and DOWNIOAA..........ccoiiieiee e e 104

Verify and DeDUQGooei e 104

Contents

Getting Started: Create Applications with MDK Version 5

MDK Introduction

The Keil Microcontroller Development Kit (MDK) helps you to create embedded
applications for ARM Cortex-M processor-based devices. MDK is a powerful,
yet easy to learn and use development system. MDK Version 5 consists of the
MDK Core plus device-specific Software Packs, which can be downloaded and
installed based on the requirements of your application.

MDK Version 5 is capable of using MDK Version 4 projects after installation of
the Legacy Support from www.keil.com/mdk5/legacy. This adds support for
ARM7, ARM9, and Cortex-R processor-based devices.

MDK Core

MDK Core includes all the components that you need to create, build, and debug
an embedded application for Cortex-M processor based microcontroller devices.
The Pack Installer manages Software Packs that can be added any time to MDK
Core. This makes new device support and middleware updates independent from

the toolchain.

uVision® IDE with Editor ARM® C/C++ Compiler

Pack Installer pVision® Debugger with Trace

MDK Core

Software Packs

Software Packs contain device support, CMSIS libraries, middleware, board
support, code templates, and example projects.

Device CMSIS MDK-Professional Middleware

System/Startup CMSIS-CORE

Ethernet Driver
CMSIS-DSP

USB Device Graphics

Software Packs

.
.
.

CMSIS-RTOS

USB Driver

http://www.keil.com/mdk5/legacy

MDK Introduction

MDK Editions

MDK provides the tools and the environment to create and debug applications
using C/C++ or assembly language and is available in various editions. Each
edition includes the uVision® IDE, debugger, compiler, assembler, linker,
middleware libraries, and the CMSIS-RTOS RTX.

= MDK-Professional contains extensive middleware libraries for sophisticated
embedded applications and all features of MDK-Standard.

= MDK-Standard supports Cortex-M, selected Cortex-R, ARM7 and ARM9
processor-based microcontrollers.

= MDK-Cortex-M supports Cortex-M processor-based microcontrollers.

= MDK-Lite is code size restricted to 32 KB and intended for product
evaluation, small projects, and the educational market.

The product selector, available at http://www.keil.com/mdk5/selector, gives an
overview of the features enabled in each edition.

License Types

With the exception of MDK-L.ite, the MDK editions require activation using a
license code. The following licenses types are available:

= Single-User License (Node-Locked) grants the right to use the product by one
developer on two computers at the same time.

= Floating-User License or FlexLM License grants the right to use the product
on several computers by a number of developers at the same time.

= 7-Day MDK-Professional Trial License to test the comprehensive
middleware without code size limits.

For further details, refer to the Licensing User’s Guide at
www.Keil.com/support/man/docs/license.

http://www.keil.com/mdk5/selector
http://www.keil.com/support/man/docs/license

Getting Started: Create Applications with MDK Version 5

Installation

Software and Hardware Requirements

MDK has the following minimum hardware and software requirements:
= A PC running Microsoft Windows (32-bit or 64-bit) operating system
= 4 GB RAM and 8 GB hard-disk space

= 1280 x 800 or higher screen resolution; a mouse or other pointing device

Install MDK Core

Download MDK-ARM v5 from www.Kkeil.com/download - Product Downloads
and run the installer.

Follow the instructions to install the MDK Core on your local computer. The
installation also adds the Software Packs for ARM CMSIS and MDK-
Professional Middleware.

After the MDK Core installation is complete, the Pack Installer is started
automatically, which allows you to add supplementary Software Packs. As a
minimum, you need to install a Software Pack that supports your target
microcontroller device.

http://www.keil.com/download

10 MDK Introduction

Install Software Packs

The Pack Installer is a utility for managing Software Packs on the local
computer.

@ The Pack Installer runs automatically during the installation but also can be
run from pVision using the menu item Project — Manage — Pack Installer.
To get access to devices and example projects you should install the
Software Pack related to your target device or evaluation board.

NOTE
To obtain information of published Software Packs the Pack Installer connects to
www.keil.com/pack.

5 Pack Installer - C:AMDKSVARM\PACK == Eem ==
File Packs Window Help
| Device:
ﬂ Packs Examples ﬁ ﬂ Devices Boards ﬂ
Pack Action Description Search: - X
+ -AnalogDevices:ADUCM36... | € Install Analog Devices ADuCM36x Dev + || || pevice /| summary
- AnalogDevices:ADUCN2... | §p_Install Analog Devices ADUCM320 Dex 59 Analog Devices 13 Devices .
el @ Up to date || CMSIS (Cortex Microcentroller S % ARM 18 Devices Tl
425 3 Remove CMSIS (Cortex Microcontroller __| #- %% ARM Cortex MO 2 Devices
420 & _Install CMSIS (Cortex Microcontroller 2% ARM Cortex MO plus |2 Devices
419 [l Unpack CMSIS (Cortex Micrecontroller +-%% ARM Cortex M3 2 Devices
#-Previous ARM::CMSIS - Previous Pack Ve + %% ARM Cortex M4 4 Devices
+ Infineon:XMC1000_DFP Install Infinean XMC1000 Series Devic: %2 ARM Cortex M7 6 Devices
+ - Infineon: XMC4000_DFP < Install Infineon XMC4000 Series Devic: @ ARMCMT ARM Cortex-M7. 10 MHz 128 kB RAM, 512...
4 -Keil:ARMCortex_DFP & Install ARM Cortex-M Profile Device § @ ARMCNT DP ARM Cortex- M7, 10 MHz, 128 kB RAM, 512...
4 -Keil:BulbBoard_BSP & Install Glyn Bulb Board Development | @ ARMCMT 5P| ARM Cortex-M7. 10 MHz 128 kB RAM, 512..
+) - Keil:: CMdso_DFP <& Install Analog Devices ARM Cortex-M- £ CMSDE. C_MT ARM Cortex-M7. 25 MHz 4 MB RAM. 4 M.
+ Keil:EB_TMPM36OFDFG B... |§p Install Vokogawa EB-TMPM36OFDFG £ £1 CMSDK CM7 DP | ARM Cortex-M7. 25 MHz 4 ME RAM. 4 M...
+--Keil:EFM32GGroo DFP ¥ Update Silicon Labs EFM32 Giant Geckc £ CMSDK CM7 SP | ARM Cortex-M7. 25 MHz 4 ME RAM, 4 M.,
+-Keil:EFM32Gxoo_DFP @ Up to date | Energy Micro EFM32 Gecko Ser =2 ARM 5C000 1 Device
+ Keil:EFM32L Gioee DFP @ Install Energy Micro EFM32 Leopard G H %4 ARM SC300 1 Device
+--Keil::EFM32T Groce_DFP @ Install Energy Micro EFM32 Tiny Geck +- % Atmel 136 Devices
+ - Keil:EFM32WGioo_DFP & Install Energy Micro EFM32 Wonder G +- % Freescale 20 Devices
4| N ‘ _>|J % % Infincon 109 Devices =l
Ready ONLINE

The status bar, located at the bottom of the Pack Installer, shows information
about the Internet connection and the installation progress.

T1P: The device database at www.keil.com/dd2 lists all available devices and
provides download access to the related Software Packs. If the Pack
Installer cannot access www.keil.com/pack you can manually install
Software Packs using the menu command File — Import or by double-
clicking *.PACK files.

http://www.keil.com/pack
http://www.keil.com/dd2
http://www.keil.com/pack

Getting Started: Create Applications with MDK Version 5

11

MDK-Professional Trial License

MDK has a built-in free seven-day trial license for MDK-Professional. This
removes the code size limits and you can explore and test the comprehensive
middleware.

Start pVision with administration rights.

1. InpVision, go to File — License Management... and click Evaluate
MDK Professional

Single-User License | Floating License | Floating License Administrator | FlexLM License |

Customer Information Computer ID
Name: | el
Company: |

Get LIC via Intemet .. |

Email: |

Product | License ID Code... | Support Period
MDK-Lite Evaluation Version

New License ID Code (LIC): |

License Management @

< Evaluate MDK Professional)

2. On the next screen, click Start MDK Professional Evaluation for 7
Days. After the installation, the screen displays information about the
expiration date and time.

NOTE
Activation of the 7-day MDK Professional trial version enables the option Use
Flex Server in the tab FlexLM License as this license is based on FlexLM.

12 MDK Introduction

Verify Installation using Example Projects

Once you have selected, downloaded, and installed a Software Pack for your
device, you can verify your installation using one of the examples provided in the
Software Pack. To verify the Software Pack installation, we recommend using a
Blinky example, which typically flashes LEDs on a target board.

T1P: Review the getting started video on http://www.keil.com/mdk5 that
explains how to connect and work with an evaluation Kit.

Copy an Example Project

@ Inthe Pack Installer, select the tab Examples. Use filters in the toolbar to
narrow the list of examples.

CMSIS-RTOS Blinky (STM32F401C-Disco...
CMSIS-RTOS Blinky (XMC1100 Boot Kit)
CMSIS-RTOS Blinky (XMC1200 Boot Kit)
CMSIS-RTOS Blinky (Hexagon Applicati...
CMSIS-RTOS Blinky (EFM32GG-DK3750)
CMSIS-RTOS Blinky (EFM32GG-5TK3700)
CMSIS-RTOS Blinky (MCB1700)
CMSIS-RTOS Blinky (MCE1800)
4

& Copy CMSIS-RTOS based Blinky exar
i Copy CMSI5-RTOS based Blinky exarr
i Copy CMSI5-RTOS based Blinky exarr
i Copy CMSI5-RTOS based Blinky exarr
i Copy CMSI5-RTOS based Blinky exarr
i Copy CMSI5-RTOS based Blinky exarr
& Cop CMBSIS-RTOS based Blinky exam »
S i

& ARMCMT
&1 ARMCMT_DP
8 ARMCMT_SP
£3 CMSDK_CM7
£3 CMSDK_CM7_DP
£3 CMSDK_CMT7_SP
% ARM SC000
-5 ARM SC300

F5 Pack Installer - CAMDKS\ARM\PACK o2 ==
File Packs Window Help
i | Device:
14| Packs ' Examples b |l4] Devices | Boards b|
[¥ Show examples from installed Packs only Search: - X
EBemple Action Description Device /| Summary
USB Device Virtual COM (MCBSTM32F4... | € Copy Bridge between PC USB Virtual || [#-# Analog Devices 13 Devices =
CMSIS-RTOS Blinky (MCBSTM32C) & Copy CMSIS-RTOS based Blinky exarr =@ ARM 18 Devices
CMSIS-RTOS Blinky (MCBSTM3ZE) & Copy CMSIS-RTOS based Blinky exan'J =45 ARM Cortex MO 2 Devices
CMSIS-RTOS Blinky (MCBSTM3ZF200) |49 Copy CMSIS-RTOS based Blinky exarr ¢ ARM Cortex MO plus |2 Devices
CMSIS-RTOS Blinky (MCBSTM3ZF400) |49 Copy CMSIS-RTOS based Blinky exarr % ARM Cortex M3 2 Devices
| CMSIS-RTOS Blinky (STM32F4-Discovery) 2N CMSIS-RTOS based Blinky exarr %% ARM Cortex M4 4 Devices
& Copy CMSIS-RTOS based Blinky exarr =% ARM Cortex M7 6 Devices

ARM CorteM7, 10 MHz 12...
ARM Cortex-M7, 10 MHz 12...
ARM Cortex-M7, 10 MHz 12...
ARM Cortex-M7, 25 MHz 4 ...
ARM Cortex-M7, 25 MHz 4 ...
ARM Cortex-M7, 25 MHz 4 ...

1 Device

|

1 Device

Ready

OMLINE

Click Copy and enter the Destination Folder name of your working directory.

Copy Example

Destination Folder

| C:\MDKS5_Projects BlinkyRTOS

¥ Use Pack Folder Structure

¥ Launch pvision

o |

=l

Browse...

Cancel |

NOTE

You must copy the example projects to a working directory of your choice.

http://www.keil.com/mdk5

Getting Started: Create Applications with MDK Version 5 13

= Enable Launch pVision to open the example project directly in the IDE.

= Enable Use Pack Folder Structure to copy example projects into a common
folder. This avoids overwriting files from other example projects. Disable
Use Pack Folder Structure to reduce the complexity of the example path.

= Click OK to start the copy process.

Use an Example Application with pVision

Now pVision starts and loads the example project where you can:

LoD

¥4 Download the application, typically to on-chip Flash ROM of a device.
@] Run the application on the target hardware using a debugger.

The step-by-step instructions show you how to execute these tasks. After
copying the example, pVision starts and looks similar to the picture below.

k4 CAMDKS_Projects\BlinkyRTOS\Boards\ST\STM32F4-Discovery\RTX_Blinky\Blinky.uvprojx - pVision =N |
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
Eda| @ | | | &= | @ Etnemet common deini[+] 23, ¢ | @ | @ = & @|[F)
(5] (#4 £2 1| $%| sws2r207 Flash Fla&l s 2
Project L] _] Abstracttxt e
=% Project: Blinky 1 The 'RTX Blinky' project is a simple CMSIS RTOS Kernel based example A
S &5 STM32FA07 Flash 2 ST 'STM32F407VG' microcontroller using ST 'STM32F4-Discovery' Evaluation Board.
&-E5 Source Files 3 Compliant to Cortex Microcontroller Software Interface Standard (CMSIS v2.0).
) 4
| Blinky.c 5 Example functionality:
=+l Documentation 6 - Clock Settings:
L] Abstract.bt 7 - XTAL = 8.00 MHz
=4 BoardSupport 5 mom = svscim = ice.00 i
- HCIR = K = 168. Hz
w4 CMSIS a0
w4 Device 11 The simple RTX Kernel based example uses two RTX tasks
12 to blink a LED.
13
12
15 The Blinky program is available in different targets:
16
17 STM32F407 Flash: configured for on-chip Flash
18 (used for production or target debugging)
19
20 STM32F407 RAM: configured for on-chip RAM
q j 21 (used for target debugging) -
Eer. (e [OF. (047 ‘ 0 ’

ST-Link Debugger

T1P: Most example projects contain an Abstract.txt file with essential
information about the operation and hardware configuration.

14 MDK Introduction

Build the Application

The Build Output window shows information about the build process. An error-
free build shows information about the program size.

Build Output []
Rebuild target 'STM32F407 Flash' -
compiling Blinky.c...

compiling Keyboard.c...

compiling LED.c...

compiling RTX Conf CHM.c...

compiling system stm32fd4xx.c...

asgembling startup stm32f40 4Ixxx.s...

compiling GPIO STM32F4xx.c...

linking...
Program Size: Code=6936 RO-data=576 RW-data=100 ZI-data=2836
" .\Flash\Blinky.axf" - 0 Error(s), 0 Warning(s).

Build Time Elapsed: 00:00:03 -

] b

Download the Application

Connect the target hardware to
your computer using a debug
adapter that typically connects
via USB. Several evaluation
boards provide an on-board
debug adapter.

Now, review the settings for the debug adapter. Typically, example projects are
pre-configured for evaluation Kits; thus, you do not need to modify these settings.

4% Click Options for Target on the toolbar and select the Debug tab. Verify
that the correct debug adapter of the evaluation board you are using is
selected and enabled. For example, CMSIS-DAP Debugger is a debug
adapter that is part of several starter kits.

4 Options for Target 'STM32F407 Flash’ (2

Device | Target | Output | Listing | User ‘ C/Cs+ | Asm | Un@lmes |
" Use Simulator Settin = Use: |CMSIS-DAP Debugger jw}

[Limit Speed to Real-Time

Getting Started: Create Applications with MDK Version 5 15

& Click the Utilities tab to verify Flash programming. Enable Use Debug

Driver to perform flash download via the debug adapter you selected on the
Debug tab.

Options for Target 'STM32F407 Flash'

Device | Target | Output | Listing | User | CiC++ | Asm | Linker | Deh

Configure Aash Menu Command

==l

{+ Use Target Driver for Flash Programming I¥ Use Debug Driver

— Use Debug Driver — Settings I¥ Update Target before Debuaging
It Fie: | st

T1P: Click the button Settings to verify communication settings and diagnose
problems with your target hardware. For further details, click the button

Help in the dialogs. If you have any problems, refer to the user guide of
the starter Kit.

LOAD

¥3 Click Download on the toolbar to load the application to your target
hardware.

Build Output

B

Load "C:\\MDK5_Projects\\BlinkyRTOS\\Boards\\ST\\STM32F4-Discovery\\RTX_Blinky\\Flash\\Blinky.axf"
Erase Done.

Programming Done.

Verify OK.

Application running ...

Flash Load finished at 02:42:13

The Build Output window shows information about the download progress.

Run the Application

@) Click Start/Stop Debug Session on the toolbar to start debugging the
application on hardware.

Click Run on the debug toolbar to start executing the application. LEDs
should flash on the target hardware.

16

MDK Introduction

Use Software Packs

Software Packs contain information about microcontroller devices and software
components that are available for the application as building blocks.

The device information pre-configures development tools for you and shows only
the options that are relevant for the selected device.

k2 Start pVision and use the menu Project - New pVision Project. After you
have selected a project directory and specified the project name, select a

target device.

Select Device for Target 'Target1'... @
crU |
|Soﬂware Packs j
Vendor: STMicroelectronics
Device: STM32F401CBLk
Toolset: ARM
Search:
Description:
=% STMicroelectronics j The STM32F4 family incorporates high-speed embedded memories and -
%% STM32FL Seri an extensive range of enhanced |/0s and peripherals connected to
- Ernes two APB buses, three AHB buses and a 32-bit mutti-AHB bus matrix.
78 STM32F2 Series J
o . - 64-Kbyte of CCM (core coupled memory) data RAM
=17 STM32F4 Series - LCD parallel interface, 8080/6800 modes
=T STM32F401 - Timer with quadrature (incremental) encoder input
- 5 Vtolerant 1/0s
=% STM32F401CE - Parallel camera interface
=0 STM322F401CB - True random number generator
- RTC: subsecond accuracy, hardware calendar
€3 STM322F401CEY - 96t unique 1D
% STM32F401CC
K =] o
0K Cancel | Help

T1P: Only devices that are part of the installed Software Packs are shown. If you
are missing a device, use the Pack Installer to add the related Software
Pack. The search box helps you to narrow down the list of devices.

Getting Started: Create Applications with MDK Version 5

17

€ After selecting the device, the Manage Run-Time Environment window
shows the related software components for this device.

[Resolve][Seled Packs][Details]

Manage Run-Time Environment @
Software Component Sel. Variant Version Description
& Board Support STM32F4291-Di5coiz| 1.00 STMicroelectronics STM32F4291-Discovery Kit =l
= @ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE I 400 CMSIS-CORE for Cortex-M, SC000, and SC300
¥ DSP r 14.2 CMSIS-DSP Library for Cortex-M, 5C000, and SC300

4 RTOS (APD) 1.0 CMSIS-RTOS API for Cortex-M, 5C000, and 5C300
= @ CMSIS Driver Unified Device Drivers compliant te CMSIS-Driver Specifications

@ Ethernet (AP]) 201 Ethernet MAC and PHY Driver API for Cortex-M

@ Ethernet MAC (APT) 20 Ethernet MAC Driver API for Cortex-h

@ Ethemet PHY (AP]) 2.00 Ethernet PHY Driver API for Cortex-M

@ Flash (AP} 2.00 Flash Driver API for Cortex-IM

= @ 12C (APT) 202 I2C Driver AP for Cortex-M

¥ RC r 201 I2C Driver for STM32F4 Series

€ MCI(APY) 202 MCI Driver API for Cortex-M

% NAND (AP]) 201 NAND Flash Driver API for Cortex-M

& SP1(APT) 201 SPI Driver AP for Cortex-M

@ USART (APD) 201 USART Driver AP for Cortex-M

@ USE Device (APT) 201 USB Device Driver API for Cortex-M

@ USB Host (APT) 20 USB Host Driver AP for Cortex-M
@ Compiler
@ Device Startup. Systemn Setup
& File System MDK-Pro 6.24 File Access on various storage devices
& Graphics MDK-Pro 5261 | UserlInterface on graphical LCD displays
& Graphics Display Display Interface including configuration for emWIN i
@ MNetwork MDK-Pro 6.2.0 IP Metworking using Ethernet or Serial protocols
% Use MDK-Pro 6.27 USE Communication with various device classes j
Validation Qutput Description

Help

T1P: The links in the column Description provide access to the documentation of

each software component.

NOTE

The notation ::<Component Class>:<Group>:<Name> is used to refer to
components. For example, ::CMSIS:CORE refers to the component CMSIS-

CORE selected in the dialog above.

18 MDK Introduction

Software Component Overview

The following table shows the software components for a typical installation.
Depending on your selected device, some of these software components might
not be visible in the Manage Run-Time Environment window. In case you have
installed additional Software Packs, more software components will be available.

Software Component Description ‘ Page

Board Support Interfaces for example projects to the peripherals of n.a.
evaluation boards.

CMSIS CMSIS interface components, such as CORE, DSP, 22
and CMSIS-RTOS.

CMSIS Driver Unified device drivers for middleware and user 89
applications.

Compiler ARM Compiler specific software components to retarget 45
I/O operations for example for printf style debugging.

Device System startup and low-level device drivers. 48

File System Middleware component for file access on various 85
storage device types.

Graphics Middleware component for creating graphical user 88
interfaces.

Graphics Display Display interface including configuration for emWIN. n.a.

Network Middleware component for TCP/IP networking using 83
Ethernet or serial protocols.

uUsB Middleware component for USB Host and USB Device 86

supporting standard USB Device classes.

Product Lifecycle Management with Software Packs

MDK allows you to install multiple versions of a Software Pack. This enables
Product Lifecycle Management (PLM) as it is common for many projects.

There are four distinct phases of PLM:

= Concept: Definition of major project requirements and exploration with a
functional prototype.

= Design: Prototype testing and implementation of the product based on the
final technical features and requirements.

= Release: The product is manufactured and brought to market.

= Service: Maintenance of the products including support for customers; finally
phase-out or end-of-life.

Getting Started: Create Applications with MDK Version 5

19

In the concept and design phase, you normally want to use the latest Software
Packs to be able to incorporate new features and bug fixes quickly. Before

product release, you will freeze the Software Components to a known tested state.

In the product service phase, use the fixed versions of the Software Components
to support customers in the field.

u

The dialog Select Software Packs helps you to manage the versions of each
Software Pack in your project:

L Select Software Packs for Target 'STM32F407 Flash’ =
I Use latest versions of all installed Software Packs

Pack Selection Version Description

=l--ARM: CMSIS fixed |z| 4.2.0 CMSIS (Cortex Microcontroller Software Interface Standard)
424 r
420 [+

Keil: ARM_Compiler fixed |z|1.0.0 Keil ARM Compiler extensions

=-Keil:MDK-Middleware fixed |Z|6.2.9 Keil MDK-ARM Professional Middleware for ARM Cortex-M based devices
6.29 [+
6.2.0 r

=-Keil:STM32Fdho_DFP fixed |Z| 230 STMicroelectronics STM32F4 Series Device Support, Drivers and Examples
230 [+
220 r
107 r

QK Cancel | Help

When the project is completed, disable the option Use latest version of all
installed Software Packs and specify the Software Packs with the settings under
Selection:

latest: use the latest version of a Software Pack. Software Components are
updated when a newer Software Pack version is installed.

fixed: specify an installed version of the Software Pack. Software
Components in the project target will use these versions.

excluded: no Software Components from this Software Pack are used.

The colors indicate the usage of Software Components in the current project
target:

Some Software Components from this Pack are used.

Some Software Components from this Pack are used, but the Pack is
excluded.

No Software Component from this Pack is used.

20 MDK Introduction

Access Documentation

MDK provides online manuals and context-sensitive help. The pVision Help
menu opens the main help system that includes the uVision User’s Guide, getting
started manuals, compiler, linker and assembler reference guides.

Many dialogs have context-sensitive Help buttons that access the documentation
and explain dialog options and settings.

You can press F1 in the editor to access help on language elements like RTOS
functions, compiler directives, or library routines. Use F1 in the command line of
the Output window for help on debug commands, and some error and warning
messages.

The Books window may include device reference guides, data sheets, or board
manuals. You can even add your own documentation and enable it in the Books
window using the menu Project — Manage — Components, Environment,
Books — Books.

The Manage Run-Time Environment dialog offers access to documentation via
links in the Description column.

In the Project window, you can right-click a software component group and open
the documentation of the corresponding element.

You can access the latest information in the on-line nVision User’s Guide.

Request Assistance

If you have suggestions or you have discovered an issue with the software, please
report them to us. Support and information channels are accessible at
www.keil.com/support.

When reporting an issue, include your license code (if you have one) and product
version, available from the pVision menu Help — About.

http://www.keil.com/support/man/docs/uv4/
http://www.keil.com/support

Getting Started: Create Applications with MDK Version 5

21

Learning Platform

We offer a website that helps you to learn more about the programming of ARM

Cortex-based microcontrollers. It contains tutorials, videos, further
documentation, as well as useful links to other websites and is available at

www.keil.com/learn.

> KEIL

f Products Download Events Support Videos

Learn how to Program Cortex-M Microcontrollers

This is a collection of resources that help you to create application software for ARM® Cortex®-M
microcontrollers. It contains links to hands-on videos and example projects, application notes, and
a knowledge base.

2 Fundamentals: Cortex-M Processor Oveniew and Essential System Programming

% CMSIS: Cortex Microcontroller Software Interface Standard

Topic Description

Overview Overview of all CMSIS Components

CMSIS-CORE Features of CMSIS-CORE

CMSIS-DSP Overview and Reference Examples

CMSIS-SVD View Peripherals using the System View Description
CMSIS-Driver Software APl for Middleware and User Code
CMSIS-Pack Product Lifecycle Management with Software Packs

¥ Debugging: How to use Cortex-M Debug and Trace Features

Application Notes

ANF—] Application notes provide
in-depth information about MDK
and various microcontroller

applications. We create them to
help you with difficult problems.

Knowledge Base
The knowledge base contains
articles created by members of
the Keil support team,
answering frequently asked

questions and giving tips for a better tool
usage.

Forum

— Our discussion forum is open to

p- everyone. You may use it to

http://www.keil.com/learn

22 CMSIS

CMSIS

The Cortex Microcontroller Software Interface Standard (CMSIS) provides a
ground-up software framework for embedded applications that run on Cortex-M
based microcontrollers. CMSIS enables consistent and simple software interfaces
to the processor and the peripherals, simplifying software reuse, reducing the
learning curve for microcontroller developers.

NOTE
This chapter is intended as reference section. The chapter Create Applications on
page 47 shows you how to use CMSIS for creating application code.

The CMSIS, defined in close cooperation with various silicon and software
vendors, provides a common approach to interface peripherals, real-time
operating systems, and middleware components.

The CMSIS application software components are:

= CMSIS-CORE: Defines the API for the Cortex-M processor core and
peripherals and includes a consistent system startup code. The software
components ::CMSIS:CORE and ::Device:Startup are all you need to create
and run applications on the native processor that uses exceptions, interrupts,
and device peripherals.

= CMSIS-RTOS: Provides a standardized real-time operating system APl and
enables software templates, middleware, libraries, and other components that
can work across supported RTOS systems. This manual explains the usage of
the CMSIS-RTOS RTX implementation.

= CMSIS-DSP: Is a library collection for digital signal processing (DSP) with
over 60 Functions for various data types: fix-point (fractional q7, q15, q31)
and single precision floating-point (32-bit).

Getting Started: Create Applications with MDK Version 5 23

CMSIS-CORE

This section explains the usage of CMSIS-CORE in applications that run natively
on a Cortex-M processor. This type of operation is known as bare-metal, because
it uses no real-time operating system.

Using CMSIS-CORE

A native Cortex-M application with CMSIS uses the software component
::CMSIS:CORE, which should be used together with the software component
::Device:Startup. These components provide the following central files:

NOTE

In actual file names, <device> is the name of the microcontroller device.

= The startup_<device>.s
file with reset handler
and exception vectors.

= The system_<device>.c
configuration file for
basic device setup (clock
and memory BUS).

= The <device>.h include
file for user code access
to the microcontroller
device.

startup_<device>.s

CMSIS:CORE Component
D Device:Startup Component

CMSIS Device Startup
Interrupt Vectors D User Program
system_<device>.c
CMSIS System &
Clock Configuration
<users.clc++ <device>.h
le—]|
UserApplication CMSIS
main() { ... } Device Peripheral Access

The <device>.h header file is included in C source files and defines:

= Peripheral access with standardized register layout.

= Access to interrupts and exceptions, and the Nested Interrupt Vector

Controller (NVIC).

= |ntrinsic functions to generate special instructions, for example to activate

sleep mode.

= Systick timer (SYSTICK) functions to configure and start a periodic timer

interrupt.

= Debug access for printf-style /O and ITM communication via on-chip

CoreSight™.,

24 CMSIS

Adding Software Components to the Project

The files for the components ::CMSIS:CORE and ::Device:Startup are added
to a project using the pVision dialog Manage Run-Time Environment. Just
select the software components as shown below:

m Manage Run-Time Environment
Software Component Sel. Variant Version Description
@ 4 Board Support STM32F4291-Discovery El 100 STMicroelectranics STM32F4291-Discovery Kit
= @ CMSIS Cortex Microcontroller Software Interface Components
¥ CORE c 400 CMSIS-CORE for Cortex-M, 5C000, and SC300
¢ DsP r 142 CMSIS-DSP Library for Cortex-M, 50000, and 5C300
& @ RTOS (APT) 1.0 CMSIS-RTOS API for Cortex-M, 5C000, and SC300
M @ CMSIS Driver Unified Device Drivers compliant te CMSIS-Driver Specifications
= @ Compiler
= @m Startup, System Setup
¢ Startup v 210 System Startup for STMicroelectronics STM32F4 Series
= @ 5TM32Cube Frame... STM32Cube Framework
[+ @ STM32Cube HAL STM32Fdux Hardware Abstraction Layer (HAL) Drivers
[+ @ File System MDK-Pro 6.24 File Access on various storage devices
[+ @ Graphics MDK-Pro 5261 | UserInterface on graphical LCD displays

The pVision environment adds the related files.

Source Code Example
The following source code lines show the usage of the CMSIS-CORE layer.
Example of using the CMSIS-CORE layer

#include "stm32f4xx.h" // File name depends on device used

uint32 t volatile msTicks; // Counter for millisecond Interval

uint32 t volatile frequency; // Frequency for timer

void SysTick Handler (void) ({ // SysTick Interrupt Handler
msTicks++; // Increment Counter

}

void WaitForTick (void) {
uint32 t curTicks;

curTicks = msTicks; // Save Current SysTick Value
while (msTicks == curTicks) { // Wait for next SysTick Interrupt
__WFE (); // Power-Down until next Event

}

}

void TIM1 UP_IRQHandler (void) { // Timer Interrupt Handler
; // Add user code here

}

void timerl init(int frequency) { // Set up Timer (device specific)
NVIC SetPriority (TIM1 UP_IRQn, 1); // Set Timer priority
NVIC EnableIRQ (TIM1_UP_IRQn); // Enable Timer Interrupt

}

http://www.keil.com/pack/doc/cmsis/Core/html/group__intrinsic___c_p_u__gr.html#gad3efec76c3bfa2b8528ded530386c563
http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga5bb7f43ad92937c039dee3d36c3c2798
http://www.keil.com/pack/doc/cmsis/Core/html/group___n_v_i_c__gr.html#ga530ad9fda2ed1c8b70e439ecfe80591f

Getting Started: Create Applications with MDK Version 5 25

// Configure & Initialize the MCU
void Device Initialization (void) {
if (SysTick Config (SystemCoreClock / 1000)) ({
// Handle Error

// SysTick 1lms

}

timerl init (frequency) ; // Setup device-specific timer

}
// The processor clock is initialized by CMSIS startup + system file
int main (void) { // User application starts here

Device Initialization () // Configure & Initialize MCU

//
//

//
//

while (1) {
__disable irq ();
// Get_InputValues ();
__enable irqg ();
// Process Values ();
WaitForTick ()

Endless Loop (the Super-Loop)
Disable all interrupts

Enable all interrupts

Synchronize to SysTick Timer
}

For more information, right-click the group CMSIS in the Project window, and
choose Open Documentation, or refer to the CMSIS-CORE documentation
http://www.keil.com/cmsis/core.

J [2] CMSIS-CORE: Reference % | +

keil.com/pack/doc/CMSIS/Core/html/modules.html

QGMSIS CMSIS-CORE version 4.00

CMSIS-CORE support for Cortex-M processor-based devices
CMSIS Driver | DSP RTOSAPI | Pack | SVD |

Main Page

| Usageand Description a

CMSIS-CORE

Ovenview

Template Files

Register Mapping
Todo List

Data Structures
DataFields

Using CMSIS in Embed

Applications

MISRA-G:2004 Compliance Exceptions

T

Reference

Here is a list of all modules:
Peripheral Access

System and Clock Configuration
Interrupts and Exceptions (NVIC)

Core Register Access

Intrinsic Functions for CPU Instructions

Intrinsic Functions for SIMD Instructions [only Cortex-M4 and Cortex-M7]

Systick Timer (SYSTICK)
Debug Access

Describes naming conventions, requirements, and
optional features for accessing peripherals

Describes programming of interrupts and

exception functions

Access to dedicated SIMD instructions

Initialize and start the SysTick timer

http://www.keil.com/pack/doc/cmsis/Core/html/group___sys_tick__gr.html#gabe47de40e9b0ad465b752297a9d9f427
http://www.keil.com/pack/doc/cmsis/Core/html/group__system__init__gr.html#gaa3cd3e43291e81e795d642b79b6088e6
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#gaeb8e5f7564a8ea23678fe3c987b04013
http://www.keil.com/pack/doc/cmsis/Core/html/group___core___register__gr.html#ga0f98dfbd252b89d12564472dbeba9c27
http://www.keil.com/cmsis/core

26 CMSIS

CMSIS-RTOS RTX

This section introduces the CMSIS-RTOS RTX Real-Time Operating System,
describes the advantages, and explains configuration settings and features of this
RTOS.

NOTE

MDK is compatible with many third-party RTOS solutions. However, CMSIS-
RTOS RTX is well integrated into MDK, is feature-rich and tailored towards the
requirements of deeply embedded systems.

Software Concepts

There are two basic design concepts for embedded applications:

= Infinite Loop Design: involves running the program as an endless loop.
Program functions (threads) are called from within the loop, while interrupt
service routines (ISRs) perform time-critical jobs including some data
processing.

= RTOS Design: involves running several threads with a Real-Time Operating
System (RTOS). The RTOS provides inter-thread communication and time
management functions. A preemptive RTOS reduces the complexity of
interrupt functions, because high-priority threads can perform time-critical
data processing.

Infinite Loop Design

Running an embedded program in an endless loop is an adequate solution for
simple embedded applications. Time-critical functions, typically triggered by
hardware interrupts, execute in an ISR that also performs any required data
processing. The main loop contains only basic operations that are not time-
critical and run in the background.

Getting Started: Create Applications with MDK Version 5 27

Advantages of an RTOS Kernel

RTOS kernels, like the CMSIS-RTOS RTX, are based on the idea of parallel
execution threads (tasks). As in the real world, your application will have to
fulfill multiple different tasks. An RTOS-based application recreates this model
in your software with various benefits:

= Thread priority and run-time scheduling is handled by the RTOS Kernel, using
a proven code base.

= The RTOS provides a well-defined interface for communication between
threads.

= A pre-emptive multi-tasking concept simplifies the progressive enhancement
of an application even across a larger development team. New functionality
can be added without risking the response time of more critical threads.

= [nfinite loop software concepts often poll for occurred interrupts. In contrast,
RTOS kernels themselves are interrupt driven and can largely eliminate
polling. This allows the CPU to sleep or process threads more often.

Modern RTOS kernels are transparent to the interrupt system, which is
mandatory for systems with hard real-time requirements. Communication
facilities can be used for IRQ-to-task communication and allow top-half/bottom-
half handling of your interrupts.

Using CMSIS-RTOS RTX

CMSIS-RTOS RTX is implemented as a library and exposes the functionality
through the header file cmsis_os.h.

Execution of the CMSIS-RTOS RTX starts with the function main() as the first
thread. This has the benefit that developers can initialize other middleware
libraries that create threads internally, but the remaining part of the user
application uses just the main thread. Consequently, the usage of the RTOS can
be invisible to the application programmer, but libraries can use CMSIS-RTOS
RTX features.

The software component ::CMSIS:RTOS:Keil RTX must be used together with
the components ::CMSIS:CORE and ::Device:Startup. Selecting these
components provides the following central CMSIS-RTOS RTX files:

NOTE
In the actual file names, <device> is the name of the microcontroller device;
<device core> represents the device processor family.

28

CMSIS

The file RTX_<core>.lib
is the library with RTOS
functions.

The configuration file
RTX_Conf_CM.c for
defining thread options,
timer configurations, and
RTX kernel settings.

The header file
cmsis_os.h exposes the
RTX functionality to the
user application.

The function main() is
executed as a thread.

Once these files are part of
the project, developers can
start using the CMSIS-RTOS RTX functions. The code example shows the use

of CMSIS-RTOS RTX functions:

startup_<device>.s

CMSIS Device Startup
Interrupt Vectors

CMSIS:CORE Component
D Device:Startup Component

D User Program

system_<device>.c

CMSIS System &
Clock Configuration

RTX_<core>lib

CMSIS Compliant
RTOS-RTX Library

CMSIS:RTOS:RTX

RTX_Conf_CM.c

CMSIS
RTOS-RTX Configuration

cmsis_os.h

CMSIS
RTOS-RTX Interface

<user>.clc++

UserApplication
main() { ... }

<device>.h

CMSIS
Device Peripheral Access

Example of using CMSIS-RTOS RTX functions

#include "cmsis os.h"

// CMSIS RTOS header file

void jobl (void const *argument) { // Function 'jobl'

}

// execute some code
osDelay (10);

// Delay execution for 10ms

osThreadDef (jobl, osPrioritylLow, 1, 0); // Define jobl as thread

int main (void) {

osKernelInitialize ();

// Initialize RTOS kernel

// setup and initialize peripherals
osThreadCreate (osThread(jobl), NULL) ; // Create the thread

osKernelStart ()

// Start kernel & jobl thread

http://www.keil.com/pack/doc/cmsis/RTOS/html/cmsis__os_8h.html
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___wait.html#ga02e19d5e723bfb06ba9324d625162255
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#gaee93d929beb350f16e5cc7fa602e229f
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#ga7f2b42f1983b9107775ec2a1c69a849aa17b36cd9cd38652c2bc6d4803990674b
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html#ga53d078a801022e202e8115c083ece68e
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#gac59b5713cb083702dce759c73fd90dff
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html#gaf0c7c6b5e09f8be198312144b5c9e453
http://www.keil.com/pack/doc/cmsis/RTOS/html/group___c_m_s_i_s___r_t_o_s___kernel_ctrl.html#gaab668ffd2ea76bb0a77ab0ab385eaef2

Getting Started: Create Applications with MDK Version 5 29

Header File cmsis_os.h

The file cmsis_os.h is a template header file for the CMSIS-RTOS RTX and
contains:

= CMSIS-RTOS API function definitions.
= Definitions for parameters and return types.
= Status and priority values used by CMSIS-RTOS API functions.

= Macros for defining threads and other kernel objects such as mutex,
semaphores, or memory pools.

All definitions are prefixed with os to give a unique name space for the CMSIS-
RTOS functions. Definitions that are prefixed os_ are not be used in the
application code but are local to this header file. All definitions and functions
that belong to a module are grouped and have a common prefix, for example,
osThread for threads.

Define and Reference Object Definitions

With the #define osObjectsExternal, objects are defined as external symbols.
This allows creating a consistent header file for the entire project as shown
below:

Example of a header file: 0sObjects.h

#include "cmsis_os.h" // CMSIS RTOS header
extern void thread 1 (void const *argument) ; // Function prototype
osThreadDef (thread 1, osPriorityLow, 1, 100); // Thread definition
osPoolDef (MyPool, 10, long); // Pool definition

This header file, called osObjects.h, defines all objects when included in a C/C++
source file. When #define osObjectsExternal is present before the header file
inclusion, the objects are defined as external symbols. Thus, a single consistent
header file can be used throughout the entire project.

Consistent header file usage in a C file

#define osObjectExternal // Objects defined as external symbols
#include "osObjects.h" // Reference to the CMSIS-RTOS objects

For details, refer to the online documentation www.Keil.com/cmsis/rtos, section
Header File Template: cmsis_os.h.

file:///C:/Users/bruneu01/AppData/MDK5/ARM/PACK/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/cmsis__os_8h.html
file:///C:/Users/bruneu01/AppData/MDK5/ARM/PACK/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html%23ga7f2b42f1983b9107775ec2a1c69a849aa193b650117c209b4a203954542bcc3e6
http://www.keil.com/cmsis/rtos

30 CMSIS

CMSIS-RTOS RTX Configuration

The file RTX_Conf_CM.c contains the configuration parameters of the CMSIS-
RTOS RTX. A copy of this file is part of every project using the RTX
component.

_] RTX_Conf_CM.c v X
Expand All Callapse Al Help [Show Grid
Option Value

=I-Thread Configuration
Mumber of cencurrent running threads 6

Default Thread stack size [bytes] 200
Main Thread stack size [bytes] 200
Mumber of threads with user-provided stack size 0
Total stack size [bytes] for threads with user-provided stack size 0
Check for stack overflow v

Processor mode for thread execution Privileged mode

=-RTX Kernel Timer Tick Configuration

Use Cortex-M SysTick timer as RTX Kernel Timer g
Timer clock value [Hz] 180000000
Timer tick value [us] 1000
=I-System Configuration
= Round-Robin Thread switching v
Reund-Robin Timeout [ticks] 5
- User Timers e
Tirmer Thread Priority High
Timer Thread stack size [bytes] 200
Timer Callback Queue size 4
ISR FIFO Queue size 16 entries
Thread Configuration

Text Editor_} Confi jon Wizard |

You can set parameters for the thread stack, configure the Tick Timer, set Round-
Robin time slice, and define user timer behaviour for threads.

For more information about configuration options, open the RTX documentation
from the Manage Run-Time Environment window. The section Configuration
of CMSIS-RTOS RTX describes all available settings. The following highlights
the most important settings that need adaptation in your application.

Thread Stack Configuration

Threads are defined in the code with the function osThreadDef(). The parameter
stacksz specifies the stack requirement of a thread and has an impact on the
method for allocating stack. CMSIS-RTOS RTX offer two methods for
allocating stack requirements in the file RTX_Conf_CM.c:

= Using a fixed memory pool: if the parameter stacksz is 0, then the value
specified for Default Thread stack size [bytes] sets the stack size for the
thread function.

Getting Started: Create Applications with MDK Version 5

31

= Using a user space: if stacksz is not 0, then the thread stack is allocated from a
user space. The total size of this user space is specified by Total stack size
[bytes] for threads with user-provided stack size.

=) Thread Configuration

Mumber of concurrent running user threads [

Default Thread stack size [bytes] 200
Main Thread stack size [bytes] 200
Murmber of threads with user-provided stack size 0
Total stack size [bytes] for threads with user-provided stack size 0
Stack overflow checking [+
Stack usage watermark [¥

Number of concurrent running threads specifies the maximum number of
threads that allocate the stack from the fixed size memory pool.

Default Thread stack size [bytes] specifies the stack size (in words) for threads
defined without a user-provided stack.

Main Thread stack size [bytes] is the stack requirement for the main() function.

Number of threads with user-provided stack size specifies the number of
threads defined with a specific stack size.

Total stack size [bytes] for threads with user-provided stack size is the
combined requirement (in words) of all threads defined with a specific stack size.

Stack overflow checking enables stack overflow check at a thread switch.
Enabling this option slightly increases the execution time of a thread switch.

Stack usage watermark initializes the thread stack with a watermark pattern at
the time of the thread creation. This enables monitoring of the stack usage for
each thread (not only at the time of a thread switch) and helps to find stack
overflow problems within a thread. Enabling this option increases significantly
the execution time of osThreadCreate().

NOTE
Consider these settings carefully. If you do not allocate enough memory or you
do not specify enough threads, your application will not work.

32 CMSIS

RTX Kernel Timer Tick Configuration

CMSIS-RTOS RTX functions provide delays in units of milliseconds derived
from the Timer tick value. We recommend configuring the Timer Tick to
generate 1-millisecond intervals. Configuring a longer interval may reduce
energy consumption, but has an impact on the granularity of the timeouts.

[=-RTX Kernel Timer Tick Configuration
Use Cortex-M SysTick timer as RTX Kernel Timer [+
RTOS Kernel Timer input clock frequency [Hz] 180000000
RTX Timer tick interval value [us] 1000

It is good practise to enable Use Cortex-M Systick timer as RTX Kernel
Timer. This selects the built-in SysTick timer with the processor clock as the
clock source. In this case, the RTOS Kernel Timer input clock frequency
should be identical to the CMSIS variable SystemCoreClock of the startup file
system_<device>.c.

For details, refer to the online documentation section Configuration of CMSIS-
RTOS RTX — Tick Timer Configuration.

CMSIS-RTOS RTX API Functions

The table below lists the various API function categories that are available with
the CMSIS-RTOS RTX.

API Category Description Page
Thread Management Define, create, and control thread functions. 34
Timer Management Create and control timer and callback functions. 36
Signal Management Control or wait for signal flags. 37
Mutex Management Synchronize thread execution with a Mutex. 38
Semaphore Management Control access to shared resources. 38
Memory Pool Management Define and manage fixed-size memory pools 40
Message Queue Management Control, send, receive, or wait for messages. 40
Mail Queue Management Control, send, receive, or wait for mail. 41

T1P: The usage of the API functions is explained in the CMSIS-RTOS RTX
tutorial available at www.keil.com/cmsis/rtos.

http://www.keil.com/cmsis/rtos

Getting Started: Create Applications with MDK Version 5

33

CMSIS-RTOS User Code Templates

MDK provides user code templates you can use to create C source code for the
application.

& In the Project window, right click a group, select Add New Item to Group,
choose User Code Template, select CMSIS-RTOS Thread, and click

Add New Itern to Group 'Source Group 1' @
@ CFie (c) Add template file(s) to the project.
- Component Mame
@ C++ File {cpp) =) @ CMSIS N
\ﬂ Asm File (s) RTOS:Keil RTX CMSIS-RTOS "'main’ function
RTOS:Keil RTX CMSIS-RTOS Mail Queue
\ﬂ Header File (h) RTOS:Keil RTX CMSIS-RTOS Memary Pool
— RTOS:Keil RTX CMSIS-RTOS Message Queue
\é Text File {d) RTOS:Keil RTX CMSIS-RTOS Mutex
; . RTOS:Keil RTX CMSIS-RTOS Sermaphore
2= Image File ()
E RTOS:Keil RTX CMSIS-RTOS Thread
7‘*@ User Code Template = @ Device
Startup Flash One-Time programmable Bytes Template j
Type: | User Code Template
Name: |Thread.c
Location: | C:\MDKS_Projects\BlinkyNetwork e
Add Close Help

34 CMSIS

Thread Management

The Thread management functions allow you to define, create, and control your
own thread functions in the system. The function main() is a special thread
function that is started at system initialization and has the initial priority
osPriorityNormal.

The CMSIS-RTOS RTX assumes
threads are scheduled as shown in < eventoceurs
the figure Thread State and State
Transitions. Thread states change
as described below:

Active Threads

= Athread is created using the
function osThreadCreate(). This
puts the thread into the READY
or RUNNING state (depending
on the thread priority).

= CMSIS-RTOS is pre-emptive.
The active thread with the
highest priority becomes the
RUNNING thread provided it is not waiting for any event. The initial priority
of a thread is defined with the osThreadDef() but may be changed during
execution using the function osThreadSetPriority().

= The RUNNING thread transfers into the WAITING state when it is waiting
for an event.

Thread State and State Transitions

= Active threads can be terminated any time using the function
osThreadTerminate(). Threads can also terminate by exit from the usual
forever loop and just a return from the thread function. Threads that are
terminated are in the INACTIVE state and typically do not consume any
dynamic memory resources.

Getting Started: Create Applications with MDK Version 5 35

Single Thread Program

A standard C program starts execution with the function main(). For an
embedded application, this function is usually an endless loop and can be thought
of as a single thread that is executed continuously. For example:

Main function as endless loop; Single thread design, no RTOS used

int main (void) {
int counter = 0;

while (1) { // Loop forever
counter++; // Increment counter
}
}

Simple RTX Program using Round-Robin Task Switching

#include "cmsis os.h"

int counterl;
int counter2;

void jobl (void const *arg) {
while (1) { // Loop forever
counterl++; // Increment counterl
}
}

void job2 (void const *arg) {
while (1) { // Loop forever
counter2++; // Increment counter2
}
}

osThreadDef (jobl, osPriorityNormal, 1, 0); // Define thread for jobl
osThreadDef (job2, osPriorityNormal, 1, 0); // Define thread for job2

int main (void) { // main() runs as thread
osKernellInitialize () // Initialize RTX
osThreadCreate (osThread (jobl), NULL); // Create and start jobl
osThreadCreate (osThread (job2), NULL); // Create and start job2
osKernelStart () // Start RTX kernel
while (1) {

osThreadYield () // Next thread
}
}

36 CMSIS

Preemptive Thread Switching

Threads with the same priority need a round robin timeout or an explicit call of
the osDelay() function to execute other threads. In the example above, if job2 has
a higher priority than jobl, execution of job2 starts instantly. Job2 preempts
execution of job1 (this is a very fast task switch requiring a few ms only).

Start job2 with Higher Thread Priority

osThreadDef (osThread (job2), osPriorityAboveNormal, 1, 0);

Timer Management

Timer management functions allow you to create and control timers and callback
functions in the system. A callback function is called when a period expires
whereby both one-shot and periodic timers are possible. A timer can be started,
restarted, or stopped.

Timers are handled in the thread osTimerThread(). Callback functions run under
control of this thread and can use other CMSIS-RTOS API calls.

The figure below shows the behaviour of a periodic timer. One-shot timers stop
the timer after execution of the callback function.

. osTimerStart
osTimerStart (restart timer))
osTimerStop

¥ ¥ ¥ ¥ 30 Time
Callback Callback Callback Callback

Behavior of a Periodic Timer

With RTX, you can create one-shot timers and timers that execute periodically.

Getting Started: Create Applications with MDK Version 5 37

One-Shot and Periodic Timers

#include "cmsis os.h"

void Timerl Callback (void const *argq); // Timer callback
void Timer2 Callback (void const *arg) ; // Prototype functions
osTimerDef (Timerl, Timerl Callback) ; // Define timers

osTimerDef (Timer2, Timer2 Callback) ;

uint32_t execl; // Callback function arguments
uint32 t exec2;

void TimerCreate example (void) {
osTimerId idl; // Timer identifiers

osTimerId id2;

// Create one-shoot timer
execl = 1;
idl = osTimerCreate (osTimer (Timerl), osTimerOnce, &execl) ;
if (idl '= NULL) {
// One-shoot timer created

}

// Create periodic timer
exec2 = 2;
id2 = osTimerCreate (osTimer (Timer2), osTimerPeriodic, &exec2);
if (id2 !'= NULL) {
// Periodic timer created

}

Signal Management

Signal management functions allow you to control or wait for signal flags. Each
thread has assigned signal flags.

38 CMSIS

Mutex Management

Mutex management functions synchronize the execution of threads and protect
accesses to a shared resource, for
example, a shared memory image.

The CMSIS-RTOS mutex release release
template provides function bodies
to which you can add your code.

Mutex

shared resource

CMSIS-RTOS Mutex

(& In the Project window, right click a group, select Add New Item to Group,
choose User Code Template, and select CMSIS-RTOS Mutex.

Semaphore Management

Semaphore management functions manage and protect access to shared

resources. For example, a semaphore can manage the access to a group of
identical peripherals. Although they have a simple set of calls to the operating
system, they are the classic solution in preventing race conditions. However, they
do not resolve resource deadlocks. RTX ensures that atomic operations used with
semaphores are not interrupted.

The number of available

resources is specified as a Semaphore
parameter of the wait = @
osSemaphoreCreate() function. el P
Each time a semaphore token is =
obtained with SL =

: 4 ey
osSemaphoreWait(), the e B DN
semaphore count is decremented. #5 ¢
When the semaphore count is 0, shared resource
no Semaphore token can be CMSIS-RTOS Semaphore

obtained. Semaphores are
released with osSemaphoreRelease(); this function increments the semaphore
count.

Getting Started: Create Applications with MDK Version 5

39

The example creates and initializes a semaphore object to manage access to
shared resources. The parameter count specifies the number of available
resources. The count value 1 creates a binary semaphore.

Thread management using a single semaphore

#include "cmsis_os.h" // CMSIS-RTOS RTX header file
osThreadId tid threadl; // ID for thread 1
osThreadId tid thread2; // ID for thread 2
osSemaphoreld semID; // Semaphore ID
osSemaphoreDef (semaphore) ; // Semaphore definition

// Thread 1 - High Priority - Active every 3ms
void threadl (void const *argument) {

int32_t val;

while (1) {

osDelay (3) ; // Pass control for 3ms
val = osSemaphoreWait (semID, 1); // Wait 1lms for free token
if (val > 0) { // If free token acquired

: // do your job

osSemaphoreRelease (semID) ; // Return token to semaphore

}
}
}

// Thread 2 - Normal Priority -
// Looks for a free semaphore and uses resources whenever available
void thread2 (void const *argument) {
while (1) {
osSemaphoreWait (semID, osWaitForever); // Wait for free semaphore
osSemaphoreRelease (semID) ; // Return token to semaphore
}
}

// Thread definitions
osThreadDef (threadl, osPriorityHigh, 1, 0);
osThreadDef (thread2, osPriorityNormal, 1, 0);

void StartApplication (void) ({
semID = osSemaphoreCreate (osSemaphore (semaphore), 1);
tid threadl = osThreadCreate (osThread(threadl), NULL);
tid thread2 = osThreadCreate (osThread(thread2), NULL);
}

The CMSIS-RTOS semaphore template provides function bodies to which you
can add your code.

(& In the Project window, right click a group, select Add New Item to Group,
choose User Code Template, and select CMSIS-RTOS Semaphore.

file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html%23ga9e66fe361749071e5ab87826c43c2f1b
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html%23gacc15b0fc8ce1167fe43da33042e62098
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html%23ga7f2b42f1983b9107775ec2a1c69a849aa45a2895ad30c79fb97de18cac7cc19f1
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___semaphore_mgmt.html%23ga03761ee8d2c3cd4544e18364ab301dac
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html%23gaf0c7c6b5e09f8be198312144b5c9e453
file:///C:/Users/bruneu01/AppData/MDK5/ARM/Pack/ARM/CMSIS/3.20.3/CMSIS_RTX/Doc/group___c_m_s_i_s___r_t_o_s___thread_mgmt.html%23gaf0c7c6b5e09f8be198312144b5c9e453

40 CMSIS

Memory Pool Management

Memory pool management provides thread-safe and fully reentrant allocation
functions for fixed sized memory pools. These functions have a deterministic
execution time that is independent of the pool usage. Built-in memory allocation
routines enable you to use the system memory dynamically by creating memory
pools and use fixed sized blocks from the memory pool. The memory pool needs
a proper initialization to the size of the object.

The CMSIS-RTOS memory pool template provides function bodies to which you
can add your code.

(Z In the Project window, right click a group, select Add New Item to Group,
choose User Code Template, and select CMSIS-RTOS Memory Pool.

Message Queue Management

Message queue management functions allow you to control, send, receive, or wait
for messages. A message can be an integer or pointer value that is sent to a
thread or interrupt service

routine. Message Queue

The CMSIS-RTOS fhread) put TTTT]
message queue templqte ISR int / pointer values
provides function bodies to

thich you can add your CMSIS-RTOS Message Queue
code.

(& In the Project window, right-click a group, select Add New ltem to Group,
choose User Code Template, and select CMSIS-RTOS Message Queue.

Getting Started: Create Applications with MDK Version 5 41

Mail Queue Management

Mail queue management
functions allow you to
control, send, receive, or wait
for mail. A mail is a memory
block that is sent to a thread
or to an interrupt service
routine.

The CMSIS-RTOS mail
gueue template provides
function bodies to which you
can add your code. CMSIS-RTOS Mail Queue

Mail Queue

memary blocks

& In the Project window, right click a group, select Add New Item to Group,
choose User Code Template, and select CMSIS-RTOS Mail Queue.

42 CMSIS

CMSIS-RTOS System and Thread Viewer

The CMSIS-RTOS RTX Kernel has built-in support for RTOS aware debugging.
During debugging, open Debug — OS Support and select System and Thread
Viewer. This window shows system state information and the running threads.

System and Thread Viewer n @

Property Value

Tick Timer: 1.000 mSec

Round Rebin Timeout: 5.000 mSec

Default Thread Stack Size: 200

Thread Stack Overflow Check: | Yes

Thread Usage: Available: 7, Used: 5 + os_idle_demon

osTimerThread High Wait_MBX cur: 40%, max: 40% [80/200]
2 main Mormal Running cur: 12%, maw: 21% [112/512]
3 USBD_HIDO_Thread AboveMormal | Wait_OR 00000 0xFFFF cur: 12%, max 17% [88/512]
4 USBDO_CoreThread AboveMormal | Wait_OR 00000 0xFFFF cur: 12%, max: 32% [168/512]
255 | os_idle_demon Mone Ready

Event Viewer System and Thread Viewer

The System property shows general information about the RTOS configuration in
the application. Thread Usage shows the number of available and threads and
the used threads that are currently active.

The Threads property shows details about thread execution of the application. It
shows for each thread information about priority, execution state and stack usage.

When the option Stack usage watermark is enabled for Thread Configuration
in the file RTX_Conf_CM.c, the field Stack Usage shows cur: and max: stack
load. The value cur: is the current stack usage at the actual program location.
The value max: is the maximum stack load that occurred during thread execution,
based on overwrites of the stack usage watermark pattern. This allows you:

= to identify a stack overflow during thread execution

= or to optimize and reduce the stack space for a thread.

NOTE
When you are using Trace, the debugger provides also a view with detailed
timing information. Refer to Event Viewer on page 76 for more information.

Getting Started: Create Applications with MDK Version 5 43

CMSIS-DSP

The CMSIS-DSP library is a suite of common digital signal processing (DSP)
functions. The library is available in several variants optimized for different

Cortex-M processors.

When enabling the software component ::CMSIS:DSP in the dialog Manage
Run-Time Environment, the optimum library for the selected device is

automatically included into the project.

(V] Manage Run-Time Environment

Software Component Sel. Variant Version Description
= @ Board Support MCBESTM32F400 |z| 200 Keil Development Board MCBSTM32F400
= @ CMSIS Cortex Microcontroller Software Interface Components
¢ CORE [400 CMSIS-CORE for Cortex-M. S5C000, and 5C300
¢ DSP [+ 142 CMSIS-DSP Library for Certex-M. 5C000. and S5C300
- RTOS (AP]) 1.0 CMSIS-RTOS API for Cortex-M, 5C000. and SC300

The code example below shows the use of CMSIS-DSP library functions.

Multiplication of two matrixes using DSP functions

#include "arm math.h"

const float32 t buf A[9] = {
1.0, 32.0, 4.0,
1.0, 32.0, 64.0,
1.0, 16.0, 4.0,
};

float32_t buf AT[9];
float32_t buf ATmA[9] ;

arm matrix instance £32 A;
arm matrix instance £32 AT;
arm matrix instance £32 ATmA;

uint32 t rows
uint32 t cols

3;
3;

int main(void) ({

//
//

//
//

//
//
//

//
//

ARM: :CMSIS:DSP

Matrix

Buffer
Buffer

Matrix
Matrix
Matrix

Matrix
Matrix

A buffer and values

for A Transpose (AT)
for (AT * A)

A
AT (A transpose)
ATmA (AT multiplied by A)

rows
columns

// Initialize all matrixes with rows, columns, and data array
(float32_t *)buf A); // Matrix A

arm mat init £32 (&A, rows, cols,

arm mat init £32 (&AT, rows, cols, buf AT);
arm mat init £32 (&ATmA, rows, cols, buf ATmA); // Matrix ATmA

arm mat trans £32 (&A, &AT);

while (1);

// Matrix AT

// Calculate A Transpose (AT)
arm mat mult £32 (&AT, &A, &ATmA); // Multiply AT with A

44

CMSIS

For more information, refer to the CMSIS-DSP documentation on
www.Keil.com/cmsis/dsp.

| EMSIS

COMPLIANT

.f- -\.
J [2] CMSIS-DSP: Reference ® U+

b

€ | @ wwawkeil.com/pack/doc/CMSIS/DSP/ html/modules. html & || Q search

CMSIS'DSP Version 1.4.4

Change Log
Deprecated List
Reference
b Data Structures
» Data Fields

CMSIS DSP Software Library

+ i B

s CMSIS DSP Software Library
CMSIS | CORE | Driver DSP RTOS API | Pack | SVD
Main Page | Usage and Description Reference
¥ CMSIS-DSP
Reference

Here is a list of all modules:

» Basic Math Functions

» Fast Math Functions

¥ Complex Math Functions
¥ Filtering Functions

» Matrix Functions

» Transform Functions

¥ Controller Functions

> Statistics Functions

¥ Support Functions

¥ Interpolation Functions
¥ Examples

[detail level 1 2]

http://www.keil.com/cmsis/dsp

Getting Started: Create Applications with MDK Version 5

45

Software Component Compiler

The software component Compiler allows you to retarget 1/0 functions of the
standard C run-time library. Application code uses frequently standard I/O
library functions, such as printf(), scanf(), or fgetc() to perform input/output

operations.

The structure of these functions in the standard ARM Compiler C run-time

library is:

High-Level Functions [w

printf, scanf, etc.

Low-Level Functions J
fputc, fgetc, etc.

System /O Functions
_sys_write, _sys_read, etc.

-
Hardware independent

Hardware
dependent

The high-level and low-level functions are not target-dependent and use the
system 1/O functions to interface with hardware.

The MicroLib of the ARM Compiler C run-time library interfaces with the
hardware via low-level functions. The MicroLib implements a reduced set of
high-level functions and therefore does not implement system 1/O functions.

The software component Compiler retargets the I/O functions for the various
standard 1/0 channels: File, STDERR, STDIN, STDOUT, and TTY:

Manage Run-Time Environment @
Software Component Sel. Variant Version Description
4 Board Support MCE1800 100 Keil Development Beard MCEI1800 o
‘ CMSIS Cortex Microcontroller Software Interface Components
4 CMSIS Driver Unified Device Drivers compliant to ChSIS-Driver Specifications
ER 2 Compiler
ER B] Retarget Input/Output
¥ File I |File System 100 Use retargeting together with the File System compeonent
STDERR [| Breakpoint |Z| 1.00 Stop program execution at a breakpoint when using STDERR
¥ STDIN I | User 100 Retrieve STDIN from a user specified input source (USART, Keyboard or other)
¥ STDOUT v 1M |z| 100 Redirect STOOUT to a debug output window using ITM
¥ OTTY I~ |User |z| 1.00 Redirect TTY to a user defined output target LI
Validation Output Description

Resolve] [Seled F‘acks] [Details

oK I Cancel Help |

46 Software Component Compiler

I/O Channel Description

File Channel for all file related operations (fscanf, fprintf, fopen, fclose, etc.)
STDERR Standard error stream of the application to output diagnostic messages.
STDIN Standard input stream going into the application (scanf etc.).

STDOUT Standard output stream of the application (printf etc.).

TTY Teletypewriter which is the last resort for error output.

The variant selection allows you to change the hardware interface of the 1/O
channel.

VLU Description

File System Use the File System component as the interface for File related operations
Breakpoint When the I/O channel is used, the application stops with BKPT instruction.

IT™M Use Instrumentation Trace Macrocell (ITM) for I/O communication via the debugger.
User Retarget I/O functions to a user defined routines (such as USART, keyboard).

The software component Compiler adds the file retarget_io.c that will be
configured acording to the variant settings. For the User variant, user code
templates are available that help you to implement your own functionality. Refer
to the documentation for more information.

ITM in the Cortex-M3/M4/M7 supports printf style Debug (printf] Viewer
debugging. If you choose the variant ITM, the 1/0
library functions perform 1/O operations via the
Debug (printf) Viewer window.

0x101
0x101
0x101
0x101
0x101
0x101
0x101
0x101
0x101
0x101
0x101

value
value
value
value
value
value
value
value
value
value
value

EEEEEEEEEEL

4

(2 Call Stack = Locals | B¢ Debug (printf) Vi...

Getting Started: Create Applications with MDK Version 5

a7

Create Applications

This chapter guides you through the steps required to create and modify projects
using CMSIS described in the previous chapter.

NOTE

The example code in this section works for the MCB1800 evaluation board
(populated with LPC1857). Adapt the code and port pin configurations when
using another starter kit or board.

The tutorial creates the project Blinky in the two basic design concepts:
= RTOS design using CMSIS-RTOS RTX.

= Infinite loop design for bare-metal systems without RTOS Kernel.

Blinky with CMSIS-RTOS RTX

The section explains the creation of the project using the following steps:

= Setup the Project: create a project file and select the microcontroller device
along with the relevant CMSIS components.

= Configure the Device Clock Frequency: configure the system clock
frequency for the device and the CMSIS-RTOS RTX kernel.

= Create the Source Code Files: add and create the application files.

= Build the Application Image: compile and link the application for
downloading it to an on-chip Flash memory of a microcontroller device.

Using the Debugger on page 65 guides you through the steps to connect your
evaluation board to the PC and to download the application to the target.

For the project Blinky, you will create the following application files:

main.c This file contains the main() function that initializes the RTOS
kernel, the peripherals, and starts thread execution.

LED.c The file contains functions to initialize and control the GP10 port
and the thread function blink_LED(). The LED_Initialize() function
initializes the GPIO port pin. The functions LED_On() and
LED_Off() control the port pin that interfaces to the LED.

LED.h The header file contains the function prototypes for the functions in
LED.c and is included into the file main.c.

In addition, you will configure the system clock and the CMSIS-RTOS RTX.

48

Create Applications

Setup the Project

From the pVision menu bar, choose Project — New pVision Project.

& Select an empty folder and enter the project name, for example, Blinky.
Click Save, which creates an empty project file with the specified name

(Blinky.uvproj).

Next, the dialog Select Device for Target opens.

& Select the LPC1857 and click OK.

The device selection defines essential tool settings such as compiler controls, the
memory layout for the linker, and the Flash programming algorithms.

The dialog Manage Run-Time Environment opens and shows the software
components that are installed and available for the selected device.

& Expand ::CMSIS:RTOS(API) and enable :Keil RTX.
Expand ::Device and enable :GPIO and :SCU.

M Manage Run-Time Environment

= ARMuCMSIS:RTOS: Keil RTX
=I-require Device:Startup

¥ Keil:Device:Startup
Keil::Device:SCU
= require CMSIS:CORE

¥ ARM:CMSIS:CORE
Keil:Device:GPIO
=I-require CMSIS:CORE

¥ ARM:CMSIS:CORE

Software Compoenent Sel. Variant Version Description
=4 Board Support MCE1800 1.0.0 Keil Development Board MCB1800 =]
= @ CMSIS Cortex Microcentroller Software Interface Components
¥ CORE r 3400 | CMSIS-CORE for Cortex-M, SC000. and S5C300
¥ DSP r 142 CMSIS-DSP Library for Cortex-M, 5C000. and 5C300
=4 RTOS (4P 10 CMSIS-RTOS API for Cortex-M, SC000. and SC300
¥ Keil RTX [+ 4770 | CMSIS-RTOS RTX implementation for Cortex-M, SC000, and SC300
=4 CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
3 @ Compiler
= @ Device Startup, System Setup -
¥ GPDMA r 10 GPDMA driver used by RTE Drivers for LPC1800 Series
¥ GPIO [+ 1.00 GPIO driver used by RTE Drivers for LPC1800 Series
¥ 5CU Ed 1.00 SCU driver used by RTE Drivers for LPC1800 Series
¥ Startup r 1.00 Systern Startup for NXP LPC1800 Series -
& . . = S— — . -
Validation Qutput Description

Additional software components required
Select component from list

System Startup for NXP LPC1800 Series
Additional software components required
Select component from list

CMSIS-CORE for Cortex-M, 5C000, and 5C300
Additional software components required
Select component from list

CMSIS-CORE for Cortex-M, SC000, and SC300

Resolve | |Se|ed Packs| | Details

| ‘ oK Cancel

Help

Getting Started: Create Applications with MDK Version 5

49

The Validation Output field shows dependencies to other software components.

In this case, the component ::Device:Startup is required.

T1P: A click on a message highlights the related software component.

" Click Resolve.

This resolves all dependencies and enables other required software components

(here, ::CMSIS:Core and ::Device:Startup).

¥ Click OK.

The selected software components are included into
the project together with the startup file, the RTX
configuration file, and the CMSIS system files. The
Project window displays the selected software
components along with the related files. Double-
click on a file to open it in the editor.

Project 1B
=% Project: Blinky
=g Targetl
3 Source Groupl
o CMSIS
BT RTX_CM3.lib (RTOS:Keil RTX)
1 RTX_Conf_CM.c (RTOS:Keil RTX)
= @ Device
_] RTE_Deviceh (Startup)
|1 startup_LPCl8xcs (Startup)
] system_LPCl8wec (Startup)

< [[0

E]Project|@5::: {} Functions | [}y Templates

50 Create Applications

Configure the Device Clock Frequency

The system or core clock is defined in the system_<device>.c file. The core
clock also is the input clock frequency for the RTOS Kernel Timer and, therefore,
the RTX configuration file needs to match this setting.

NOTE
Some devices perform the system setup as part of the main function and/or use a
software framework that is configured with external utilities.

Refer to Device Startup Variations on page 58 for more information.

The clock configuration for an application depends on various factors such as the
clock source (XTAL or on-chip oscillator), and the requirements for memory and
peripherals. Silicon vendors provide the device-specific file system_<device>.c
and therefore it is required to read the related documentation.

TIP: Open the reference manual from the Books window for detailed
information about the microcontroller clock system.

The MCB1800 development kit runs with an external 12 MHz XTAL. The PLL
generates a core clock frequency of 180 MHz. As this is the default, no
modifications are necessary. However, you can change the settings for your
custom development board in the file system LPC18xx.c.

& To edit the file system_LPC18xx.c, expand the group Device in the Project
window, double-click on the file name, and modify the code as shown
below.

Set PLL Parameters in system_LPC18xx.c

/* PLL1l output clock: 180MHz, Fcco: 180MHz,

N=1, M= 15, P = x */

#define PLL1 NSEL 0 /* Range [0 - 3]: Pre-divider ratio N */
#define PLL1 MSEL 14 /* Range [0 - 255]: Feedback-div ratio M */
#define PLL1 PSEL 0 /* Range [0 - 3]: Post-divider ratio P */
#define PLL1 BYPASS 0 /* 0: Use PLL, 1: PLL is bypassed */
#define PLL1 DIRECT 1 /* 0: Use PSEL, 1: Don't use PSEL */
#define PLL1 FBSEL 0 /* 0: FCCO is used as PLL feedback i/
/* 1: FCLKOUT is used as PLL feedback *x/

Getting Started: Create Applications with MDK Version 5 51

Customize the CMSIS-RTOS RTX Kernel

& In the Project window, expand the group CMSIS, open the file

RTX_Conf_CM.c, and click the tab Configuration Wizard at the bottom of
the editor.

Expand RTX Kernel Timer Tick Configuration and set the Timer clock
value to match the core clock.

_1 RTX_Conf CM.c v X
Bpand Al | Collapse All | Help [~ Show Grid
Option Value

+-Thread Configuration
=)-RTX Kernel Timer Tick Configuration

Use Cortex-M SysTick timer as RTX Kernel Timer [+
RTX Timer tick interval value [us] 1000

+)-Systern Configuration

RTOS Kernel Timer input clock frequency [Hz]

RTOS Kernel Timer input clock frequency [Hz]

Defines the input frequency of the RTOS Kernel Timer.
When the Cortex-M SysTick timer is used, the input clock
is on most systems identical with the core clock.

TextEditor), Configuration Wizard |

TIP: You may copy the compiler define settings and system_<device>.c from

example projects. Right click on the filename in the editor and use Open
Containing Folder to locate the file.

G T - M

] system_LPCl18xx.”

Cl

137 | * ose = (FCLEI «

138 | = Clase All But This = FCLEOT

139 ® Close All

140 | A b

141 * PLL1 Copy Full Path

142 = Fr L TrLT

143 . Fi Cpen Containing Folder bz

144 " Fi g Mew Horizontal Tab Group [z

145 * 1 [Hz

146 - = [J] Mew Vertical Tab Group bz

147

148

149

150 N
'l (1

52 Create Applications

Create the Source Code Files
Add your application code using pre-configured User Code Templates
containing routines that resemble the functionality of the software component.

& In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group.

Add Mew Item to Group ‘Source Group 1 @
@ C e (d) Add template file(s) to the project.
% Component Mame
@ C++ File {.cpp) - @ CMSIS -
\ﬂ Aem File () RTOS:Keil RTX CMSIS-RTOS 'main’ function
RTOS:Keil RTX CMSIS-RTOS Mail Queue
\ﬂ Header File (h) RTOS:Keil RTX CMSIS-RTOS Memery Pool
— RTOS:Keil RTX CMSIS-RTOS Message Queue
\é Teat File () RTOS:Keil RTX CMSIS-RTOS Mutex
. . RTOS:Keil RTX CMSIS-RTOS Semaphore
2=| Image File (%)
e RTOS:Keil RTX CMSIS-RTOS Thread
“@ User Code Template = @ Device
Startup Flash One-Time programmakble Bytes Template j
Type: | User Code Template
Name: | o0s0bjects.h main.c
Location: | C:\MDK5_Projects'BlinkyMetwark -
Add Close | Help

& Click on User Code Template to list available code templates for the
software components included in the project. Select CMSIS-RTOS ‘main’
function and click Add.

This adds the file main.c to the project group Source Group 1. Now you can add
user code to this file.

Getting Started: Create Applications with MDK Version 5 53

& Right-click on a blank line in the file main.c and select Insert ‘#include
files’. Include the header file LPC18xx.h for the selected device.

Then, add the code below to create a function blink_LED() that blinks LEDs
on the evaluation kit. Define blink_LED() as an RTOS thread using
osThreadDef() and start it with osThreadCreate().

Code for main.c

e
* CMSIS-RTOS 'main' function template

e e e e e e e e e e e e — */
#define osObjectsPublic // Define objects in main module
#include "osObjects.h" // RTOS object definitions
#include "LPCl8xx.h" // Device header
#include "LED.h" // Initialize and set GPIO Port

/*

* main: initialize and start the system

&

int main (void) {

osKernellInitialize () // Initialize CMSIS-RTOS

// initialize peripherals here
LED Initialize () // Initialize LEDs

// create 'thread' functions that start executing,

// example: tid name = osThreadCreate (osThread(name), NULL);
Init BlinkyThread () // Start Blinky thread
osKernelStart () // Start thread execution

while (1);

54

r% Create an empty C-file named LED.c using the dialog Add New Item to
Group and add the code to initialize and access the GPIO port pins that
control the LEDs.

Code for LED.c

#include "SCU LPC18xx.h"
#include "GPIO_LPC18xx.h"
#include "cmsis_os.h" // BRM: :CMSIS:RTOS:Keil RTX

void blink LED (void const *argument); // Prototype function
osThreadDef (blink LED, osPriorityNormal, 1, 0); // Define blinky thread

void LED Initialize (void) {
GPIO PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4|SCU_PIN CFG_PULLDOWN_EN)) ;
GPIO_SetDir (6, 24, GPIO DIR OUTPUT) ;
GPIO_PinWrite (6, 24, 0);

}

void LED On (void) {
GPIO_ PinWrite (6, 24, 1); // LED on: set port
}

void LED Off (void) {
GPIO_PinWrite (6, 24, 0); // LED off: clear port
}

// Blink LED function
void blink LED(void const *argument) {

for (;;) {
LED On (); // Switch LED on
osDelay (500) ; // Delay 500 ms
LED Off (); // Switch off
osDelay (500) ; // Delay 500 ms

}
}

void Init_ BlinkyThread (void) {
osThreadCreate (osThread(blink LED), NULL); // Create thread
}

Create Applications

Getting Started: Create Applications with MDK Version 5 55

r% Create an empty header file named LED.h using the dialog Add New Item
to Group and define the function prototypes of LED.c.

Code for LED.h

/B e e S S S S S S S TS OEOEmoos
* File LED.h
e e e e e e e e e e e e — */
void LED Initialize (void); // Initialize GPIO
void LED On (void); // Switch Pin on
void LED Off (void); // Switch Pin off
void blink LED (void const *argument); // Blink LEDs in a thread
void Init BlinkyThread (void); // Initialize thread

Build the Application Image

Build Output shows information about the build process. An error-free
build displays program size information, zero errors, and zero warnings.

Build Qutput []
Rebuild target 'Target 1°'

compiling main.c...

compiling LED.c...

compiling RIX Conf CM.c...

assenmbling startup stm32f40 4ixxx.=...

compiling system stm32fdxx.c...

linking...
Program Size: Code=6352 RO-data=528 RW-data=96 ZI-data=5704
", \Blinky.axf" - 0 Error(s), 0 Warning(s).

The section Using the Debugger on page 65 guides you through the steps to
connect your evaluation board to the workstation and to download the application
to the target hardware.

TIP: You can verify the correct clock and RTOS configuration of the target
hardware by checking the one-second interval of the LED.

56 Create Applications

Blinky with Infinite Loop Design

Based on the previous example, we create a Blinky application with the infinite
loop design and without using CMSIS-RTOS RTX functions. The project
contains the user code files:

main.c This file contains the main() function, the function Systick_Init() to
initialize the System Tick Timer and its handler function
SysTick_Handler(). The function Delay() waits for a certain time.

LED.c The file contains functions to initialize the GPIO port pin and to set
the port pin on or off. The function LED _Initialize() initializes the
GPIO port pin. The functions LED_On() and LED_Off() enable or
disable the port pin.

LED.h The header file contains the function prototypes created in LED.c
and must be included into the file main.c.

Open the Manage Run-Time Environment and deselect the software
component ::CMSIS:RTOS:Keil RTX.

> Open the file main.c and add the code to initialize the System Tick Timer,
write the System Tick Timer Interrupt Handler, and the delay function.

e
* file main.c
e */
#include "LPC18xx.h" // Device header
#include "LED.h" // Initialize and set GPIO Port
int32 t volatile msTicks = 0; // Interval counter in ms

// Set the SysTick interrupt interval to 1lms
void SysTick Init (void) {
if (SysTick Config (SystemCoreClock / 1000)) {
// handle error
}
}

// SysTick Interrupt Handler function called automatically
void SysTick Handler (void) {
msTicks++; // Increment counter

}

// Wait until msTick reaches 0

void Delay (void) {
while (msTicks < 499); // Wait 500ms
msTicks = 0; // Reset counter

}

Getting Started: Create Applications with MDK Version 5 57

int main (void) {
// initialize peripherals here

LED Initialize (); // Initialize LEDs
SystemCoreClockUpdate () ; // Update SystemCoreClock to 180 MHz
SysTick Init (); // Initialize SysTick Timer
while (1) {
LED On (); // Switch on
Delay (); // Delay
LED Off (); // Switch off
Delay (); // Delay
}
}
(& Open the file LED.c and remove unnecessary functions. The code should
look like this.
e e e e e e e e D S D S S S S S S DS OEOEmS
* File LED.c
e */

#include "SCU LPC18xx.h"
#include "GPIO LPC18xx.h"

void LED Initialize (void) {
GPIO PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU_CFG_MODE_FUNC4 | SCU_PIN CFG_PULLDOWN_EN)) ;

GPIO SetDir (6, 24, GPIO DIR OUTPUT) ;

GPIO_PinWrite (6, 24, 0);

}

void LED On (void) {

GPIO_PinWrite (6, 24, 1); // LED on: set port

}

void LED Off (void) {

GPIO_PinWrite (6, 24, 0); // LED off: clear port

}

r% Open the file LED.h and modify the code.
s
* file: LED.h
S s */

void LED Initialize (void); // Initialize LED Port Pins

void LED On (void) ; // Set LED on

void LED Off (void); // Set LED off

58 Create Applications

Build the Application Image

The section Using the Debugger on page 65 guides you through the steps to
connect your evaluation board to the PC and to download the application to the
target hardware.

TIP: You can verify the correct clock configuration of the target hardware by
checking the one-second interval of the LED.

Device Startup Variations

Some devices perform a significant part of the system setup as part of the device
hardware abstraction layer (HAL) and therefore the device initialization is done
from within the main function. Such devices frequently use a software
framework that is configured with external utilities.

The ::Device software component may contain therefore additional components
that are required to startup the device. Refer to the online help system for further
information. In the following section, device startup variations are exemplified.

Example: Infineon XMC1000 using DAVE

Using Infineon’s DAVE™, you can automatically generate code based on So-
called DAVE Apps. Within the Eclipse-based IDE, you can add, configure, and
connect the apps to suit your application. During this process, you will configure
the clock settings using the CLK002 app (in case of the XMC1100). This app
sets the correct registers within the core to reach the desired frequency. At the
end of the generated code, it calls the CMSIS function
SystemCoreClockUpdate().

All steps to import a DAVE project into pVision are explained in the application
note 258 available at http://www.keil.com/appnotes/docs/apnt 258.asp.

http://www.keil.com/appnotes/docs/apnt_258.asp

Getting Started: Create Applications with MDK Version 5

59

After uVision imported the project, the Manage Run-Time Environment
window shows the group ::DAVES3 with the generated apps as components.

Manage Run-Time Environment @
Software Component Sel. Variant Version Description
= @ CMSIS Cortex Microcontroller Software Interface Components 1=
¢ CORE [+ 400 CMSIS-CORE for Cortex-h, SC000, and SC300
¢ DSP r 142 CMSIS-DSP Library for Cortex-M, SC000, and 5C300
w4 RTOS (APT) 10 CMSIS-RTOS API for Cortex-M, SC000, and SC300
4] @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
= @ DAVES M Configuration Files generated by DAVE3S
v CCU4GLOBAL |I¥ 1.0.20 | Thisis the global app with which CCU4 slices of the same module are cenfigured.
/ [+ 108 App te configure System and Peripheral Clocks for XMC 1XXX Series Devices,
/ [+ 1044 | DAVE3 Framework
/ [+ 1026 | App which allows user to configure an interrupt node NVIC002 App maps the user-de...
/ 0 [+ 1034 | This app generates single phase PWM waveform without dead time. This app suppor...
£ @ Device Startup. System Setup
4] @ File System MDK-Pro |6.24 File Access on various storage devices
4] @ Graphics MDK-Pro 5261 |UserInterface on graphical LCD displays —
4] @ MNetwork MDK-Pro | 6.2.0 IP Metworking using Ethernet or Serial protocels
£ @ USB MDK-Pre 627 USB Communication with various device classes j
Validation Output Description

| Resolve | |Se|ed Packs| ‘ Details | Ok | Cancel | w

Inside pVision, the component ::DAVE3 is locked. Use the start button # | to
open DAVE for changing the configuration of the apps.

The CLKO002.c file contains the #defines for setting the clock registers. The
following is an example that shows how DAVE sets the values according to the
configuration from within the tool:

Code for CLKO002.c

/**

** 0 Private Macro Definitions *k
**/

/* Master Clock setup parameters */

#define CLK002 CLKCR PCLKSEL (0U)
#define CLK002_CLKCR IDIV (1U)
#define CLK002_CLKCR FDIV (153U)
#define CLK002_DIRECT ACCESS_ALLOW (0xCOU)

#define CLK002 DIRECT ACCESS DISALLOW (0xC3U)

60

Change the Clock Setup using DAVE

If you need to change these clock values, open the Manage Run-Time

Environment window and press the start button # lto open DAVE. Use the
UlEditor of the CLK002 App to change the clock settings:

wa CLKD02 0 P2 =B
Main Clock Frequency - MCLK

Desired Frequency 29 MHz -

Peripheral Clock Selection - PCLK
@ PCLK = MCLK
PCLK = 2*MCLK

Configured Parameters

29.049645391 MHz .
29.049645391 MHz -
DCO2 Clock
32768 Hz i
RTC Clock Selection
32.768kHz Standby Clock for RTC -

Clock Configuration | Clock Configuration Data for Bootup Firmware

in DAVE.

This will change the CLK002.c file, which will be recognized by pVision
automatically:

Re-run the code generation

pVision 3

‘ = ChIL_workspacetws3 1 10MWPWMSP00L_Examplel ¥XMC11%Dave\Generat

edisrc\CLKD0ZVCLKDOZ.c

File has been changed outside the editor, reload 7

Click on Yes to reload the changed file. Now, it will have the following values:

/**

** 0 Private Macro Definitions *k
*******'k'k'k**/

/* Master Clock setup parameters */

#define CLK002 CLKCR PCLKSEL (0U)
#define CLK002_CLKCR IDIV (1U)
#define CLK002 CLKCR FDIV (26U)
#define CLK002_DIRECT ACCESS_ALLOW (0xCOU)

#define CLK002 DIRECT ACCESS DISALLOW (0xC3U)

Create Applications

Getting Started: Create Applications with MDK Version 5

61

Example: STM32Cube

Many STM32 devices are using the STM32Cube Framework that is configured,
for example, with a classic method that uses the RTE_Device.h configuration file.
The STM32Cube Framework provides a specific user code template that
implements the system setup. Below is an example that shows the setup for the
STM32F407 Discovery Kit.

Refer to the online documentation for the STM32Cube Framework for details
of the software setup.

Setup the Project for STM32F407 Discovery Kit

In the Manage Run-Time Environment window, select the following:

(&> Expand ::Device:STM32Cube Framework (API) and enable :Classic.

Expand ::Device and enable :Startup.

m Manage Run-Time Environment @
Software Component Sel. Variant Version Description
c @ Board Support STM32F4-Discovery |Z| 200 STMicroelectronics STM32F4 Discovery Kit
£ @ CMSIS Cortex Microcontroller Software Interface Components
& @ CMSIS Driver Unified Device Drivers compliant to CMSIS-Driver Specifications
& @ Compiler
= @ Device Startup, System Setup
¢ Startup I+ 210 System Startup for STMicroelectronics STM32F4 Series
= @ STM32Cube Framework (4PT) STM32Cube Framework
Classic I+ 110 Cenfiguration via RTE_Device.h
5] @ STM32Cube HAL STM32F4wx Hardware Abstraction Layer (HAL) Drivers
& @ File Systern MDK-Pro 6.2.2 Eile Access on various storage devices
o @ Graphics MDK-Pro 5261 | UserInterface on graphical LCD displays
- Graphics Display Display Interface including configuration for emWIN
& @ Metwork MDK-Pro 8.20 IP Metworking using Ethernet or Serial protocols
& @ UsB MDK-Pro 625 USB Communication with varicus device classes
Validation Qutput Description
‘ Resolve ‘ |Sele|:t Packs | | Details | Cancel Help

(& Click Resolve to enable other required software components and then OK.

62 Create Applications

& In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group.

Add Mew Item to Group 'Source Group 1'

@ CFie (o) Add template file(s) to the project.

ile {.c
+ Component MName

@ C++ File { cpp) ’ CMSIS

\ﬂ Asm File (5) = ‘ Device

Startup Flash One-Time programmable Bytes

\ﬂ Header File (h) Startup Flash Option Bytes

— R ERlaT Y ST PR A e PR 'main’ module for STM32Cube

= Teat File (ba) 5TM32Cube Framework:Classic | Exception Handlers and Peripheral IRQ
Q Image File (7} STM32Cube Framework:Classic | MCU Specific HAL Initialization / De-Initializ...
El=f v
7‘@ User Code Template

Type: | User Code Template
Name: | main.h main.c
Location: | C:\01_workspace\MDKy 5\STM32\STM32F047Disco

=l
Add Cloze | Help

& Click on User Code Template to list available code templates for the

software components included in the project. Select ‘main’ module for
STM32Cube and click Add.

Getting Started: Create Applications with MDK Version 5 63

The main.c file contains the function SystemClock _Config(). Here, you need to
make the settings for the clock setup:

Code for main.c

static void SystemClock Config(void)

{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;

/* Enable Power Control clock */
__PWR CLK_ENABLE() ;

/* The voltage scaling allows optimizing the power consumption when the
device is clocked below the maximum system frequency, to update the
voltage scaling value regarding system frequency refer to product
datasheet. */

__HAL PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR VOLTAGE SCALE1) ;

/* Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE HSE;
RCC_OscInitStruct.HSEState = RCC_HSE ON;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL ON;
RCC_OscInitStruct.PLL.PLLSource = RCC PLLSOURCE HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN 336;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP DIV2;
RCC_OscInitStruct.PLL.PLLQ = 7;
if (HAL RCC_OscConfig (&RCC_OscInitStruct) != HAL OK)
{

/* Initialization Error */

Error Handler() ;

}

/* Select PLL as system clock source and configure the HCLK, PCLKl and
PCLK2 clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE SYSCLK | RCC_CLOCKTYPE HCLK
| RCC_CLOCKTYPE PCLK1l | RCC_CLOCKTYPE PCLK2) ;
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK DIV1;
RCC_ClkInitStruct.APBlCLKDivider = RCC_HCLK_DIV4;
RCC_ClkInitStruct.APBZCLKDivider = RCC_HCLK_DIVZ;
if (HAL RCC_ClockConfig (&RCC_ClkInitStruct, FLASH LATENCY 5) != HAL OK)
{

/* Initialization Error */

Error Handler() ;
}

}

For example, the MCB32F400 development board uses a 25 MHz crystal
oscillator. Setthe RCC_OsclnitStruct.PLL.PLLM to 25 to match this value.

64 Debug Applications

Debug Applications

The ARM CoreSight technology integrated into the ARM Cortex-M processor-
based devices provides powerful debug and trace capabilities. It enables run-
control to start and stop programs, breakpoints, memory access, and Flash
programming. Features like sampling, data trace, exceptions including program
counter (PC) interrupts, and instrumentation trace are available in most devices.
Devices integrate instruction trace using ETM, ETB, or MTB to enable analysis
of the program execution. Refer to www.keil.com/coresight for a complete
overview of the debug and trace capabilities.

Debugger Connection

MDK contains the pVision Debugger that connects to various Debug/Trace
adapters, and allows you to program the Flash memory. It supports traditional
features like simple and complex breakpoints, watch windows, and execution
control. Using trace, additional features like event/exception viewers, logic
analyzer, execution profiler, and code coverage are supported.

= The ULINK2 and ULINK-ME Debug
adapters interface to JTAG/SWD debug
connectors and support trace with the
Serial Wire Output (SWO). The
ULINKpro Debug/Trace adapter also interfaces to ETM trace connectors and
uses streaming trace technology to capture the complete instruction trace for
code coverage and execution profiling. Refer to www.keil.com/ulink for
more information.
evaluation board or starter kit and offer iy uss ’a
integrated debug features. In addition, - = -

= CMSIS-DAP based USB JTAG/SWD
several proprietary interfaces that offer a similar technology are supported.

debug interfaces are typically part of an

= MDK supports third-party debug solutions such as Segger J-Link or J-Trace.
Some starter kit boards provide the J-Link Lite technology as an on-board
solution.

http://www.keil.com/coresight
http://www.keil.com/ulink

Getting Started: Create Applications with MDK Version 5 65

Using the Debugger

Next, you will debug the Blinky application created in the previous chapter on
hardware. You need to configure the debug connection and Flash programming
utility.

Select the debug adapter and configure debug options.

4% From the toolbar, choose Options for Target, click the Debug tab, enable
Use, and select the applicable debug driver.

7| Options for Target ‘Target 1' @
Device | Target | Output | Listing | User | C/C++ | Asm | Linker ! Debug I |tilities]
" Use Simulator Settings E‘“ Use: |ULINK Pro Cortex Debugger j} Settings
I~ Limit Speed to Real-Time

Configure Flash programming options.

&> Switch to the dialog Utilities and enable Use Debug Driver.

E Options for Target ‘Target1' @
Device | Target | Output | Listing | User | C/AC+= | Asm | Linker | Debug

Configure Hash Menu Command

{+ |Use Target Driver for Flash Programming |¥ Use Debug Driver
— Use Debug Driver — Settings [¥ Update Target before Debugging

The device selection already configures the Flash programming algorithm for on-

chip memory. Verify the configuration using the Settings button.

Program the application into Flash memory.

%3 From the toolbar, choose Download. The Build Output window shows
messages about the download progress.

Build Qutput

Era=ze Done.

Programming Done.

Verify CE.

Flash Load finished at 16:52:58

Load "C:\\01_workspace\\MDEvS\\NXP\\InfiniteBlinky\\Objecta\\Blinky.axf"
Era=ze Done.

Programming Done.

Verify CE.

Flash Load finished at 16:57:22

=] Build Output | & Find In Files

66

Debug Applications

Session.

Start debugging on hardware. From the toolbar, select Start/Stop Debug

KA C:\MDKS_Projects\BlinkyNetwork\Blinky. uvprojx - pVision (=3[R |
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help
"Sdd| @ | =] \ | @ pim Hae« @ e - ¢ el 2
gleoleeee s DEEEE- = 8- 0- @8- -
Registers R Disassembly L]
Register Value BX 1z Event Counters (]
=] arn (NULL) ; .
Core
5 000 HOvS zo4om00 | A | R| @
Al B20000C5C L Name Value Enable
R2 D:00000000 [F0x08000CES 4770 = = CPICNT 0 r -
0x08000CEA 0000 DCW 0x0000
R Geo00000s4 0X08000CEC 0CSC DCW 0x0C5C EXCCNT ¢ r
o 200000000 R0E !
RS 00000000 < SLEEPCNT |0 =
RS 00000000 LSUCNT 55 | |
i ¥ ¥ ¥
R7 00000000 D rvste [TJIEDR LD main.ct ¥ FOLDCNT 149 " =
RE 00000000 138 [}
RY 00000000 139 | recurn (NULL) B
System and Thread Viewer
R0 00000000 PP 140 |3
R11 00000000 141 Berco (o
R12 D:08001449 142 - System -
RI3(SP) 0x20002080 143 [Rommmmmm oo rt_res(Tick Timen: 1000 mSec
Ri4(LR) 0:080017A3 144 .
RIS(PC) (x0B000CES 145 Fvoid ro_resorc_prio (B_TCB p_task) { Round Robin Timeout 3000 mSec
G PSR 0:41000008 146 = Re-sort ordered liste after the Default Thread Stack Size: 20
- Barked 147 | B_TICB p_CB: Thread Stack Overflow Check: | Yes
e System 148 Thread Usage: Available: 7, Used: 3
= rtemal 149[] if (p_task->p_rlnk == NULL) {
Mode Handler 1s0[] if (p_task-»sta RERDY) {
Prviege Privieged 151 * Task is chained into READY | —
States 190003752 153 goto res: 255 o idle_demon 0 Ready
Sec 1.13097471 154 3
T 1es [s 3 [binkled Normal Wit DLY
156 [] else { 1 r
= Project | E Registers < = ~ = -
Command 2 B callstack - Locals 2 B Mmemoryl L]
=+ error 5¢: undefined idenvifier = Name Location/Value TYPe Adcress: [B2000000 E o
WS 1, ‘meTicks,Ox0A @ osTimerThres... |0x08000A28 Task = (3
WS 1, ‘CDRE7CL.(/JOOOOQQ.OXOA | o 0x02000000: D10942A0 620868E0 €8C2E008
WS 1, “SysTick,O0x0A = o Task | 0x0200000C: D10242A2 60C268E2 4610E002
WS 1, ~SystemCoreClock,Ox0A =% rt_get sam...|0x08000CE6 stru 0x02000018: D1F62800 0024F891 EO066AOA
Ca‘-nm: access Memorv 2 @ pfit | <notinscope> auto 0x02000024: B11B6853 4 B 4618D300
< n v - 2 . 220068D2 7088 8070F8
% rttskpass |0x080017A2 void 0x02000030: 2A0068D2 7088D1FE 8070F8DF
> @@ t p 0x0200003C: 26016861 46208311 FE3SOF7FF
pnew | <notin scope> auto | 005 g: 2 7 8
ASSIGN BreakDisable BreakEnable BreakKill ‘ | L,JOXO 00008E: 21002607 EI2AE0D00 F000263 -
2 4: BNGAFASS FR3RA c
ST-Link Debugger tl: 113097471 sec L:140 C1

During the start of a debugging session, pVision loads the application, executes
the startup code, and stops at the main C function.

Click Run on the toolbar. The LED flashes with a frequency of one second.

Debug Toolbar

The debug toolbar provides quick access to many debugging commands such as:

1 Step steps through the program and into function calls.

{}* Step Out steps out of the current function.

€ Stop halts program execution.

8% Reset performs a CPU reset.

{}* Step Over steps through the program and over function calls.

= Show to the statement that executes next (current PC location).

Getting Started: Create Applications with MDK Version 5

67

Command Window

You may also enter debug commands in the Command window.

Command @
BS \\Blinky\main.c\32 -~
BS \\Blinky\main.c\23

BS Write msTicks==100, 1, "printf(\"Write Access Breakpoint: 100 ticks reached\\n\");"

WS 1, "msTicks,0x0&

WS 1, “CORE_CLK/1000000,0x0A

WS 1, ((SysTick Tvpe *) ((OxEDOOEQOOUL) + 0x0010UL)),0x0R

W3 1, "SystemCoreClock,0x0R

Write Access Breakpoint: 100 ticks reached

Write Access Breakpoint: 100 ticks reached Comamnd Line Dynamic Command List

Write Access Breakpoint: 100 ticks reached -
< i b

= T

ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet

Ereak?-accels COVERAGE DEFINE |

On the Command Line enter debug commands or press F1 to access detailed

help information.

Disassembly Wi

The Disassembly
window shows the

ndow

-2 BRI

program execution in
assembly code
intermixed with the
source code (when
available). When this is
the active window, then
all debug stepping
commands work at the
assembly level.

The window margin

Disassembly
21: wvoid Delay (void)
{Jox08000284 4770 BX 1ir
22 while (msTicks < 493);
0x08000286 BFOO HOP
W 008000288 4B0E LDR 0, [pc, $56] ; @0x080002C%
0x0B000284 6800 LDR x0, [z0, #0x00]
0x0B800028C FSBOTFF2 CMP rd, $0x1F2
C>0x08000290 DDFL BLE 0x08000288
23: msTicks = 0;
0x0B8000282 2000 MCVS r0, #¥0x00
<
LED.¢ main.c LED.h
18/
ZT # CMSIS-RTOS '"main' function template
3 -
4 i "LED.h"
S F "atm32f4xx . h"

shows markers for

breakpoints, bookmarks, and for the next execution statement.

68

Debug Applications

Breakpoints

You can set breakpoints

= While creating or editing your program source code. Click in the grey margin
of the editor or Disassembly window to set a breakpoint.

= Using the breakpoint buttons in the toolbar.

= Using the menu Debug — Breakpoints.

= Entering commands in the Command window.

= Using the context menu of the Disassembly window or editor.

Breakpoints Window

You can define
sophisticated breakpoints
using the Breakpoints
window.

Open the Breakpoints
window from the menu
Debug.

Enable or disable
breakpoints using the
checkbox in the field
Current Breakpoints.
Double-click on an
existing breakpoint to
modify the definition.

Breakpoints

Current Breakpoints:

(08000286, "“\Bli

x0800029A. "“\Blinky\main_ c\32',
inky\main.c\23",
M= CHS

Access

Expression: |msTicks::1]

Count: |1 4:

[~ Read W Wiite

Size:

[~ Bytes
Command: |prirﬁ|_"-."‘."a'rile Access Breakpoint: 100 ticks reached'n’ 1 = I Objecis
Define | Kil Selscted il Al | Cose | Help

Enter an Expression to add a new breakpoint. Depending on the expression, one
of the following breakpoint types is defined:

= Execution Breakpoint (E): is created when the expression specifies a code
address and triggers when the code address is reached.

= Access Breakpoint (A): is created when the expression specifies a memory
access (read, write, or both) and triggers on the access to this memory address.
A compare (==) operator may be used to compare for a specified value.

If a Command is specified for a breakpoint, pVision executes the command and
resumes executing the target program.

The Count value specifies the number of times the breakpoint expression is true
before the breakpoint halts program execution.

Getting Started: Create Applications with MDK Version 5

69

Watch Window

The Watch window allows you to observe |wata1 =]
1 Name Value Type
program symbols, registers, memory areas, . e —
and expressu)ns' % CORE_CLK/1000000 168 ulong
0¥ SysTick 0xEQ00EDLO pointer
Q&_ﬁ Open a Watch WIndOW from the “ CTRL 000010007 unsigned int
. W LOAD 0x0002903F unsigned int
toolbar or the menu using @ vaL [T g
VieW _ Watch WIndOWS @ CALB 0x4000493E unsigned int

W SystemCoreClock | 168000000 unsigned int

Add variables to the Watch window with:

Click on the field <Enter expression> and double-click or press F2.

In the Editor when the cursor is located on a variable, use the context menu
select Add <item name> to...

Drag and drop a variable into a Watch window.

In the Command window, use the WATCHSET command.

The window content is updated when program execution is halted, or during
program execution when View — Periodic Window Update is enabled.

Call Stack and Locals Window

The Call Stack + Locals window caistack « Locais
shows the function nesting and flas focation/Nalucaus [ves
. +-% osTimerThread : 1 0x08000A2C Task
variables of the current program o= =
location. ¥ main 0x080003CE int ()
=% blink_LED: 3 Task
y = osDela 0x080008E4 enum (int) flunsigned in
'6—| Open the Ca” StaCk + Locals VW mil)lfwsac <not in scope> param(- :Lsfgnedgint :
window from the toolbar or 5% blink LED 008000410 void fvoid %)
H H _ =% argument <not in scope> param - void *
the menu us'ng VIeW Ca“ =% os_idle_demon: 255 |0x08000438 Task

When program execution stops, the Call Stack + Locals window automatically
shows the current function nesting along with local variables. Threads are shown

Stack Window.

for applications that use the CMSIS-RTOS RTX.

70

Debug Applications

Register Window

The Register window shows the content of the
microcontroller registers.

£ Open the Registers window
from the toolbar or the menu
View — Registers Window.

You can modify the content of a register by double-
clicking on the value of a register, or pressing F2 to
edit the selected value. Currently modified registers

are highlighted in blue. The window updates the

values when program execution halts.

Memory Window

Monitor memory areas using

Registers

Reagister

Value |

*-FPU

PSP
=l System
BASEPRI
PRIMASK
FAULTMASK 0
CONTROL
= Internal
Made
Privilege
Stack
States
Sec

(00000000

20000058
20000678

(61000000

k20000678
(00000000

00
0

4

Thread
Privileged
MSP
52395004352
311.87502948

000001 Do|Rektaeyr:sly]

R Memory 1
Memory Windows. Adcrss: [imsTicks
. 0x20000000:

Open a Memory WlndOW 0x30000030: 04030201
0x20000020: 00000000
from the toolbar or the 0x20000030: 00000000
. . 0x20000040: 00000000
menu using View — 0x20000050: 00000000
Memory Windows. 20000070 20000018
. . 0x20000080: 00000000
= Enter an expression in the 0x20000030: 00000000

Aw2NONANDA -

[alalalalalalals]

09080706
00000000
00000000
00000000
00000000
00000000
0800020D
00000000
00000000
annannnn

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
[alalalalalatals]

HiE
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
annannnn

Address field to monitor the
memory area.

= To modify memory content, use the Modify Memory at ... command from
context menu of the Memory window double-click on the value.

= The Context Menu allows you to select the output format.

= To update the Memory Window periodically, enable View — Periodic
Window Update. Use Update Windows in the Toolbox to refresh the

windows manually.

11 Stop refreshing the Memory window by clicking the Lock button. You can
use the Lock feature to compare values of the same address space by
viewing the same section in a second Memory window.

Getting Started: Create Applications with MDK Version 5 71

Peripheral Registers

Peripheral registers are memory mapped registers to which a processor can write
to and read from to control a peripheral. The menu Peripherals provides access
to Core Peripherals, such as the Nested Vector Interrupt Controller or the
System Tick Timer. You can access device peripheral registers using the System
Viewer.

NOTE
The content of the menu Peripherals changes with the selected microcontroller.

System Viewer

System Viewer windows display information GP10D B
about device peripheral registers. -as) [
Property Value
B8 Open a peripheral register from the toolbar | ="~ _°°°°°°1 =
or the menu Peripherals — System OTVPER o |
Viewer GPIOB_OSPEEDR _
' PUPDR o]
i i . =-IoR
With the System Viewer, you can: s -
= View peripheral register properties and o C— |
values. Values are updated periodically LCkR R
when View — Periodic Window Update is e CH—
enabIEd * [[B)fs 31..0]1 RO (@ 0:40020C10) GPIO port input data
. . register
= Change property values while debugging.

= Search for specific properties using TR1 Regular Expressions in the search
field. The appendix of the uVision User’s Guide describes the syntax of
regular expressions.

For details about accessing and using peripheral registers, refer to the online
documentation.

http://www.keil.com/support/man/docs/uv4/uv4_f_search_expr.htm

72

Trace

Run-Stop Debugging, as described previously, has some limitations that become
apparent when testing time-critical programs, such as motor control or
communication applications. As an example, breakpoints and single stepping
commands change the dynamic behavior of the system. As an alternative, use the
trace features explained in this section to

analyze running systems. (" Cortex™ -M3/M4 Debug & Trace P)
Cortex-M processors integrate CoreSight e g
logic that is able to generate the following Unit Debug Access
trace information using: e Port
Memory (DAP)
= Data Watchpoints record memory Access
accesses with data value and program
address and, optionally, stop program Dat s
execution. Watc:p?)ints
= Exception Trace outputs details about “Exception & o e
interrupts and exceptions. Instrumented '“t'j"f,“e
Trace nit
= Instrumented Trace communicates — (TPIV)
program events and enables printf-style '“s_tl_“““”“
debug messages and the RTOS Event race

Viewer.

= Instruction Trace streams the complete program execution for recording and
analysis.

The Trace Port Interface Unit (TPIU) is available on most Cortex-M3, Cortex-
M4, and Cortex-M7 processor-based microcontrollers and outputs above trace
information via:

= Serial Wire Trace Output (SWO) works only in combination with the Serial
Wire Debug mode (not with JTAG) and does not support Instruction Trace.

= 4-Pin Trace Output is available on high-end microcontrollers and has the
high bandwidth required for Instruction Trace.

On some microcontrollers, the trace information can be stored in an on-chip
Trace Buffer that can be read using the standard debug interface.

= Cortex-M3, Cortex-M4, and Cortex-M7 has an optional Embedded Trace
Buffer (ETB) that stores all trace data described above.

= Cortex-MO+ has an optional Micro Trace Buffer (MTB) that supports
Instruction Trace only.

Debug Applications

Getting Started: Create Applications with MDK Version 5

73

The required trace interface needs to be supported by both the microcontroller
and the debug adapter. The following table shows supported trace methods of

various debug adapters.

Feature ULINKpro ULINKpro-D ULINK2 ST-Link v2
Serial Wire Output (SWO) v v v v
Maximum SWO clock frequency 200 MHz 200 MHz 3.75 MHz 2 MHz
4-Pin Trace Output for Streaming v x x x
Embedded Trace Buffer (ETB) v v v x
Micro Trace Buffer (MTB) v v v %

Trace with Serial Wire Output

To use the Serial Wire Trace Output (SWO), use the following steps:

4% Click Options for Target on the toolbar and select the Debug tab. Verify
that you have selected and enabled the correct debug adapter.

=l

E Options for Target ‘Target 1'

Device | Target | Output | Listing | User | C/‘CH‘ Asm | Lirké jtiss |
Setting® || @ Use: |ST-Link Debugger ~| Settings

" Use Simulator
[Limit Speed to Real-Time

(& Click the Settings button. In the Debug dialog, select the debug Port: SW
and set the Max Clock frequency for communicating with the debug unit of
the device.

Cortex-M Target Driver Setup

(=X

mce] Fash Download]

Debug Adapter
Unit: [ST-LINKA2
Serial Number: [MN/A
HW Version: [V2

Fimware Version: |V2/1450

SW Device

IDCODE

SWDIO | k2BAD1477

ol

Device Name
ARM CoreSight SW-DP

e |
B

Port: | SW -

Max Clock: | 1MHz -

| |[oske [Ut

——
——
—

74 Debug Applications

(& Click the Trace tab. Ensure the Core Clock has the right setting. Set
Trace Enable and select the Trace Events you want to monitor.

Enable ITM Stimulus Port 0 for printf-style debugging.
Enable ITM Stimulus Port 31 to view RTOS Events.

Cortex-M Target Driver Setup @

Core Clock: | 168.000000 MHz Iv Trace Enable

Trace Port Timestamps
|Seria| Wire Output - UART/NRZ J [v Enable Prescaler: [1
SWO Clock Prescaler: 84 PC Sampling

v Autodetect Prescaler: |1024716 -

SWO Clack: 2.000000 MHz [Perodic Period: | <Disabled:

™ on Data RAW Sample

I: Cycles per Instruction

: Bxception overhead
EF: Sleep Cycles

JU: Load Store Unit Cycles
PLD: Folded Instructions
BXCTRC: Exception Tracing

ITM Stimulus Ports

31\ Pot 2423 Pot 1615 Pot 8 7 Pon 0
Enabie: |« (2 o R
Privilege: [2:00000000 Fot31.24 [~ Port 23.16 [~ Fot15.8 [~ Port 7.,

NOTE

When many trace features are enabled, the Serial Wire Output communication
can overflow. The pVision Status Bar displays such connection errors.

The ULINKpro debug/trace adapter has high trace bandwidth and such
communication overflows are rare. Enable only the trace features that are
currently required to avoid overflows in the trace communication.

Getting Started: Create Applications with MDK Version 5 75

Trace Exceptions

The Exception Trace window displays statistical data about exceptions and
interrupts.

24 Click on Trace Windows and select Trace Exceptions from the toolbar or
use the menu View — Trace — Trace Exceptions to open the window.

Trace Exceptions @
=] ‘] ‘ (7] ‘ [¥ EXCTRC Exception Tracing | [V Timestamps Enable
Num Name Count Total Time Min Timeln Max Time.. Min Time Out Max Time Qut First Time [s] Last Time [s]
7] UsageFault 4] Os j
11 SVCall 0 0s 1
12 DebugMeonitor 1] Os
Pend5V 0

14 Os
SysTick 1258 (74543us [59524ns 59524 ns (136905 ns 000103092 |1.25403151
16 s

WWDG 0 0
17 PVD 0 Os
18 TAMP_STAMP 0 Os
19 RTC_WKUP 0 0s

=

To retrieve data in the Trace Exceptions window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Enable EXCTRC: Exception Tracing.
= Set Timestamps Enable.

NOTE

The variable accesses configured in the Logic Analyzer are also shown in the
Trace Data Window.

76

Event Viewer

The Event Viewer shows RTOS thread as well as interrupt and exception timing
information. Open this window with the menu Debug — OS Support — Event
Viewer.

Event Viewer H
Min Time MaxTime Grid Zoom Update Sqreen | Jumpte | Transition I™ Thread Info ¥ Cursor

42241835 | 5.5144735 | 2us |1 J[ouf t|| Al [Stnp][Clea ||c de ||'r e \P HN t| [~ Show Cydes

main 2

g [}
Al Threads @0 1: (11 ms) ¢ Ymain \2) (1 1)} main

H { A [T} = main
osTmerThread (1) |
ot . m =
eth_fhread (3) : : : :
SensorSampleThread (4) I: - . : : : : : : : : :
sveal 1) A ¢ =R n
PendSV (14) : : : : : : : : : : : :
) DR
o mE

54015325 ' : : 5401602 [5401608s] 54016175, d. 8733333 wsP1624s
| =1

Debug Applications

To retrieve data in the Event Viewer window:
= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Enable ITM Stimulus Port 31 for CMSIS-RTOS thread timing information.

= Enable EXCTRC: Exception Tracing for interrupt and exception timing
information.

= Set Timestamps Enable.

NOTE

The debugger provides also detailed RTOS and Thread status information that is
available without Trace. Refer to CMSIS-RTOS System and Thread Viewer on
page 42 for more information.

Getting Started: Create Applications with MDK Version 5 77

Logic Analyzer

The Logic Analyzer window displays changes of variable values over time. Up
to four variables can be monitored. To add a variable to the Logic Analyzer, right
click it in while in debug mode and select Add <variable> to... - Logic
Analyzer. Open the Logic Analyzer window by choosing View - Analysis
Windows - Logic Analyzer.

Logic Analyzer @
[Setup_][Load MnTime MaxTime Gid Zoom Min/Max |Update Screen Transtion | Jumpto [V Signalifo [Ampleude
Save 0s 04765545 [05ms |[in [Out] Al | [Auto) [Undo] |[Stop |[Clear | [Prev [Next | [Code |[Trace] ™ Show Cycles ¥ Cursor
16263 R T e \
sne — "
2767

32768 “15‘1 2 d. -1873
2767
ftered | |
| filtered
Mouse Pos Reference Point Deita
o~ Time: 0458738 s 0457832 5 0.90541 ms = 110447
32768 (15258 > 15512] | value 14629 15512 883
r w; 1 \ | 1 PCS: 0x3b0 0360
[| | f f {] T J
| | 1) | b J |
| 1 I | | /] I f y
o fiag | |557 568 569 |57 571 |572 l\sn | 574 ;w 575 1576 |57 i
| | il | | | f |
\ /| i i\ i
{ f
J I L= J , Y
0453878 (0457832588 (04587385, d. 090541 ms 04628788
£ 1 ki

To retrieve data in the Logic Analyzer window:
= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Set Timestamps Enable.

NOTE

The variable accesses monitored in the Logic Analyzer are also shown in the
Trace Data Window. Refer to the uVision User’s Guide — Debugging for more
information.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

78 Debug Applications

Debug (printf) Viewer

The Debug (printf) Viewer window displays data streams that are transmitted
sequentially through the ITM Stimulus Port 0. To use the Debug (printf)
Viewer, add the following fputc() function that uses the CMSIS function
ITM_SendChar to your source code.

#include <stdio.h>
#include "stm32f4xx.h" // Device header

struct _ FILE { int handle; };
FILE _ stdout;
FILE _ stdin;

int fputc(int c, FILE *f) {
ITM SendChar(c);
return (c);

}

This fputc() function redirects any printf() messages (as shown below) to the
Debug (printf) Viewer.

int seconds; // Second counter

while (1) {
LED On (); // Switch on
delay () // Delay
LED Off (); // Switch off
delay () // Delay
printf ("Seconds=%d\n", seconds++) ; // Debug output

}

= Click on Serial Windows and select Debug (printf) Debug (prinf] Viewer 2 &
Viewer from the toolbar or use the menu View — Serial [foconaocs
Windows — Debug (printf) Viewer to open the i
window. Seconds=4
Gca. Boe. [EM

To retrieve data in the Debug (printf) Viewer window:

= Set Trace Enable in the Debug Settings Trace dialog as described above.
= Set Timestamps Enable.

= Enpable ITM Stimulus Port 0.

ms-its:C:/MDK5/ARM/HLP/ulinkpro.chm::/ulinkpro_tr_stimulusports.htm

Getting Started: Create Applications with MDK Version 5 79

Event Counters

Event Counters displays cumulative . o 8
numbers, which show how often an event is €| R| @
triggered. Name Value Enable
: A CPICNT 698857 ¥
4 From toolbar use Trace Windows — EXCCNT |54 ~
SLEEPCNT 256 v
Event Counters LSUCNT 698580 ¥
From menu View — Trace — Event FOLDCNT 0 v

Counters

To retrieve data in this window:

Set Trace Enable in the Debug Settings Trace dialog as described above.
Enable Event Counters as needed in the dialog.

Event counters are performance indicators:

CPICNT: Exception overhead cycle: indicates Flash wait states.
EXCCNT: Extra Cycle per Instruction: indicates exception frequency.
SLEEPCNT: Sleep Cycle: indicates the time spend in sleep mode.

LSUCNT: Load Store Unit Cycle: indicates additional cycles required to
execute a multi-cycle load-store instruction.

FOLDCNT: Folded Instructions: indicates instructions that execute in zero
cycles.

80 Debug Applications

Trace with 4-Pin Output

Using the 4-pin trace output provides all the features described in the section
Trace with Serial Wire Output, but has a higher trace communication
bandwidth. Instruction trace is also possible.

The ULINKpro debug/trace adapter supports this parallel 4-pin trace output
(also called ETM Trace) which gives detailed insight into program execution.

NOTE
Refer to the uVision User’s Guide — Debugging for more information about the
features described below.

When used with ULINKpro, MDK can stream the instruction trace data for the
following advanced analysis features:

= Code Coverage marks code that has been executed and gives statistics on
code execution. This helps to identify sporadic execution errors and is
frequently a requirement for software certification.

= The Performance Analyzer records and displays execution times for
functions and program blocks. It shows the processor cycle usage and enables
you to find hotspots in algorithms for optimization.

= The Trace Data Window shows the history of executed instructions for
Cortex-M devices.

Trace with On-Chip Trace Buffer

= |n some cases, trace output pins are no available on the microcontroller or
target hardware. As an alternative, an on-chip Trace Buffer can be used that
supports the Trace Data Window.

http://www.keil.com/support/man/docs/uv4/uv4_debugging.htm

Getting Started: Create Applications with MDK Version 5

Middleware

Today’s microcontroller devices offer a wide range of communication peripherals
to meet many embedded design requirements. Middleware is essential to make
efficient use of these complex on-chip peripherals.

NOTE
This chapter describes the middleware that is part of MDK-Professional. MDK
also works with middleware available from several other vendors.

Refer to http://www.keil.com/pack for a list of public Software Packs.

MDK-Professional provides a Software Pack that includes royalty-free
middleware with components for TCP/IP networking, USB Host and USB
Device communication, file system for data storage, and a graphical user
interface.

Refer to www.keil.com/mdk5/middleware for more information about the
middleware provided as part of MDK-Professional.

€ 2 keil.com/mdkS/middleware ¢ ||B - Google A4+ & B- BN

DIKEL

A Products Download Events Support Videos

MDK Version 5 - Middleware

= Microcontrollers offer a wide range of interfaces to meet today's N
o Quick Links
embedded design requirements. However, implementing applications
that efficiently utilize these interfaces presents software developers with = User's Guide
| real challenges. Flexible and easy-to-use middleware components are = Device List
~ e

essential to unleash the power of communication and interface = Example Projects

¥ 7 __ peripherals in modern microcontrollers. DK 5
. ersion
v ~ ~ 4
) 7 The MDK Professional Edition provides royalty-free. tightly coupled
middleware components that are specifically designed for
communication peripherals in microcontrollers.

This web page provides an overview of the middleware and links to:

= MDK-Professional Middleware User’s Guide
= Device List along with information about device-specific drivers
= [nformation about Example Projects with usage instructions

The middleware interfaces to the device peripherals using device-specific
CMSIS-Drivers. Refer to Driver Components on page 89 for more information.

http://www.keil.com/pack
http://www.keil.com/mdk5/middleware

82 Middleware

Combining several components is common for a microcontroller application.
The Manage Run-Time Environment dialog makes it easy to select and
combine MDK-Professional Middleware. It is even possible to expand the
middleware component list with third-party components that are supplied as a
Software Pack.

Typical examples for the usage of MDK-Professional Middleware are:
= Web server with storage capabilities: Network and File System Component
= USB memory stick: USB Device and File System Component

= Industrial control unit with display and logging functionality: Graphics, USB
Host, and File System Component

Refer to the FTP Server Example on page 90 that exemplifies a combination of
several middleware components.

The following sections give an overview for each software component of the
MDK-Professional Middleware.

NOTE
A seven days evaluation license for MDK-Professional is delivered with each
installation. Refer to the Installation chapter on page 9 for more information.

Getting Started: Create Applications with MDK Version 5

83

Network Component

The Network Component uses TCP/IP communication protocols and contains
support for services, protocol sockets, and physical communication interfaces.

Network Component
Compact Full Web Server FTP TFTP Telnet
Web Server using File System Server Server Server
SNMP “sNtP | FP | TFTP | smTP
Agent Client Client Client Client CORE
l TQP" I l uop l '_ BSD] Variants:

*Debug
* Release

Service

Socket

[Ethernet I [PPP (Serial) l [SLIP (Serial) I

Interface

Ethernet MAC

Ethernet PHY

The various services provide program templates for common networking tasks.

= Compact Web Server stores web pages in ROM whereas the Full Web
Server uses the file system for page data storage. Both servers support
dynamic page content using CGI scripting, AJAX, and SOAP technologies.

= FTP or TFTP support file transfer. FTP provides full file manipulation
commands, whereas TFTP can boot load remote devices. Both are available
for the client and server.

= Telnet Server provides a Command Line Interface over an IP network.

= SNMP agent reports device information to a network manager using the
Simple Network Management Protocol.

= DNS client resolves domain names to the respective IP address. It makes use
of a freely configurable name server.

= SNTP client synchronizes clocks and enables a device to get an accurate time
signal over the data network.

= SMTP client sends status emails using the Simple Mail Transfer Protocol.

84 Middleware

All Services rely on a communication socket that can be either TCP (a
connection-oriented, reliable full-duplex protocol), UDP (transaction-oriented
protocol for data streaming), or BSD (Berkeley Sockets interface).

The physical interface can be either Ethernet (for LAN connections) or a serial
connection such as PPP (for a direct connection between two devices) or SLIP
(Internet Protocol over a serial connection).

Depending on the interface, the Network Component relies on certain Drivers to
be present for providing the device-specific hardware interface. Ethernet requires
an Ethernet MAC and PHY driver, whereas serial connections (PPP/SLIP)
require a UART or a Modem driver.

The Network Core is available in a Debug variant with extensive diagnostic
messages and a Release variant that omits these diagnostics.

Getting Started: Create Applications with MDK Version 5

85

File System Component

The File System Component allows your embedded applications to create, save,
read, and modify files in storage devices such as RAM, Flash memory, Memory

Cards, or USB sticks.

l l Meee sreage | h

Variants:

o >
[NAND Flash ' l NOR Flash l lMemory Cardl *Long File Names
+Short File Names

NAND Flash NOR Flash

=
o

Each storage device is accessed and referenced as a Drive. The File System
Component supports multiple drives of the same type. For example, you might
have more than one memory card in your system.

The File System Core is thread-safe, supports simultaneous access to multiple
drives, and uses a FAT system available in two file name variants: short 8.3 file
names and long file names with up to 255 characters.

To access the physical media, for example NAND and NOR Flash chips, or
memory cards using MCI or SPI, Drivers have to be present.

86

Middleware

USB Device Component

The USB Device component implements a USB device interface and uses
standard device driver classes that are available on most computer systems,

avoiding host driver development.

USB Device Component

HID l cDC
Human Interface Device Communication Device

)
o
e
U

MSC [ADC [Custom
Mass Storage Audio Device Custom Device

CORE

USB Device]

—

= USBD High-Speed Full-Speed
(=]

= Human Interface Device Class (HID) implements a keyboard, joystick or
mouse. However, HID can be used for simple data exchange.

= Mass Storage Class (MSC) is used for file exchange (for example an USB

stick).

= Communication Device Class (CDC) implements a virtual serial port.

= Audio Device Class (ADC) performs audio streaming.

= Custom Class can be used for new or unsupported USB classes.

Composite USB devices implement multiple device classes.

This component requires a USB Device Driver to be present. Depending on the
application, it has to comply with the USB 1.1 (Full-Speed USB) and/or the USB

2.0 (High-Speed USB) specification.

Getting Started: Create Applications with MDK Version 5

87

USB Host Component

The USB Host Component implements a USB Host interface and supports Mass
Storage and Human Interface Device classes.

USB Host Component

HID cDC
Human Interface Device Communication Device

: | USB Host]

Mass Stol I l Custom Device I

' (=150 High-Speed Full-Speed
8

HID connects to any HID class equipment.

MSC connects any USB memory stick to your device.

CDC connects any USB communication device.

Custom Class can be used to connect new or unsupported USB devices.

This component requires a USB Host Driver to be present. Depending on the
application, it must comply with the USB 1.1 (Full-Speed USB) and/or the USB
2.0 (High-Speed USB) specification.

88 Middleware

Graphics Component

The Graphics Component is a comprehensive library that includes everything
you need to build graphical user interfaces.

Graphics Component

e . .
g Bitmap Support Window Manager Antialiasing

l Touchscreen l l Joystick l

Interface Template Preconfigured Interfaces

Core functions include:

Input

= A Window Manager to manipulate any number of windows or dialogs.
= Ready-to-use Fonts and window elements, called Widgets, and Dialogs.
= Bitmap Support including JPEG and other common formats.

= Anti-Aliasing for smooth display.

= Flexible, configurable Display and User Interface parameters.

= The user interface can be controlled using input devices like a Touch Screen
or a Joystick.

The Graphics Component interfaces to a wide range of display controllers using
preconfigured interfaces for popular displays or a flexible interface template
that may be adapted to new displays.

The VNC Server allows remote control of your graphical user interface via
TCP/IP using the Network Component.

Demo shows all main features and is a rich source of code snippets for the GUI.

Getting Started: Create Applications with MDK Version 5 89

Driver Components

Device-specific drivers provide the interface between the middleware and the
microcontroller peripherals. These drivers are not limited to the MDK-
Professional Middleware and are useful for various other middleware stacks to
utilize those peripherals.

The device-specific drivers are usually part of the Software Pack that supports the
microcontroller device and comply with the CMSIS-Driver standard. The Device
Database on www.keil.com/dd2 lists drivers included in the Software Pack for
the device.

Software Packs

Microcontroller Device Middleware

_| Startup/System gi:ii:;
UsB E USB Controller USB Device Driver USB Device
|
R [USART USART Driver
I
I_ ‘ TCPI/IP
Eth Ethernet PHY ETH_PHY0
thernet. [er{.et | I Ethernet PHY ' Networking
Ethernet MAC Ethernet MAC [RSBIET
I

SPIL E SPI#1

Graphics

| SPI Driver

$DIOO E SDIO MCI Driver File System
I
vo H I NAND Flash Driver [IIELIEL Il

SPI2 E SPI #2

Memory Controller

UsB E USB Controller USB Host Driver

I

RTE Device.h

Configuration File

The middleware components have various configuration files that connect to
these drivers. For most devices, the RTE_Device.h file configures the drivers to
the actual pin connection of the microcontroller device.

The middleware connects to a driver instance via a control struct. The name of
this control struct reflects the peripheral interface of the device. Drivers for most
of the communication peripherals are part of the Software Packs that provide
device support.

http://www.keil.com/dd2

90 Middleware

Use traditional C source code to implement missing drivers according the
CMSIS-Driver standard.

Refer to www.keil.com/cmsis/driver for detailed information about the API
interface of these CMSIS drivers.

NOTE

Application Note 250: Creating a Software Pack with a New Peripheral Driver
explains how to create a new peripheral driver that does not exist in a Software
Pack.

Refer to www.keil.com/appnotes.

FTP Server Example

FTP server examples are reference application samples that show a combination
of several middleware components. Refer to Verify Installation using Example
Projects on page 12 for more information the various example projects available.

When using an FTP Server, you can exchange and manipulate files over a TCP/IP
network. The middleware documentation has more details about the FTP Server
and the reference application:

FTP Server x

€ D @ files//C:/Working/UV_Dew/MW/Dec/Network/hmi/using ftp_server htmi] + A T8 3

ARMKEIL Network Component Version 6.2

o0's MDK-Professional Middleware for IP Networking
File System Graphic Network DS uss Board Support

Usage and Description Refereace a

FTP Server

File Transfer Protocol (FTP) is a standard network protocol used to exchange and manipulate files over a TCP/IP-based network. FTP is buit on a client-
server architecture and utiizes separate control and data connections between the chient and server apphications. FTP is used with user-based password
authentication or with anonymous user access.

FTP file manipulation means that you can: create and delete files on FTP server, rename files, create folders and subfolders, print the folder listings, etc
FTP applications were originally interactive command-fine tools with a standardized command syntax. Various graphical user interfaces have been developed
for all types of opua(ng syste e to

ntrol how the data connection is opened. The mode of operation is defined by the command,

@ for the data connection, and the server opens the

ber and the dlcnl opens the connection to the server. This mode is used,
P c

An embedded FTP S sed to upload HTTP Web pages or to download log files to a remote PC. In this case, the File System Component
must be used, an nd the Embe dd 23 Web Server must be proper chonﬁgurd

Supported Features

The Embedded FTP server has integrated several advanced features

http://www.keil.com/cmsis/driver
http://www.keil.com/appnotes

Getting Started: Create Applications with MDK Version 5 91

Several middleware components are the building blocks of this FTP server. A
File System is required to handle the file manipulation. Various parts of the
Network component build up the networking interface.

The following diagram represents the software components that are used from the
MDK-Professional Middleware to create the FTP Server example.

Network File System

CORE

" CORE |

(Release)

(Long File Names)

l Ethernet l

Memory Card
SD/SDHC/MMC

Drive

Socket Servlcex ‘

Interface

Ethernet Ethernet

MAC

PHY

As explained before, Drivers provide the interface between the microcontroller
peripherals and the MDK-Professional Middleware.

An FTP example could select the components shown below in the Manage Run-
Time Environment dialog.

Software Component Sel. Variant Version Description | Software Companent Sel. Variant Version Description
o € CMSIS Driver Unified Device Drivers compliant te CM¢ =4 FileSystem MDK-Pro 6.24 | File Access on various storage devices
4 Ethemet (AP]) 201 |Ethemet MAC and PHY Driver API for C¢ I @ CoRe 7 LN [=]6.24 [File System with Long Filename support for
=4 Ethemet MAC (AP] 201 | Ethemet MAC Driver API for Cortex-M I & Drive Storage Devices and Media Types
@ EhemetMaC |V 202 |Ethemet MAC Driver for LPCL800 Series & Graphics MDK-Pro 5261 |UserInterface on graphical LCD displays
£ € Ethemet PHY (AP) 200 | Ethemet PHY Driver APLfor Cortex-M | 1 € Network MDK-Pro 620 |IP Networking using Ethemet or Serial prote
@ DPE3sisC i 600 |Ethemet PHY DPE3848C Driver @ CORE ¥ Release [+]620 |Metworking Core for Cortec-M (Relesse)
@ KSZBOBIRNA | 600 |Ethemet PHY KSZ808IRNA Driver | £ Interface Connection Mechanism
@ LANET20 [l 600 |Ethemet PHY LANB720 Driver % ETH 1E 620 | Network Ethernet Interface
@ ST80RTL (=] 600 |Ethemet PHY STBO2RTI Driver I @ oep ™ Stendard M= 620 | Network PPP over Serial Interface - Standar
@ Flash (2P) 200 | Flash Driver AP for Cortex-M I @ sup I~ |Standard M{~|620 | Metwork SLIP Interface - Standard Modem
4 D (ap) 202 |I2C Driver APl for Cortex-M ¥ Senvice Network Services
B€ My 202 |MCIDriver APIfor Cortech I @ DNS Client (=] 620 |DNS Client
@ ma ~ 200 |MCI Driver for LPC1800 Series @ FTP Client [n] 620 |FTP Client
© NAND (APD 201 | NAND Flash Driver API for Cortex-M | @ FIP Server i3 620 |FTP Server
£€ SPLAPD 201 | SPIDriver APIfor Cortex-M @ SMTPClient | 620 |SMTP Client
@ s ~ 203 |SPI(SSP) Driver for LPC1800 Series | @ SNMPAgent | 6.20 |SHMP Agent
@ USART (4P) 201 |USART Driver AP for CortexM @ SNTP Client [n] 620 |SNTP Client
4 USB Device (4PT) 201 |USB Device Driver AP for Cortex-M I @ TFTP Client [n] 620 | TETP Client
€ USB Host (4P]) 201 | USB Host Driver API for Cortech I @ TFTP Server [n] 620 |TETP Server
& Compiler @ Telnet Server r 620 | Telnet Server
5 € Device Startup. System Setup I @ Web Server Co.. | 620 | Web Server (HTTP) with Read-only Web Re
@ GPDMA ~ 101 | GPDMA driver used by RTE Drivers for Lf @ Web Server [l 620 | Web Server (HTTP) with Web Resources on
@ Gpi0 ~ 100 | GPIO driver used by RTE Drivers for LPCI | £ Socket Network protocol
@ scu ~ 100 |SCU driver used by RTE Drivers for LPCL{ I @ 8D [n] 620 |BSD Socket
@ Startup i 100 | System Startup for NXP LPC1800 Series @ TCe i~ 620 |TCP Socket
£ _File Svstem MDK-Pro 6.24__|File Access on various | “_uoe i 620 _ |UDP Socker

92 Using Middleware

Using Middleware

You can create applications using MDK-Professional Middleware components.
For more information, refer to the MDK-Professional Middleware User’s Guide
that has sections for every component describing:

= Example projects outline key product features of software components. The
examples are tested, implemented, and proven on several evaluation boards
and can be used as reference applications or starting point for your
development.

= Resource Requirements describe for every software component the thread
and stack resources for CMSIS-RTOS and memory footprint.

= Create an Application contains the required steps for using the components
in an embedded application.

= Reference documents the files of the component and each API function.

File System Examples x %

€ file:///C: 10/ UV_Dev/MW/Doc/F htmi/f les.html c Search 3 AN B =

ARMKEIL File System Component versions.2
Microcontroller Tool MDK-Professional Middleware for Devices with Flash File System
Graphic | Network | NetworkDS | USB | Board Support |

General File System

Main Page Usage and Description

Reference a

File System Component

File System Examples

The File System Component is used in many different applications and examples. One stand-alone example is available to demonstrate the usage of the File
System. Other examples use the File System Component in conjunction with other Components (such as USB or Network for example}

+ The File System Example shows the basic functionality of the File System.
« The USB Device Mass Storage Example shows how to create an USB MSC Device that will be recognized as such by an USB Host controller.
* The USB Host Mass Storage Example explains how to use the File System to access data from an attached USB memory device

* The FTP Server Example is made for getting access to the device's File System via a network connection

Refer

Data Structures
To use these examples, use the Pack Installer, select the related Board and Copy the example
Data Structure Index

TEDFED File System Example

This example shows how to manipulate files on a given drive using the File System Component. You can create, read, copy and delete files on any enabled
drive (memory Card, NOR/NAND Flash) and format each drive. To kesp it simple, the Debug (printf) Viewer in MDK is used to interact with the storage
devices. The online help explains how to connect your stdio to the Debug (printf) Viewer window. The following picture shows an exemplary connection of
the development board and a Computer:

The learning platform www.keil.com/learn offers several tutorials and videos
that exemplify typical use cases of the middleware. Refer also to these
application notes:

= www.keil.com/appnotes/docs/apnt 268.asp - USB Host Application with
File System and Graphical User Interface.

= www.keil.com/appnotes/docs/apnt 271.asp - Web-Enabled MEMS Sensor
Platform.

= www.keil.com/appnotes/docs/apnt 272.asp - Web-Enabled VVoice Recorder.

= www.keil.com/appnotes/docs/apnt 273.asp - Analog/Digital Data Logger
with USB Device Interface.

http://www.keil.com/learn
http://www.keil.com/appnotes/docs/apnt_268.asp
http://www.keil.com/appnotes/docs/apnt_271.asp
http://www.keil.com/appnotes/docs/apnt_272.asp
http://www.keil.com/appnotes/docs/apnt_273.asp

Getting Started: Create Applications with MDK Version 5

93

The generic steps to use the various middleware components are:

Add Software Components (page 95): Select in the Manage Run-Time
Environment dialog the software components that are required in your
application.

Configure Middleware (page 97): Adjust the parameters of the software
components in the related configuration files.

Configure Drivers (page 99): Identify and configure the peripheral interfaces
that connect the middleware components with physical I1/O pins of the
microcontroller.

Adjust System Resources (page 100): The middleware components use
RTOS, memory, and stack resources and this may imply configurations, for
example to CMSIS-RTOS RTX.

Implement Application Features (page 101): Use the API functions of the
middleware components to implement the application specific behaviour.
Code templates help you to create the related source code.

Build and Download (page 104): After compiling and linking of the
application use the steps described in the chapter Using the Debugger on
page 65 to download the image to target hardware.

Verify and Debug (page 104): Test utilities along with debug and trace
features described in the chapter Create Applications (page 47).

94 Using Middleware

USB HID Example

While above steps are generic and apply to all components of the MDK-
Professional Middleware, the USB HID example described in the following
sections shows these steps in practice. This example creates an USB HID Device
application that connects a microcontroller to a host computer via USB. On the
PC the utility program HIDClient.exe is used to control the LEDs on the
development board.

The USB HID example described in the following sections uses the MCB1800
development board populated with a LPC1857 microcontroller. It is based on the
project Blinky with CMSIS-RTOS RTX on page 47 along with the source files
main.c, LED.c, LED.h, and the configuration files.

NOTE
You must adapt the code and pin configurations when using this example on other
starter kits or evaluation boards.

Getting Started: Create Applications with MDK Version 5 95

Add Software Components

To create the USB HID Device example, start with the project Blinky with
CMSIS-RTOS RTX described on page 47.

4% Use the Manage Run-Time Environment dialog to add specific software
components.
From USB Device Component (described on page 86):

= Select ::USB:CORE to include the basic functionality required for USB
communication.

= Set ::USB:Device to '1' to create one USB Device instance.

= Set ::USB:Device:HID to '1' to create a HID Device Class instance. If you
select multiple instances of the same class or include other device classes, you
will create a Composite USB Device.

From Driver Components (described on page 89):

= Select from ::Drivers:USB Device (API) an appropriate driver suitable for
your application. Some devices may have specific drivers for USB Full-Speed
and High-Speed whereas other microcontrollers may have a combined driver.
Here, select USBO.

T1P: Click on the hyperlinks in the Description column to view detailed
documentation for each software component.

96

Using Middleware

The picture below shows the Manage Run-Time Environment dialog after
adding these components.

Manage Run-Time Environment

Software Component Sel. Variant
€ Board Support MCE1800
& cmsis

=4 CMSIS Driver
4 Ethernet (APD)
& Ethernet MAC (APT)
4 Ethernet PHY (APD)
¥ Flash (4PD)
& T2C (APT)
€ MCI(AP)
& NAND (APT)
& SPI(APT)
4 USART (APD)
1 4% USB Device (APT)
@ USBD i
@ usel r
€ USB Host (APT)
& Cormpiler
& Device
@ File System
& Graphics
& Network
=4 UsB
CORE e
&% Device =
% Host [i]
= @ Device
& ADC
% CDC
% Custom Class
&% HID
W MSC

MDK-Pro
MDK-Pro
MDK-Pro
MDK-Pro

[y

ol-olale

Version Description

100

2m
2m
200
200
202
202
20m
2m
2m
201
203
202
201

6.24
5261
620
627
627
627
627

627
627
627
627
627

Keil Development Board MCB1800

Cortex Microcontroller Software Interface Compenents

Unified Device Drivers compliant to CMSIS-Driver Specifications

Ethernet MAC and PHY Driver API for Cortex-h
Ethernet MAC Driver API for Cortex-M
Ethernet PHY Driver APIfor Cortex-M
Elash Driver APIfor Cortex-M

I2C Driver API for Cortex-M

MCI Driver AP for Cortex-M

NAND Flash Driver API for Cortex-M

SPI Driver API for Cortex-M

USART Driver AP for Cortex-M

USE Device Driver API for Cortex-M

USBO Device Driver for the LPC1800 series
USB1 Device Driver for the LPC1800 series
USE Host Driver API for Cortex-h

Startup, System Setup
File Access on various storage devices

User Interface on graphical LCD displays

1P Netwerking wsing Ethernet or Serial protocols
USB Communication with various device classes
USE Core for Cortex-M

USE Device

USB Host

USE Device Classes

USB Device: Audio Device Class (ADC)

USB Device: Cemmunication Device Class (CDC)

USB Device: Custom Class
USE Device: Human Interface Device (HID) Class
USE Device: Mass Storage Class (MSC

Getting Started: Create Applications with MDK Version 5 97

Configure Middleware

Every MDK-Professional Middleware component has a set of configuration files
that adjusts application specific parameters and determines the driver interfaces.
These configuration files are accessed in the Project window in the component
class group and usually have names like <Component>_Config_0.c or

<Component>_Config_0.h.

Some of the settings in these files require corresponding settings in the driver and
device configuration file (RTE_Device.h) that is subject of the next section.

For the USB HID Device example, there are two configuration files available:
USBD_Config_0.c and USBD_Config_ HID 0.h.

_] USBD_Config_0.c
Epand Al | Colapss Al | Hep | T ShowGnd
Option Value
=-USB Device 0
Connect to hardware via Driver_USBD# 1]
High-speed r
=)-Device Settings
Max Endpoint 0 Packet Size 8 Bytes
Vender ID (C251
Product ID 00000
Device Release Number 0x0100
=l Configuration Settings
Power Bus-powered
Remnote Wakeup r
Maximurmn Power Consumption (in mA) 500
=) String Settings
Language ID 0x:0409
Manufacturer String Keil Software
Product String Keil USB Device 0
= Serial Number I
Serial Number String 000140000000
=I-05 Resources Settings
Core Thread Stack Size 512

98 Using Middleware

The file USBD_Config_0.c contains a number of important settings for the
specific USB Device:

= The setting Connect to Hardware via Driver_USBD# specifies the control
struct that reflects the peripheral interface, in this case, the USB controller
used as device interface. For microcontrollers with only one USB controller
the number is ‘0’. Refer to Driver Components on page 89 for more
information.

= Select High-Speed if supported by the USB controller. Using this setting
requires a driver that supports USB High-Speed communication.

= Set the Vendor ID (VID) to a private VID. The USB Implementer’s Forum
http://www.usb.org/developers/vendor provides more information on how
to apply for a valid vendor ID.

= Every device needs a unique Product ID. Together with the VID, it is used by
the host computer's operating system to find a driver for your device.

= The Manufacturer and the Product String can be set to identify the USB
device in PC operating systems.

The file USBD_Config_HID_0.h contains device class specific Endpoint settings.
For this example, no changes are required.

http://www.usb.org/developers/vendor

Getting Started: Create Applications with MDK Version 5 929

Configure Drivers

Drivers have certain properties that define attributes such as 1/0 pin assignments,
clock configuration, or usage of DMA channels. For many devices, the
RTE_Device.h configuration file contains these driver properties. Typically, this
file RTE_Device.h requires configuration of the actual peripheral interfaces used
by the application. Depending on the microcontroller device, you can enable
different hardware peripherals, specify pin settings, or change the clock settings
for your implementation.

The USB HID Device example requires the following settings:
= Enable USBO Controller and expand this section.

= You may disable Endpoints 2 to 5 to reduce the memory footprint, since the
HID device requires a single Endpoint only.

_] RTE Deviceh - x
Bgand Al | Colapse Al | Help [~ Show Grid
Option Value
=SB0 Controller [Driver_USEDD and Driver USBHD] [+ =
--Pin Configuration
USBO_PPWR (Host) P17
USBO_PWR_FAULT (Host) P15
USBO_INDO P14
USBO_INDL P13
= Device [Driver_USBDO]
High-speed r
- -Endpoints
Endpoint1 [
Endpoint 2 r
Endpoint 3 r
Endpoint 4 r
Endpoint 5 r
F--USB1 Controller [Driver_USBD1 and Diriver USBHL] T
#--EMET (Ethernet Interface) [Driver_ ETH_MACO] r —

100 Using Middleware

Adjust System Resources

Every middleware component has certain memory and RTOS resource
requirements. The section “Resource Requirements” in the MDK-Professional
Middleware User’s Guide documents the requirements for each component.

Resource Requirements: x UF

€ + A w8 =

ARMKEIL USB Component vessins.2

MDK-Professional Middleware for USB Device and Host

General ystem | Graphic | Network | NetworkDs |G Board Support
USB Component USB Device Resource Requirements a
Revision History -
The following section documents the requirements for the USB Device component. The actual requirements depend on the components used in the
USB Device application and the configuration of these components
USB Host

USE Concepts Stack Requirements

The USB Device Core receives events sent from the interrupt service routine (ISR) of the USB Device Driver. The stack requirements for the ISR are
typically less than 512 Bytes. The total stack space required for ISR depends on the interrupt nesting and therefore on the priority settings of these ISR. The
stack requirements for ISR are configured in the startup_device.s file located under the Device component class

[option (under section Stack Configuration) | Increase Value by |

USB Host Resource Requiremer

- | stack size (in Bytes) | + 512 for USB Device Driver |
elorence
Data Structures Note
Data Stucture Inder When using 3 CMSIS-RTOS, the Stack Size in the startup_device.s file configures only the stack space that is used by exception and interrupt service
- routines of the drivers. The stack size requirements depend on the maximum nesting of exception and ISR execution and therefore on the priority
ata Fields

settings of the various interrupt and exception sources

User code that calls API functions of the USB Device Component should have a minimum of 512 Bytes of stack space available. Since API functions are
frequently called from threads, the thread stack size should be at least 512 Bytes (see below).

CMSIS-RTOS Requirements

The USB Device component uses CMSIS-RTOS threads. Each instance of a component starts its own threads, for example two HID instances start two
threads with the name: USBD_HIDO_Thread, USBD_HIDI_Threzd. The thread execution starts with USBD_Tnitialize. All threads execute with priority
osPriorityAboveNormal on an user-provided stack.

The following table lists the components, number of threads executed along with thread name, the default stack size, and the configuration file with OS
Resource Settings for stack size adjustments

Component Threads / Thread Name Default Stack Size | Configuration File

::USB:Device 1/ USBDn_CoreThread 512 Bytes USBD_Config_n.c
::USB:Device:ADC 1/ USBD_ADCn_Thread 512 Bytes USBD_Config_ADC_n.c
::USB:Device:CDC 2/ USBD_CDCn_Bulk_Thread, USBD_CDCn_Int_Thread 512 Bytes USBD_Config_CDC_n.c

::USB:Device:Custom Class | 1...15 / USBD_CustomClassn_EPm_Thread 512 Bytes USBD_Config_CustomClass_n.c
::USB:Device:HID 1/ USBD_HIDn_Thread 512 Bytes USBD_Config_HID_n.c
::USB:Device:MSC 1/ USBD_MSCn_Thread 512 Bytes USBD_Config_MSC_n.c

n is instance number, m is Endpoint number 1...15

Most middleware components use the CMSIS-RTQOS. It is important that the
RTOS is configured to support the requirements.

For CMSIS-RTOS RTX, the RTX_Conf_CM.c file configures threads and stacks
settings. Refer to CMSIS-RTOS RTX Configuration on page 30 for more
information.

For the USB HID Device example, the following settings apply:

= The ::USB:Device component requires one thread (called
USBDn_CoreThread) and a user-provided stack of 512 bytes.

= The ::USB:Device:HID component also requires one thread (called
USBD_HIDn_Thread) and a user-provided stack of 512 bytes.

Getting Started: Create Applications with MDK Version 5

101

Reflect these requirements with the settings in the RTX_Conf_CM.c file:

= Number of concurrent running threads: 6 (default) is enough to run the two
threads of the USB Device component concurrently. Adjust this setting if the
user application executes additional threads.

= Default Thread stack size [bytes]: This setting is not important as the USB
component runs on user-provided stack.

= Main Thread stack size [bytes]: 512. Stack is required for the API calls that
initialize the USB Device component.

= Number of threads with user-provided stack size: 2. Specifies the two
threads (for ::USB:Device and ::USB:Device:HID) with a user-provided
stack.

= Total stack size [bytes] for threads with user-provided stack size: 1024.
Specifies the total stack size of the two threads.

= The Timer Clock value [Hz] needs to match the system clock (180000000).

_] RTX_Conf CM.c -
Bpand Al | Colapse Al | Hlp | T ShowGid
Option Value
= Thread Configuration
MNurnber of concurrent running user threads 6
Default Thread stack size [bytes] 200
Main Thread stack size [bytes] 512
MNumber of threads with user-provided stack size 2

Total stack size [bytes] for threads with user-provided sta... 1024

Stack overflow checking [+

Stack usage watermark r

Processor mode for thread execution Privileged mode
—I-RTX Kernel Timer Tick Configuration

Use Cortex-M SysTick timer as RTX Kernel Timer [+

RTOS Kernel Timer input clock frequency [Hz] 180000000

RTX Timer tick interval value [us] 1000

Implement Application Features

Now, create the code that implements the application specific features. This
includes modifications to the files main.c, LED.c, and LED.h that were created
initially for the project Blinky with CMSIS-RTOS RTX on page 47.

The middleware provides User Code Templates as starting point for the
application software.

102 Using Middleware

(& In the Project window, right-click Source Group 1 and open the dialog
Add New Item to Group. Select the user code template from
::USB:Device:HID - USB Device HID (Human Interface Device) and

click Add.
Add Mew Item to Group 'Source Group 1' @
] Add template file(s) to the project.
C |CFile () * © —
- Component Name
C" C++ File (cpp) e @ CMSIS
A | Asm File (5) & uss
USE Device HID (Human Interface Device)
h | Header File (k) DeviceHID USE Device HID Mouse
= | Text File (1)
Qg\ Image File ()
ﬁ User Code Template
Type: | User Code Template
(e | USBD_User_HID_0.c
Location: | C:\01_workspace MDKy 5P BlinkyRTOS
Add Close | Help

To connect the PC USB application to the microcontroller device, modify the
function USBD_HIDO_SetReport(), which handles data coming from the USB
Host. For this example, the data are created with the utility HIDClient.exe.

(> Open the file USBD_User HID_0.c in the editor and modify the code as
shown below. This will control the LEDs on the evaluation board.

#include "LED.h" // access functions to LEDs

bool USBD HIDO_ SetReport (uint8 t rtype, uint8 t req, uint8 t rid,
const uint8 t *buf, int32_t len) {
uint8 t i;

switch (rtype) {
case HID_REPORT_OUTPUT 3
for (1 = 0; i < 4; i++) {
if (*buf & (1 << i)) LED Omn (i);
else LED Off (i),
}
break;

case HID REPORT FEATURE:
break;

}

return true;

Getting Started: Create Applications with MDK Version 5

103

Expand the functions in the file LED.c to control several LEDs on the board and
remove the thread that blinks the LED, as it is no longer required.

&> Open the file LED.c in the editor and modify the code as shown below.

#include "SCU LPC18xx.h"
#include "GPIO LPC18xx.h"

#include "cmsis_os.h" // BRM: :CMSIS:RTOS:Keil RTX
const GPIO_ID LED GPIO[] = { // LED GPIO definitions
{6, 24},
{6, 25 },
{6, 26 },
{6, 27 }

}i

void LED Initialize (void) {
GPIO PortClock (1) ; // Enable GPIO clock

/* Configure pin: Output Mode with Pull-down resistors */
SCU_PinConfigure (13, 10, (SCU CFG_MODE FUNC4|SCU PIN CFG PULLDOWN EN));

GPIO_SetDir (6, 24, GPIO DIR OUTPUT) ;

GPIO_PinWrite (6, 24, 0);

SCU_PinConfigure (13, 11, (SCU_CFG_MODE FUNC4|SCU_PIN CFG_PULLDOWN_EN)) ;
GPIO SetDir (6, 25, GPIO DIR OUTPUT) ;

GPIO_ PinWrite (6, 25, 0);

SCU_PinConfigure (13, 12, (SCU_CFG_MODE FUNC4|SCU_PIN CFG_PULLDOWN_EN)) ;
GPIO_SetDir (6, 26, GPIO DIR OUTPUT) ;

GPIO_PinWrite (6, 26, 0);

SCU_PinConfigure (13, 13, (SCU _CFG_MODE FUNC4|SCU PIN CFG PULLDOWN_EN)) ;
GPIO_SetDir (6, 27, GPIO_DIR OUTPUT) ;

GPIO_PinWrite (6, 27, 0);

}

void LED On (uint32_t num) {
GPIO_PinWrite (LED_GPIO[num] .port, LED GPIO[num].num, 1);
}

void LED Off (uint32_t num) {
GPIO_PinWrite (LED_GPIO[num] .port, LED GPIO [num].num, 0);
}

(& Open the file LED.h in the editor and modify it to coincide with the changes
to LED.c. The functions LED_On() and LED_Off() now have a parameter.

void LED Initialize (void);
void LED On (uint_32 num);
void LED Off (uint_ 32 num);

104 Using Middleware

(&> Change the file main.c as shown below. Instead of starting the thread that
blinks the LED, add code to initialize and start the USB Device Component.
Refer to the Middleware User’s Guide for further details.

S ——
* File main.c
K e */
#define osObjectsPublic // define objects in main module
#include "osObjects.h" // RTOS object definitions
#include "LPC18xx.h" // Device header
#include "LED.h" // Initialize and set GPIO Port
#include "rl usb.h" // Keil .MDK-Pro: :USB:CORE
/*
* main: initialize and start the system
*/
int main (void) {
osKernellInitialize () // Initialize CMSIS-RTOS

// initialize peripherals here

LED Initialize (); // Initialize LEDs
USBD_Initialize (0); // USB Device 0 Initialization
USBD_Connect (0) ; // USB Device 0 Connect
osKernelStart () // Start thread execution
while (1);

Build and Download

Build the project and download it to the target as explained in chapters Create
Applications on page 47 and Using the Debugger on page 65.

Verify and Debug

Connect the development board to your PC using another USB cable. This
provides the connection to the USB device peripheral of the microcontroller.
Once the board is connected, a notification appears that indicates the installation
of the device driver for the USB HID Device.

The utility program HIDClient.exe that is part of 2 HID Clent =
MDK enables testing of the connection between the Human Inlerface Device

PC and the development board. This utility is Deves:{ Kol USE Cevice =l
located the MDK installation folder L .
AKeilARM\ULtilities\HID_Client\Release. 0 FECCCCCr

?ﬂ
=
T
K-
Tl
S
<]
e
< -
A=)

Getting Started: Create Applications with MDK Version 5

105

To test the functionality of the USB HID device run the HIDClient.exe utility

and follow these steps:

= Select the Device to establish the communication channel. In our example, it

is “Keil USB Device”.

= Test the application by changing the Outputs (LEDs) checkboxes. The
respective LEDs will switch accordingly on the development board.

If you are having problems connecting to the development board, you can use the

debugger to find the root cause.
@} From the toolbar, select Start/Stop Debug Session.

[L
File Edit View Project Flash Debug Peripherals Tools SVCS Window Help

L proje- ision

gasl @ | | | = | @ eo_num Haw|@ e oo elE)
EECI (5‘1)\=¢>\-Ei m- - m- -
Project T T T o StemandThiead Viewsr
A Property Value
TReport (winve_ -
- R ke |
icl 1.000 mSec
116 switch (rtype) { 3 5.000 mSec

ase HID_REEORT_OUTEUT:

512

118 for (i 0r 1< 4r i44) L Ve
[RTX_Conf_CM.c RTOSKeil | (2 129 T (*buf & (1 << 1)) l
5] RTX_Ch4 b (RTOS:Keil KT = 120 1ED, @ Thread Usag Available:7, Used: 4
& Device i 121 els
122 1ED off (3):

breaks & Threads

P10 swazmxx (GPIO)

tortup.stm32fiQecs (Stary 126 0 Abovelor.. Wa tOR 1
ivers 3:;’ 3 ov Running
B e oo (333 | i | omal_|Renty
.oy hoce = 1 TimerThread High Wit MBX

[£1 USBD Config O.c (Device) ~
I v

2 @ Call Stack = Locals
+ Name Location/Value
59 0,08002F8C
©% USBD_HID... 0:0800048F
9 ype 002
*req 001
*9 rid 000

2
= »% T 0:200000D4 usbd_hid0... p
un

40 000

Load "Ci\\ cant”

BS \\US3_HID_Tesc\USSD_User_HID 0.c\113

9 len 000000001

>

00000
00000

==

OFFFF 12%
OFFFF 12%
12%
40%

=

LA

2|

|| Eacan stack « Locats [waecns | &

ST-Link Debugger

ASSIGN BreakDisable BreakEnable BreakKill BreakList BreakSet BreakAccess

t1: 5242458160 sec

L119CL

CaP| NUM! SCRL OVR| R /W

Use debug windows to narrow down the problem. For example, use the Call
Stack + Locals window to examine the value of local variables in the
USBD_User_HID_0.c file. Breakpoints help you to stop at certain lines of code

so that you can examine the variable contents.

NOTE

Debugging of communication protocols can be difficult. When starting the
debugger or using breakpoints, communication protocol timeouts may exceed
making it hard to debug the application. Therefore, use breakpoints carefully.

In case that the USB communication fails, disconnect USB, reset your target

hardware, run the application, and reconnect it to the PC.

106

Index

Index

TOOIDAr ...t

Using Debugger

Watch Window
Debug (printf) Viewer
Debugtab......cccoeennennnn.
Define and refrence object definitions 29
Device Database.........cccovvreereiieinieenene 10
Device Startup Variations

Change Clock Setup using DAVE 60

Setup the Projectccocoevvvvicnnnnn. 61

STMB2CUDEcvveeviiiriicieee e 61

USINg DAVE ..o 58
Documentation..........ccoeveereenesecnennene 20
E
Example Code

Clock setup for STM32Cube................ 63
Example Code

CMSIS-CORE layer.........ccccocvevrveernne.

CMSIS-DSP library functions
CMSIS-RTOS RTX functions

Timers

A

Add New Item to Group........cccceeveennnee. 102

Applications
Add Source Codecccovvereieeirennn 52
Blinky with CMSIS-RTOS RTX.......... 47
BUII ..o 55
Configure Device Clock Frequency50
Createoovvirveivceeee e 47
Customize RTX TimMerc.cccvvvrnnenn. 51
DebUg ..o 64
Manage Run-Time Environment.......... 48
Setup the Project.........cocooeeveivncennnenn, 48
User Code Templatescccovveevnnnn. 52

B

Breakpoints
ACCESS ..o 68
Command
Execution

Build Output

C

CMSIS....oiiiiceee e 22
CORE ..ottt 23
DSP ..t 43
Software Componentsccoeeevnnene. 22
User code templatecccoovvrvireeinnnn. 33

CMSIS_0S.N.evivviieiieiiciece e 53

CMSIS-DAP.........

Code Coverage

Compare MemMOry areas...........cccoerververnes 70

CoreSightocvieveieieese e 72

D

DAVE ... 58

Debug
Breakpointsccovvvierenierieieieiieeninns 68
Breakpoints Window...........c.ccoeeeinnene. 68
Command Windowcccccoevrencnne. 67
CONNECLION ..ot 64
Disassembly Window...........cccccecveennne 67
Memory Windowcccceeeeeiiinenncns 70
Peripheral Registers.........cccooveevveninnnn. 71
Register Window..........ccccoveveiviiiennnns 70
Stack and Locals Window..................... 69
Start SESSIONovveveieririiieeisnes 66
System Viewer Window..............c........ 71

Blinky
Set PLL parameters.........coccovveverienienns
Thread with single semaphore

Example Projectsc.ccoeeveriinnnenens

=

File
CMSIS_0S.N.cvvviiiiiieiiiccee 27,28, 29
Consistent usage of header files 29
device.N o 23
0SODbjJeCtS. N 29
RTE_Device.h.....ccccevneen. 61, 89, 97,99
RTX _<core>.1ib....ccccoovevniieiiiiee, 28
RTX_Conf CM.c....... 28, 30, 42, 51, 101
startup_<device>.sccocovvevvriveirenenn 23
system_<device>.C............. 23, 32,50, 51

File System
FAT e 85
FIash ..o 85

G

Graphics Component
Anti-Aliasing........cooeveieiiiiieee 88

Getting Started: Create Applications with MDK Version 5

SNMP Agent
SNTP Client.....oooeiiiieceecceee

Demo.......ccooveuee
Dialogs
Display
Fonts..........
Joystick
TOUCh SCreen......coveveiveieceeeee 88
User Interfacecoccoeeveveiencieiceenns 88
VNC Server
WIAQELS .o
Window Manager.........cccecevvervevenrennn, 88
H
HIDCHENt.EXE ..vvecveeceveecieecee e 104
L
Legacy SUPPOIt......cccovevrenereeeecceeine 7
M
MDK
COrB.iiiici e 7
Core Installoeeeiirinriieiie 9
EdItioNS ..c.ovveveivciecice 8
Installation Requirements
INtrodUCHION ...
License TYPES.....covevreriieirieencieinienns 8
Trial license
Middlewarecccooveviiiieniieeee
Add Software Components................... 95
Adding Software Components.............. 24
Adjust System Resources.............. 93, 100
Configure.......ccooeveneneiecee, 93, 97
Configure Drivers........ccccoceeveenennne. 93,99
Create an Application...........cccoceeennne. 92
Debug...c.coveieiiiiiie 93, 104
DIIVEIS....oieieicieestce e 89
Example projects.......cccceeveveveieiinenicns 92
File System Componentcc.cc.... 85
FTP Server Exampleccccccevieinennns 90
Graphics Component..........cccccecveeenenne. 88
Implement Application Features ..93, 101
Network Componentc.ccceevvveeinnene. 83
Resource Requirements...........ccocveennns 92
USB Device Componentcc........ 86
USB HID Example.......ccccooeiiiiinenncns 94
USB Host Component.........cccoceevennnne 87
USING et 92
Using COMpoNentscccoeeeeeverceenncns 93
N

Network Component

O

Options for Target.........c.ccovvevrennnne 14, 65

P

Pack Installer...........cocovviniieniinicinnen 10

Performance Analyzer.............cccocoeuevee. 80

R

Retargeting 1/0 outputccccooevveiieinenen. 45

RTOS
Mail Queue Management..................... 41
Memory Pool Management................... 40
Message Queue Management............... 40
Mutex Managementcccccevverirnene 38
Preemptive Thread Switching 36
Semaphore Management....................... 38
Signal Management...........cccocoevvevnnne. 37
Single Thread Program.............c.cccvvuve. 35
System and Thread Viewer 42
Thread Management
Timer Managementccccooevvevenenes

RTOS Debugging
Event Viewer

API functions
Threadcccoovvevienne
TIMers ..o
Concepts.......ccocveeenene
Configuration
RTOS Kernel advantages
Timer Tick configuration
Tread stack configuration
USING RTX .oviiciceeeeece e

107

108 Index
RTX_Conf CM.C..covvevieiiie e 100 Instruction Trace
Instrumented Trace

S ITM Stimulus.............

Selecting Software Packsc.cc....... 19 ITM_SendChar...........

Software Component Logic Analyzer...........
Compiler.....cccoviviiiiiiiiiceecee, 45 VI D

Software Components ...
OVEIVIBW ..o 18

Software Packs..........cocovvievinnnncciieen 7
INStall.....ccooiie 10 :
Install manuallyccoocoovveoeecnnene. 10 Trace Data Windowoccoooeeiiiene 80
Manage VErSioNS.........oooooccorrrrrresrrreer 19 Trace EXCepLioNns.......cccoovvviverecciirininnns 75
Product Lifecycleccocoovvvenieninnnn, 18 U
SelECt ..o 19
USE ottt 16 ULINK e 64
Verify Installationcc.cccoovvivrnnnns 12 ULINKPIO.c.coveivieiieierisenee e 74, 80

Start/Stop Debug Session............ 15, 66, 105 USB Device

SUPPOIT .ttt 20

T

TrACE v 72
4-Pin Trace Output........ccccvevrernnene. 72,80
Data Watchpointsccccovveeniininnene, 72
Debug (pl’lntf) Viewer -------------------------- 78 HID .. 87
ETB MSC ..ot 87
Event Counters.... User Code Templates..........c.ccocennnee. 33,101
Event Viewer....... \Vj
Exception Trace...
fputc funCtion ..., Versioning Software Packsc.cc.cc..... 19

	Preface
	Chapter Overview

	Contents
	MDK Introduction
	MDK Core
	Software Packs
	MDK Editions
	License Types

	Installation
	Software and Hardware Requirements
	Install MDK Core
	Install Software Packs
	MDK-Professional Trial License
	Verify Installation using Example Projects
	Copy an Example Project
	Use an Example Application with µVision
	Build the Application
	Download the Application
	Run the Application

	Use Software Packs
	Software Component Overview
	Product Lifecycle Management with Software Packs

	Access Documentation
	Request Assistance
	Learning Platform

	CMSIS
	CMSIS-CORE
	Using CMSIS-CORE
	Adding Software Components to the Project
	Source Code Example

	CMSIS-RTOS RTX
	Software Concepts
	Infinite Loop Design
	Advantages of an RTOS Kernel

	Using CMSIS-RTOS RTX
	Header File cmsis_os.h
	Define and Reference Object Definitions
	CMSIS-RTOS RTX Configuration
	Thread Stack Configuration
	RTX Kernel Timer Tick Configuration

	CMSIS-RTOS RTX API Functions
	CMSIS-RTOS User Code Templates
	Thread Management
	Single Thread Program
	Preemptive Thread Switching
	Timer Management
	Signal Management
	Mutex Management
	Semaphore Management
	Memory Pool Management
	Message Queue Management
	Mail Queue Management
	CMSIS-RTOS System and Thread Viewer

	CMSIS-DSP

	Software Component Compiler
	Create Applications
	Blinky with CMSIS-RTOS RTX
	Setup the Project
	Configure the Device Clock Frequency
	Customize the CMSIS-RTOS RTX Kernel
	Create the Source Code Files
	Build the Application Image

	Blinky with Infinite Loop Design
	Build the Application Image

	Device Startup Variations
	Example: Infineon XMC1000 using DAVE
	Change the Clock Setup using DAVE

	Example: STM32Cube
	Setup the Project for STM32F407 Discovery Kit

	Debug Applications
	Debugger Connection
	Using the Debugger
	Debug Toolbar
	Command Window
	Disassembly Window
	Breakpoints
	Breakpoints Window

	Watch Window
	Call Stack and Locals Window
	Register Window
	Memory Window
	Peripheral Registers
	System Viewer

	Trace
	Trace with Serial Wire Output
	Trace Exceptions
	Event Viewer
	Logic Analyzer
	Debug (printf) Viewer
	Event Counters

	Trace with 4-Pin Output
	Trace with On-Chip Trace Buffer

	Middleware
	Network Component
	File System Component
	USB Device Component
	USB Host Component
	Graphics Component
	Driver Components
	FTP Server Example

	Using Middleware
	USB HID Example
	Add Software Components
	Configure Middleware
	Configure Drivers
	Adjust System Resources
	Implement Application Features
	Build and Download
	Verify and Debug

	Index

