
Homework (BE0B17MTB)

Problem Set 2

October 29, 2019

1 Assignment

Problem 2-A Implement a function called problem2A, which evaluates Euclidean distances be-
tween two sets of points, finds a sphere with centre at the middle-point between two
most distant points and calculate its radius. Finally, verify if all points are inside
this sphere.

Imagine two sets of points, pm ∈ P, m ∈ {1, . . . ,M} and rn ∈ R, n ∈ {1, . . . , N}.
They are represented by two matrices, P ∈ RM×3 and R ∈ RN×3, serving as the
sole inputs into the function. The function calculates Euclidean distance between
each pair of points, taken one by one from the sets P and R, as

dmn = |pm − rn| , D = [dmn] ∈ RM×N . (1)

The distance matrix D is returned as the first output variable. Finally, the function
evaluates the center c of the sphere given as

c =
1

2

(
pmc

+ rnc

)
(2)

with boundary points pmc
and rnc found such that

mc, nc : a =
1

2
max
m,n
{D} , (3)

i.e., two points with the largest distance between them. Check at the end if all points
from both sets are within this sphere and return allPtsIn = true if the answer
is yes and allPtsIn = false if contrary is the case. To recap, the header of the
function Problem2 A reads

function [D, a, c, allPtsIn] = problem2A(P, R)

For the testing purposes, you may use equilateral tetrahedron with unitary sides

P = R =

−1/2 0 0
1/2 0 0

0
√

3/2 0

0
√

3/6
√

2/3

 (4)

with the results

D =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 , (5)

a = 1/2, and c = [0 0 0]. Notice that the center point c is, in general, not uniquely
defined here, see Figure A. Any valid solution is therefore accepted.

A hint: Check out the function find(). You may use it with a syntax like

[iRow, iCol] = find(A, 1, 'first'); % the first non-zero entry of A is found

(2 points)

1

p1

p2 p3

p4

x
y

z

Figure A: An example of point set P = R forming a unitary tetrahedron. The distances between
all m 6= n points is dmn = 1. The radius of a sphere touching the most distant points is a = 1/2
and its center non-unique, position c = [0 0 0] shown here as red circle.

Problem 2-B Create a function called problem2B which can find all Pythagorean triplets up to
the number N and calculates how many of these triplets there are. The header of
the function reads

function [R, I] = problem2B(N)

where R is the matrix of Pythagorean triplets, described in details below, I is the
number of triplets found, and N is the input variable described below. The function
should be reasonably fast, i.e., to calculate all triplets up to nI ≤ N = 1000 in terms
of seconds. The output variable R is a matrix R ∈ ZI×4 with the following structure

R =

n1 a1 b1 c1
...

...
...

...
ni ai bi ci
...

...
...

...
nI aI bI cI

 , (6)

where
ni = ai + bi + ci. (7)

A Pythagorean triplet is a set of three natural numbers, ai < bi < ci, for which,

c2i = a2i + b2i . (8)

A well-known example of a Pythagorean triplet is a1 = 3, b1 = 4, and c1 = 5 with
n1 = 12. As a sanity check, see the first two correct lines of the output variable R

R =

 12 3 4 5
24 6 8 10
...

...
...

...

 . (9)

To illustrate how the variable N is used: in case that N = 15, there is only one
Pythagorean triplet for n1 = 12, see (9), however, for N = 10 there is no Pythagorean
triplet at all. This problem is freely inspired by the Project Euler, Problem 9.

A hint: Check out the function find(). You may use it with a syntax like

[iRow, iCol] = find(A, 1, 'first'); % the first non-zero entry of A is found

(3 points)

2 Instructions

Complete all the assignments till

• November 7th, 23:59

All the problems shall be solved by the students individually (notice the BRUTE system has a
duplicity checker).

2

https://en.wikipedia.org/wiki/Pythagorean_triple
https://projecteuler.net/problem=9

	Assignment
	Instructions

