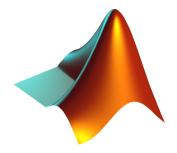
Lecture 11: Set Operations, Data Treatment (I/O) BE0B17MTB – Matlab

Miloslav Čapek, Viktor Adler, Pavel Valtr, Michal Mašek, and Vít Losenický

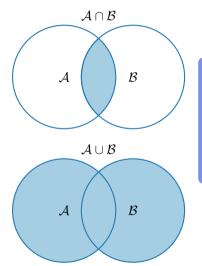

Department of Electromagnetic Field Czech Technical University in Prague Czech Republic valtroffel.cvut.cz

December 16, 2019 Winter semester 2019/20

- 1. Set Operations
- 2. Error Treatment
- 3. Data Import and Export
- 4. Data Types categorical and table

- ► There exist following operations (operators) in MATLAB applicable to arrays or individual elements:
 - ▶ arithmetic (part #1),
 - ▶ relational (part #3),
 - ▶ logical (part #3),
 - ▶ set (part #11),
 - ▶ bit-wise (>> doc bit-wise).
- ▶ Set operations are applicable to vectors, matrices, arrays, cells, strings, tables,...
- Mutual sizes of these structures are usually not important.

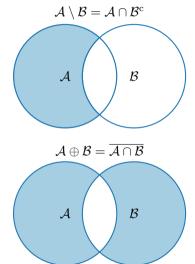
Function	Description
intersect	intersection of two sets
union	union of two sets
setdiff	difference of two sets
setxor	exclusive OR of two sets
unique	unique values in a set
sort	sorting
sortrows	row sorting
ismember	is an element member of a set?
issorted	is a set sorted?


Set Operations: intersect and union

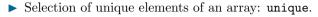
- ▶ Intersection of sets: intersect.
 - **Example:** intersection of a matrix and a vector:

```
>> A = [1 -1; 3 4; 0 2];
>> b = [0 3 -1 5 7];
>> c = intersect(A, b)
% c = [-1; 0; 3]
```

- ▶ Union of sets: union.
 - Example: All set operations can be carried out row-wise (in that case the number of columns has to be observed):


```
>> A = [1 2 3; 4 5 1; 1 7 1];
>> b = [4 5 1];
>> C = union(A, b, 'rows')
% C = [1 2 3; 1 7 1; 4 5 1]
```


Set Operations: setdiff and setxor


- Intersection of a set and complement of another set: setdiff.
 - Example: All set operations return more than one output – we get the elements as well as the indexes:

>> A = [1 1; 3 NaN]; >> B = [2 3; 0 1]; >> [C, ai] = setdiff(A,B) % C = NaN, ai = 4, i.e.: C = A(ai)

- ▶ Exclusive intersection (XOR): setxor.
 - ► Example: All set operations can be carried out either as 'stable' (not changing the order of elements) or as 'sorted':

```
>> A = [5 1 0 4];
>> B = [1 3 5];
>> [C, ia, ib] = setxor(A, B, 'stable')
% C = [0 4 3], ia = [3; 4], ib = [2]
```

Set Operations: unique

• Example: Set operations are also applicable to arrays not (exclusively) containing numbers:

```
>> A = {'Joe', 'Tom', 'Sam'};
>> B = {'Tom', 'John', 'Karl', 'Joe'};
>> C = unique([A B])
% C = {'John', 'Karl', 'Joe', 'Sam', 'Tom'}
```


- ▶ It is possible to combine all above mentioned techniques.
 - **Example:** Row-wise listing of unique elements of a matrix including indexes:

```
>> A = round(rand(10, 3)).*mod(10:-1:1, 3)'
>> [C, ai, ci] = unique(sum(A, 2), 'rows', 'stable')
```

▶ Interpret the meaning of the above code? Is the **rows** parameter necessary?

Set Operations I.

- ▶ Consider three vectors **a**, **b**, **c** containing natural numbers $x \in \mathbb{N}$ so that:
 - ▶ vector **a** contains all primes up to (and including) 1000,
 - ▶ vector **b** contains all even numbers up to (and including) 1000,
 - ▶ vector **c** is complement of **b** in the same interval.
- Find vector \mathbf{v} so that $\mathbf{v} = \mathbf{a} \cap (\mathbf{b} + \mathbf{c})$, and

▶
$$\mathbf{b} + \mathbf{c} \equiv [b_i + c_i], b_{i-1} < b_i < b_{i+1}, c_{i-1} < c_i < c_{i+1}, \forall i \in \{1, \dots, 500\}.$$

- ► What elements does **v** contain?
- \blacktriangleright How many elements are there in **v**?

v	-																	
	Column	s 1 t	through	18														
	3	7	11	19	23	31	43	47	59	67	71	79	83	103	107	127	131	139
	Column	s 19	through	36														
	151	163	167	179	191	199	211	223	227	239	251	263	271	283	307	311	331	347
	Column	s 37	through	54														
	359	367	379	383	419	431	439	443	463	467	479	487	491	499	503	523	547	563
	Column	s 55	through	72														
	571	587	599	607	619	631	643	647	659	683	691	719	727	739	743	751	787	811
	Column	s 73	through	87														
	823	827	839	859	863	883	887	907	911	919	947	967	971	983	991			
а	ns =																	600
	87																	000

Set Operations I.

- ▶ Consider three vectors **a**, **b**, **c** containing natural numbers $x \in \mathbb{N}$ so that:
 - ▶ vector **a** contains all primes up to (and including) 1000,
 - ▶ vector **b** contains all even numbers up to (and including) 1000,
 - \blacktriangleright vector **c** is complement of **b** in the same interval.
- Find vector \mathbf{v} so that $\mathbf{v} = \mathbf{a} \cap (\mathbf{b} + \mathbf{c})$, and
- ▶ $\mathbf{b} + \mathbf{c} \equiv [b_i + c_i], b_{i-1} < b_i < b_{i+1}, c_{i-1} < c_i < c_{i+1}, \forall i \in \{1, \dots, 500\}.$
 - ▶ What elements does **v** contain?
 - ▶ How many elements are there in **v**?

They are primes which is possible to express as a sum of two consecutive numbers, where the larger one is even.

v	-									<u> </u>								
	Column	511	through :	18														
	3	7	11	19	23	31	43	47	59	67	71	79	83	103	107	127	131	139
	Columns	s 19	through	36														
	151	163	167	179	191	199	211	223	227	239	251	263	271	283	307	311	331	347
	Columns	s 37	through	54														
	359	367	379	383	419	431	439	443	463	467	479	487	491	499	503	523	547	563
	Columns	5 55	through	72														
	571	587	599	607	619	631	643	647	659	683	691	719	727	739	743	751	787	811
	Columns	5 73	through	87														
	823	827	839	859	863	883	887	907	911	919	947	967	971	983	991			
an	IS =																	
	87																	

Set Operations II.a

▶ Estimate the result of following operation (and verify using MATLAB):

 $\mathbf{w} = (\mathbf{b} \cup \mathbf{c}) \setminus \mathbf{a}.$

 \blacktriangleright What is specific about elements of the resulting vector $\mathbf{w}?$

▶ With the help of logical indexing and mathematical functions determine how many elements of **w** are divisible by 3.

Set Operations II.a

▶ Estimate the result of following operation (and verify using MATLAB):

 $\mathbf{w} = (\mathbf{b} \cup \mathbf{c}) \setminus \mathbf{a}.$

 \blacktriangleright What is specific about elements of the resulting vector **w**?

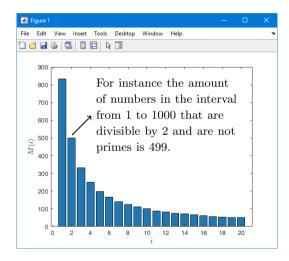
They are integers between 1 and 1000 and are not primes at the same time.

▶ With the help of logical indexing and mathematical functions determine how many elements of **w** are divisible by 3.

Set Operations II.b

▶ Write previous exercise as a script:

```
%% script depicts number of integers from 1 to 1000 in
% dependence on division remainders
clear; clc;
N = 1000;
a = primes(N);
b = 2:2:N;
c = setdiff(1:N, b);
w = setdiff(union(b, c), a);
% ...
m = sum(not(mod(w, 3)));
% ...
```


• Modify the script in the way to calculate how many elements of \mathbf{w} are divisible by numbers 1 to 20.

- ▶ Use for instance **for** loop to get the result.
- ▶ Plot the results using **bar** function.

Set Operations II.c

Set Operations III.a

- ▶ Radio relay link operates at frequency of 80 GHz at 20 km distance with 64-QAM modulation.
 - ▶ Phase stability of ±0.5° is required for sufficiently low bit error rate without using synchronization and coding.
 - ▶ That corresponds to the change of distance between antennas equal to $\pm 5 \,\mu$ m.
 - The statistics of link distance with normal distribution containing 10^6 elements can be generated as:

```
L = 20e3; % length of path
deviation = 5e-6; % standard deviation
N = 1e6; % number of trials
distances = L + randn(1, N)*deviation; % random distances
```

- ► How many times is the distance L contained in the vector distances?
- ▶ How many unique elements are there in distances?
- ▶ Can the distribution be considered continuous?

Error Treatment

Catching Errors I.

- ▶ Used particularly in the cases where unexpected event can occur:
 - ▶ in general operations with files (reading, saving),
 - evaluation of encapsulated code (function eval, assignin),
 - \blacktriangleright working with variables, properties of which (e.g., size) is not yet known,
 - ▶ evaluation of code related to an object that may not exist anymore (GUI).

```
try
   % regular piece of code
catch
   % code that is evaluated if the regular code failed
end
```

▶ It is possible (and is recommended) to use an identifier of the error.

Error Treatment

Catching Errors II.

- ▶ Error identifier can be used to decide what to do with the error.
 - **Example:** In the case of multiplication error caused by different size of vectors, it is possible to display a warning.
 - ▶ Also, the error can be later raised again either by evoking the last error occurred or as a new error with its own identifier.

```
try
    A = [1 1 1];
    B = [1 1];
    c = A.*B;
catch exc
    if strcmp(exc.identifier, 'MATLAB:dimagree')
        disp('Mind the vector size!');
    end
    % throw(exc); % local stack shown
    % rethrow(exc); % complete stack shown
end
```

Warning Message in MATLAB

▶ Warning message in MATLAB is displayed using function warning.

```
a = 1e3;
if a > 1e2
    warning('Input coefficient has to be smaller than 10!');
end
```

- ▶ The function is used by MATLAB, therefore, it is possible to temporarily deactivate selected internal warnings.
- ▶ Function lastwarn returns last warning activated.
- ▶ It is advantageous to use function warndlg with GUI (it just show a window, not throws the warning).

```
f = warndlg('This is a notice..', ...
'Trial warning', 'modal');
```


Error Message in MATLAB

▶ Error message (in red color) is displayed using function error.

```
a = 100;
if a > 10
    error('Input has to be equal of smaller than 10!');
end
```

- ▶ Terminates program execution.
- ▶ Identifier can be attached.
- ▶ It is advantageous to use function errordlg with GUI (it just show a window, not throws the error).

```
f = errordlg('An error occurred there and
there..', ...
'Error message', 'modal');
```


Launching External Programs

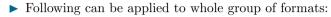
- ▶ Rarely used.
- \blacktriangleright External programs are launched using the exclamation mark (!).
 - ▶ The whole line after the "!" is processed as operation system command:

>> !calc

▶ If you don't want to interrupt execution of Matlab by the launch, add "&":

```
>> !calc &
>> !notepad notes.txt &
```

▶ It is possible to run Matlab with several ways:


>> doc matlab Windows
>> doc matlab UNIX

Data Import and Export I.

- ▶ Matlab supports wide range of file formats:
 - ▶ e.g., mat, txt, xls, jpeg, bmp, png, wav, avi, and others,
 - ▶ for details see MATLAB → Data Import and Analysis → Data Import and Export → Supported File Formats for Import and Export.
 - ▶ Packages exist for work with, for instance, dwg and similar formats.
 - ▶ It is possible to read a general file containing ASCII characters as well.
- ▶ In this course we shall see how to:
 - ▶ read data from file, read image, read files line by line (see Lecture 6),
 - ▶ store in file, write in file,
 - ▶ import from Excel,
 - ▶ export to Excel.

Data Import and Export II.

- ▶ Home \rightarrow Import Data,
- command uiimport and proceed with a following interface,
- ▶ file drag and drop to MATLAB Workspace window.
- ▶ For storing in various formats see following functions.
 - save, dlmwrite, xlswrite, imwrite, audiowrite, ...

Functions cd, pwd, dir

▶ Function cd changes current folder:

cd FD % jumps into FD folder cd % lists current folder cd .. % jumps up one directory cd \ % jumps up to root

- ▶ Function pwd identifies current folder.
- ▶ Function dir lists current folder content.
- ▶ For other functions (mkdir, rmdir, ...) see Matlab Documentation.

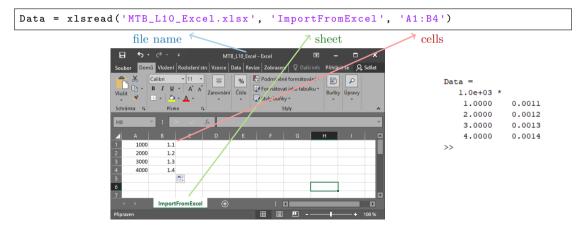
Completion/Parsing of File Paths: fullfile, fileparts

- ▶ Build full file name from parts with function fullfile,
 - $\blacktriangleright~i.e.,$ insert automatically correct separator (Windows: \, Unix: /).
- ▶ Use whenever you work with paths.
- ▶ To get the correct separator for current platform use function filesep.
- ▶ Parse full path into file path, file name, and extension with function fileparts.

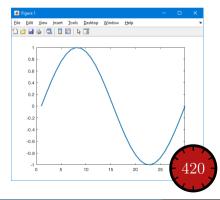
```
myPath = {'Data', 'Corrected'};
myFile = 'measuredData';
myExt = '.mat';
f = fullfile(myPath{:}, [myFile myExt])
[myPath2, myFile2, myExt2] = fileparts(f)
```

```
f =
    'Data\Corrected\measuredData.mat'
myPath2 =
    'Data\Corrected'
myFile2 =
    'measuredData'
myExt2 =
    '.mat'
>>
```


Import from Excel


- ▶ Read all numerical data from Excel file measurement1.xlsx on course's webpage.
 - ▶ Thereafter, plot dependence of values in column values on values in column experiment.
 - ▶ Verify the size of data read.

Import from Excel


- ▶ Use function **xlsread** to import into Excel.
 - ▶ Alternatively, use aforementioned function uiimport.

Import from Excel

- ▶ Read all numerical data from Excel file measurement1.xlsx on course's webpage.
 - ▶ Thereafter, plot dependence of values in column values on values in column experiment.
 - ▶ Verify the size of data read.

Export to Excel

- ▶ Function xlswrite is used to export data from MATLAB to Excel.
 - **Example:** Write data fx in file file.xlsx in sheet Sheet1 in line 1 starting with column A.

```
fx = 1:10;
xlswrite('file.xlsx', fx, 1, 'A1');
```

Example: Write data fx in file file2.xlsx in sheet NewSheet in column B starting with line 1.

fx = 1:10; xlswrite('file2.xlsx', fx', 'NewSheet', 'B1');

Export to Excel

▶ Evaluate function

$$f(x) = \cos(x) + \frac{\cosh(x)}{10}$$

on the interval $x \in [-\pi, \pi]$ with step 0.01.

- ▶ Resulting variables x and f(x) write to file Excel_file.xlsx in 1st sheet, variable x is in column A, variable f(x) is in column B.
- ▶ Verify whether data written in the sheet are correct.

Saving and Loading Binary Data (Reminder)

- ▶ Notice the vector transposition.
- ▶ tsv extension here because of TikZ.

• Load binary data from file line by line:

```
▶ Save binary data into file line by line:
```

► See also: Lecture 6.

```
x = 0:0.01:2*pi;
fx = sin(x) .* cos(x).^2 + x.^(1/3);
Data = [x.' fx.'];
save('myData.tsv', 'Data', '-ascii');
```

```
fid = fopen('myData.tsv');
while ~feof(fid)
    thisLine = fgetl(fid) % your data...
end
fclose(fid);
```

```
fid = fopen('myData2.txt', 'w+');
Data = {'this if the first line', ...
    'this is the second line'};
for iLine = 1:length(Data)
    fprintf(fid, '%s\n', Data{iLine});
end
fclose(fid);
```


Data Type categorical

- ▶ Array of qualitative data with values from finite set of discrete non-numerical data.
 - ▶ Array of non-numerical values corresponding to a category (*e.g.*, to the category "mean of transport" correspond following values: scooter, wheelbarrow, ...).
 - Values can be specified by name (e.g., values 'r', 'g', 'b', they can be an attribute for name 'red', 'green', 'blue').
 - ▶ categorical arrays has its own icon in MATLAB Workspace.

Workspace	
Name 🔺	Value
() A	3x3 cell
🔒 B	3x3 categorical

Creation of categorical Arrays

Creation of categorical array from an arbitrary array of values (<i>e.g.</i> , cell array of strings):	A = 3×3 cell array	
<pre>A = { 'r' 'b' 'g'; 'g' 'r' 'b'; 'b' 'r' 'g' } % cell array of strings B = categorical(A) % categorical arrays categories(B) % listing of individual</pre>	('r') ('b') ('g') ('g') ('r') ('b') ('b') ('r') ('g')	
categories	B = 3×3 <u>categorical</u> array	
▶ Wide range of tools for combining, adding, removing, renaming, arranging,	r b g g r b b r g	
 For more see >> doc categorical arrays 	ans =	
	3×1 <u>cel1</u> array	
	{'b'} {'g'} {'r'}	

Advantages of categorical Arrays

- ▶ More natural arranging of data by names.
 - Note: as in numerical arrays, logical operator eq (==) is used to compare strings in categorical arrays instead of function strcmp() used with strings.
- ▶ Mathematical arranging of strings.
 - Setting "size" of string in other than alphabetical manner (e.g., small < medium < large):</p>

- ▶ Memory is used efficiently to store data.
 - ▶ Data in memory is not stored as string.
 - ▶ Only categories are stored as string in memory.

Data Type table

- *A*FŘĚ
- ▶ Array in form of a table that enables to have columns of various data types and sizes (similar to cell array).
 - ▶ Each column has to have the same number of lines (same as matrix).
 - ▶ Tables have its own icon in MATLAB Workspace.
- ▶ For more see doc >> table.

Workspace	
Name 🔺	Value
Ш Т	4x2 table

Creation of table

▶ Created by inserting individual vectors as columns of the table:

т =

	matlabSemester	favoriteDrink
Miloslav	3	beer
Viktor	3	milk
Michal	2	wine
Vit	1	wine

Advantages of table

- ▶ Well-structured data,
- ▶ access to data via numerical and name indexing,
 - ▶ e.g., listing all "Smiths" in the table and display their "age",
- ▶ possibility to store metadata in table's properties,
 - ▶ e.g., for column "age" it is possible to set unit to "year".

Questions?

BE0B17MTB - Matlab valtrp@fel.cvut.cz

December 16, 2019 Winter semester 2019/20

Acknowledgement: Filip Kozak.

BE0B17MTB – Matlab

This document has been created as a part of BE0B17MTB course.

Apart from educational purposes at CTU in Prague, this document may be reproduced, stored, or transmitted only with the prior permission of the authors.