
HTTP, REST Web Services

Martin Ledvinka

martin.ledvinka@fel.cvut.cz

Winter Term 2018

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 1 / 36

Contents

1 HTTP

2 RESTful web services
HATEOAS

3 Linked Data

4 Conclusions

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 2 / 36

What is a web service?

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network.

— W3C, Web Services Glossary

We can identify two major classes of Web services:

REST-compliant Web services, in which the primary purpose
of the service is to manipulate XML representations of Web
resources using a uniform set of ”stateless” operations; and
arbitrary Web services, in which the service may expose an
arbitrary set of operations.

— W3C, Web Services Architecture (2004)

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 3 / 36

Web Service API Distribution

Figure : Interest in web service APIs. Source: https://blog.wishtack.
com/rest-apis-best-practices-and-security/

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 4 / 36

https://blog.wishtack.com/rest-apis-best-practices-and-security/
https://blog.wishtack.com/rest-apis-best-practices-and-security/

REST vs SOAP Interest

Figure : Interest over time for REST API versus SOAP API based on Google
Insights for Search. Source: https://www.google.com/trends

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 5 / 36

https://www.google.com/trends

Basic terms

Uniform Resource Identifier (URI) is a string of characters used to
identify a resource. (e.g.,
http://www.fel.cvut.cz/cz/education/)

The Hypertext Transfer Protocol (HTTP) is an application
protocol for distributed, collaborative, hypermedia information
systems. It is the foundation of data communication for the World
Wide Web.

initiated by Tim Berners-Lee at CERN in 1989

Representational State Transfer (REST) is an architectural style
for distributed hypermedia systems.

defined in 2000 by Roy Fielding in his doctoral dissertation

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 6 / 36

http://www.fel.cvut.cz/cz/education/

HTTP

HTTP

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 7 / 36

HTTP

HTTP protocol basics

HTTP is a client-server application-level protocol

Typically runs over a TCP/IP connection

Extensible – e.g., video, image support

Stateless

Cacheable

Requires reliable transport protocol – no UDP

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 8 / 36

HTTP

HTTP Request

Message header

Request line – identifies HTTP method, URI and protocol version
Request headers

Message body

Figure : HTTP request example. Source: https://www.ntu.edu.sg/
home/ehchua/programming/webprogramming/HTTP_Basics.html

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 9 / 36

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

HTTP

HTTP Response

Message header

Status line – identifies protocol version and response status code
Response headers

Message body

Figure : HTTP request example. Source: https://www.ntu.edu.sg/
home/ehchua/programming/webprogramming/HTTP_Basics.html

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 10 / 36

https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html
https://www.ntu.edu.sg/home/ehchua/programming/webprogramming/HTTP_Basics.html

HTTP

HTTP Headers

Typical, often used HTTP headers

Request Response
Content • Content-Type • Content-Type

• Content-Length • Content-Length
• Content-Encoding • Content-Encoding
• Accept

Caching • If-Modified-Since • Last-Modified
• If-Match • ETag

Miscellaneous • Cookie • Set-Cookie
• Host • Location
• Authorization
• User-Agent

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 11 / 36

HTTP

HTTP Methods

GET

Used to retrieve resource at request URI

Safe and idempotent

Cacheable

Can have side effects, but not expected

Can be conditional or partial (If-Modified-Since, Range)

POST

Requests server to create new resource from the specified body

Can be used also to update resources

Should respond with 201 status and location of newly created
resource on success

Neither safe nor idempotent

No caching

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 12 / 36

HTTP

HTTP Methods

PUT

Requests server to store the specified entity under the request URI

Server may possibly create a resource if it does not exist

Usually used to update resources

Idempotent, unsafe

DELETE

Used to ask server to delete resource at the request URI

Idempotent, unsafe

Deletion does not have to be immediate

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 13 / 36

HTTP

HTTP Response Status Codes

1xx – rarely used

2xx – success

200 OK – requests succeeded, usually contains data
201 Created – returns a Location header for new resource
202 Accepted – server received request and started processing
204 No Content – request succeeded, nothing to return

3xx – redirection

304 Not Modified – resource not modified, cached version can be used

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 14 / 36

HTTP

HTTP Response Status Codes

4xx – client error

400 Bad Request – malformed syntax
401 Unauthorized – authentication required
403 Forbidden – server has understood, but refuses request
404 Not Found – resource not found
405 Method Not Allowed – specified method is not supported
409 Conflict – resource conflicts with client data
415 Unsupported Media Type – server does not support media type

5xx – server error

500 Internal Server Error – server encountered error and failed to
process request

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 15 / 36

RESTful web services

RESTful web services

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 16 / 36

RESTful web services

Understanding REST

REST is an architectural style, not standard

It was designed for distributed systems to address architectural
properties such as performance, scalability, simplicity, modifiability,
visibility, portability, and reliability

REST architectural style is defined by 6 principles/architectural
constraints (e.g., client-server, stateless)

System/API that conforms to the constraints of REST can be called
RESTful

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 17 / 36

RESTful web services

REST principles

1 Client-server
2 Uniform interface

Resource-based
Manipulation of resource through representation
Self-descriptive messages
Hypermedia as the engine of application state

3 Stateless interactions

4 Cacheable

5 Layered system

6 Code on demand (optional)

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 18 / 36

RESTful web services

Building RESTful API

Can be build on top of existing web technologies

Reusing semantics of HTTP 1.1 methods

Safe and idempotent methods
Typically called HTTP verbs in context of services
Resource oriented, correspond to CRUD operations
Satisfies uniform interface constraint

HTTP Headers to describe requests & responses

Content negotiation

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 19 / 36

RESTful web services

HTTP GET

GET /eshop/rest/categories HTTP/1.1
Host: localhost:8080
Accept: application/json
Cache-Control: no-cache

HTTP/1.1 200
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Content-Type: application/json;charset=UTF-8

[{
"id": 2,
"name": "CPU"

}, {
"id": 7,
"name": "Graphic card"

}, {
"id": 11,
"name": "RAM"

}]

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 20 / 36

RESTful web services

HTTP verbs – POST

POST /eshop/rest/categories HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9
Cache-Control: no-cache

{
"name": "Motherboard"

}

HTTP/1.1 201
Cache-Control: no-cache, no-store, max-age=0, must-revalidate
Location: http://localhost:8080/eshop/rest/categories/151

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 21 / 36

RESTful web services

HTTP verbs – PUT

PUT /eshop/rest/products/8 HTTP/1.1
Host: localhost:8080
Content-Type: application/json
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9

{
"id":8,
"name":"MSI GeForce GTX 1050 Ti 4GT OC",
"amount":50,
"price":4490.0,
"categories":[{

"id":7,
"name":"Graphic card"

}],
"removed":false

}

HTTP/1.1 204
Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 22 / 36

RESTful web services

HTTP verbs – DELETE

DELETE /eshop/rest/products/8 HTTP/1.1
Host: localhost:8080
Cookie: EAR_JSESSIONID=18162708908C126C0BA5A3D3081CCAC9
Cache-Control: no-cache

HTTP/1.1 204
Cache-Control: no-cache, no-store, max-age=0, must-revalidate

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 23 / 36

RESTful web services

Recommended Interaction of HTTP Methods w.r.t. URIs

HTTP Verb CRUD Collection (e.g. /categories) Specific Item (e.g. /categories/{id})
POST Create 201 Created1 405 Method Not Allowed /409 Conflict3

GET Read 200 OK, list of categories 200 OK, single category/404 Not Found4

PUT Update/Replace 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

PATCH Update/Modify 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

DELETE Delete 405 Method Not Allowed2 200 OK/204 No Content/404 Not Found4

Table : Recommended return values of HTTP methods in combination with the
resource URIs.

1 – returns Location header with link to /categories/{id} containing new ID

2 – unless you want to update/replace/modify/delete whole collection

3 – if resource already exists

4 – if ID is not found or invalid

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 24 / 36

RESTful web services

Naming conventions

resources should have name as nouns, not as verbs or actions

plural if possible to apply

URI should follow a predictable (i.e., consistent usage) and
hierarchical structure (based on structure-relationships of data)

Correct usages

POST /customers/12345/orders/121/items
GET /customers/12345/orders/121/items/3
GET|PUT|DELETE /customers/12345/configuration

Anti-patterns

GET /services?op=update customer&id=12345&format=json
PUT /customers/12345/update

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 25 / 36

RESTful web services

Demo

Let’s examine SpaceX REST API.
https://documenter.getpostman.com/view/2025350/

RWaEzAiG#intro

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 26 / 36

https://documenter.getpostman.com/view/2025350/RWaEzAiG##intro
https://documenter.getpostman.com/view/2025350/RWaEzAiG##intro

RESTful web services

The Richardson Maturity Model
provides a way to evaluate compliance of API to REST constraints

Figure : A model (developed by Leonard Richardson) that breaks down the
principal elements of a REST approach into three steps about resources, http
verbs, and hypermedia controls. Source: http:
//martinfowler.com/articles/richardsonMaturityModel.html

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 27 / 36

http://martinfowler.com/articles/richardsonMaturityModel.html
http://martinfowler.com/articles/richardsonMaturityModel.html

RESTful web services HATEOAS

HATEOAS

Hypermedia as the Engine of Application State

Final level of the Richardson Maturity Model

Client needs zero or little prior knowledge of an API

Client just needs to understand hypermedia

Server provides links to further endpoints

Often difficult to implement

Not many usable libraries

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 28 / 36

RESTful web services HATEOAS

HATEOAS Example

*EAR e-shop does not support HATEOAS.

{
"id": 2,
"name": "CPU",
"links": [{

"rel": "self",
"href": "http://localhost:8080/eshop/rest/categories/2"

}, {
"rel": "edit",
"href": "http://localhost:8080/eshop/rest/categories/2"

}, {
"rel": "products",
"href": "http://localhost:8080/eshop/rest/categories/2/products"

}]
}

We are using the Atom link format.

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 29 / 36

Linked Data

Linked Data

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 30 / 36

Linked Data

Linked Data

Method of publishing structured data allowing to interlink them with
other data

Builds upon the original ideas of the Web

Interconnected resources, but this time, machine-readable

Knowledge-based systems, context-aware applications, precise domain
description, knowledge inference

Still possible to build REST APIs, but resources have global identifiers
now

Attributes and relationships also globally identifiable and may have
well-defined meaning

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 31 / 36

Linked Data

Linked Data Example

{
"@context": {
"name": "http://www.w3.org/2000/01/rdf-schema#label",
"description": "http://purl.org/dc/terms/description",
"products": "http://onto.fel.cvut.cz/ontologies/eshop/has-product"

},
"@id": "http://onto.fel.cvut.cz/eshop/categories/cpu",
"products": {
"@id": "https://ark.intel.com/products/97455/Intel-Core-i3-7100-

Processor-3M-Cache-3-90-GHz",
"name": "Intel Core i3-7100"

},
"description": "Category of Central Processing Units for computers.",
"name": "CPU"

}

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 32 / 36

Conclusions

Conclusions

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 33 / 36

Conclusions

REST

Pros

Easy to build

Easy to use

Standard technologies – HTTP, JSON, XML

Platform-independent

Stateless, cacheable

Cons

No standard for REST itself – APIs build in various ways

No standard for documentation and publishing REST API description

No “registry” of REST services

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 34 / 36

Conclusions

The End

Thank You

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 35 / 36

Conclusions

Resources

Fielding, R.T., 2000. Architectural styles and the design of
network-based software architectures (Doctoral dissertation,
University of California, Irvine),

Fowler, M., 2010. Richardson Maturity Model: steps toward the glory
of REST. Online at http:
//martinfowler.com/articles/richardsonMaturityModel.html.

Lanthaler, M. and Gütl, C., 2012, April. On using JSON-LD to create evolvable
RESTful services. In Proceedings of the Third International Workshop on RESTful
Design (pp. 25-32). ACM.

https://spring.io/understanding/REST

https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview

http://linkeddata.org/

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) HTTP, REST Web Services Winter Term 2018 36 / 36

http://martinfowler. com/articles/richardsonMaturityModel.html
http://martinfowler. com/articles/richardsonMaturityModel.html
https://spring.io/understanding/REST
https://developer.mozilla.org/en-US/docs/Web/HTTP/Overview
http://linkeddata.org/

	HTTP
	RESTful web services
	HATEOAS

	Linked Data
	Conclusions

