
Integration of Applications, Web Services

Martin Ledvinka

martin.ledvinka@fel.cvut.cz

Winter Term 2018

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 1 / 35



Contents

1 Why?

2 Approaches
Low-level
Platform-specific
Platform-independent

3 Architectures

4 Conclusions

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 2 / 35



Why?

Why?

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 3 / 35



Why?

Why?

Most of today’s systems are distributed to some degree

With the ease of internet access, systems become more dependent on
other systems

Distributed systems

Able to share resources
Able to process requests concurrently
More scalable
Can handle faults better

Caveats

Less predictable
More complex
More difficult to secure
More effort is spent to manage the system

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 4 / 35



Approaches

Approaches

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 5 / 35



Approaches Low-level

File

Applications exchange data by writing into a shared file

Pipeline processing

⇒ Local system

Problems: format, schema, scalability, concurrency, notifications

Figure: Application pipeline diagram.

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 6 / 35



Approaches Low-level

Database

Applications share database, possibly use different views of the same
database

No integration layer needed, application data always up to date

Problems: schema (general or complex), schema evolution,
notifications

Figure: Applications using shared database.

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 7 / 35



Approaches Platform-specific

Java RMI

Remote Method Invocation

Object-oriented equivalent of remote procedure call (see later)

Java-specific technology for distributed systems

Java Remote Method Protocol

Wire-level protocol (application layer) on top of TCP
Binary

RMI supports primitive types and Serializable

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 8 / 35



Approaches Platform-specific

Java RMI
Client invokes methods of a remote interface on a local stub

Stub is a RMI-generated proxy object representing the remote
implementation

Server implements remote interface to export methods which can be
called remotely
RMI registry

Server registers at RMI registry as a provider of remote objects
Client uses RMI registry to look up remote objects

Figure: Schema of Java RMI components.
Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 9 / 35



Approaches Platform-specific

RMI Alternatives

Similar technologies exist for

Python – RPyC

Ruby – Distributed Ruby

Erlang – built into the language itself

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 10 / 35



Approaches Platform-independent

RPC

Remote Procedure Call

Invocation of subroutine in a different address space (usually a
different computer)

Client-server architecture

Typically synchronous

XML-RPC

Standard for remote procedure call using XML as message format

Platform independent

Over HTTP

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 11 / 35



Approaches Platform-independent

XML-RPC Example
Request

<?xml version="1.0"?>
<methodCall>

<methodName>examples.getStateName</methodName>
<params>

<param>
<value><int>41</int></value>

</param>
</params>

</methodCall>

Response

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value><string>South Dakota</string></value>
</param>

</params>
</methodResponse>

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 12 / 35



Approaches Platform-independent

XML-RPC - Try it Yourself

1 Download/clone a simplistic XML-RPC server implementation from
https://gitlab.fel.cvut.cz/ear/xmlrpcserver

2 Start the server using mvn package exec:java

3 Open Postman or other HTTP client

4 Send a POST request to http://localhost:8080 with body

<?xml version="1.0"?>
<methodCall>

<methodName>EarServer.hello</methodName>
<params>

<param>
<value><string>Master Chief</string></value>

</param>
</params>

</methodCall>

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 13 / 35

https://gitlab.fel.cvut.cz/ear/xmlrpcserver
http://localhost:8080


Approaches Platform-independent

CORBA

Common Object Request Broker Architecture

OMG standard for language and platform-independent distributed
computing architecture

Similar to RPC but object-oriented

Transparent location – client is unaware whether invocation is local or
remote

Also a caveat – local invocation cannot be optimized and has to go
through the whole ORB machinery

Standards for interface definition, communication protocols, location

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 14 / 35



Approaches Platform-independent

CORBA – Concepts

Interface Definition Language (IDL)

Standardized language for specification of interface provided by an
object

Mappings for IDL exist in all major programming languages

Used to generate Stub/Skeleton code

Object Request Broker (ORB)

Middleware allowing transparent local and remote invocation

Handles data serialization/deserialization based on IDL

Knows location of the actual service implementation

Is able to handle, e.g., transactions

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 15 / 35



Approaches Platform-independent

CORBA – Concepts

General InterORB Protocol – GIOP

Protocol for communications between ORBs

Best known (and most often used) is IIOP (Internet InterORB
Protocol) which uses TCP/IP

Other versions exist, e.g., HTIOP, SSLIOP

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 16 / 35



Approaches Platform-independent

CORBA - IDL Interface Example

module HelloApp {
interface Hello {
string sayHello();
oneway void shutdown();
};

};

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 17 / 35



Approaches Platform-independent

CORBA - Java Implementation Example

class HelloImpl extends HelloPOA {
private ORB orb;

public void setORB(ORB orb_val) {
orb = orb_val;

}

public String sayHello() {
return "\nHello world !!\n";

}

public void shutdown() {
orb.shutdown(false);

}
}

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 18 / 35



Approaches Platform-independent

What is a web service?

A Web service is a software system designed to support
interoperable machine-to-machine interaction over a network.

— W3C, Web Services Glossary

We can identify two major classes of Web services:

REST-compliant Web services, in which the primary purpose
of the service is to manipulate XML representations of Web
resources using a uniform set of ”stateless” operations; and
arbitrary Web services, in which the service may expose an
arbitrary set of operations.

— W3C, Web Services Architecture (2004)

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 19 / 35



Approaches Platform-independent

SOAP

Simple Object Access Protocol

Standard protocol for web service communication

Combo SOAP + WSDL + UDDI

XML-based

In contrast to CORBA:

Universal, no language binding (IDL) required
XML-based (CORBA protocols binary)
Stateless
Possibly asynchronous

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 20 / 35



Approaches Platform-independent

SOAP

WSDL

Web Service Description Language

XML-based description of web service interface

Clients know how to communicate with web service based on WSDL
description

No generated skeleton or stub needed

UDDI

Universal Description, Discovery and Integration

Universal register of WSDL descriptions of SOAP web services

Simplifies web service discovery

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 21 / 35



Approaches Platform-independent

SOAP

SOAP

XML-based protocol

Messages consist of:

Envelope – single per request/response
(Optional) header – additional information, e.g., timeout, security
Body – data
(Optional) Fault – error handling

Over HTTP POST

Caveats:

Verbosity and slow parsing of XML
Client-server interaction model (one is always client, the other is always
client)
Complex structure

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 22 / 35



Approaches Platform-independent

SOAP

Figure: SOAP+WSDL+UDDI. Source:
http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=
semanticweb

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 23 / 35

http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=semanticweb
http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=semanticweb


Architectures

Architectures

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 24 / 35



Architectures

General Remarks

Different characteristics of architectures

Vertical distribution

Distribution of logical levels of the system

Horizontal distribution

Distribution of clients and servers

Temporal distribution

Communication is synchronous or asynchronous?

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 25 / 35



Architectures

Client-Server vs. Distributed Objects

Client-Server

Clients and servers are treated differently

Servers process requests, provide functionality

Clients make requests, consume functionality

Example: SOAP, REST, HTTP

Distributed Objects

Objects are equivalent, can call each other

Example: Java RMI, CORBA

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 26 / 35



Architectures

Vertical Distribution

N-tier Architecture

Layers are distributed between processes, can be distributed between
machines as well

Examples

Single-tier – terminal/mainframe configuration
Two-tier – client + server
Three-tier – typical, separate client, server application and database

Figure: Source:
https://managementmania.com/en/three-tier-architecture

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 27 / 35

https://managementmania.com/en/three-tier-architecture


Architectures

Services

Service Oriented Architecture (SOA)

System is split into self-contained separate units – services

Services use each other to provide functionality

Services can be developed separately, use different technologies, be
removed or replaced without affecting the system as a whole

NOT to confuse with Web Services

Example: SSO, text analysis service

Microservices

No precise definition exists, for some it is a more advanced (purer)
implementation of SOA

Software units communicating over lightweight mechanisms (HTTP),
deployed using automated machinery and DevOps

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 28 / 35



Architectures

Communication in SOA

Enterprise Service Bus (ESB)

ESB is a middleware

Indirection in service communication – decoupling, routing,
synchronous or asynchronous communication

May support multiple protocols – SOAP, REST

Simple or Advanced

Simple – RabbitMQ, Apache Kafka, Apache ActiveMQ
Advanced – Oracle, IBM, Microsoft

Smart Services and Dump Pipes

Microservices - decentralized orchestration, often peer to peer

Each service may have configuration of other possible services it can use

Or single service registry

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 29 / 35



Architectures

Peer to Peer (P2P)

Decentralized architecture where nodes function as servers and clients

Content distribution, sharing, grid computing

Types

Unstructured – no central node, peers discover each other (each peer
starts with a few possible connections and builds a list of other peers)
Structured – network has a topology, more efficient peer discovery
Hybrid – combination of P2P and client/server – usually server helps
clients discover other peers, search etc.

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 30 / 35



Architectures

P2P

Figure: Source: https://www.researchgate.net/figure/
Blockchain-P2P-Network_fig1_320127088

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 31 / 35

https://www.researchgate.net/figure/Blockchain-P2P-Network_fig1_320127088
https://www.researchgate.net/figure/Blockchain-P2P-Network_fig1_320127088


Conclusions

Conclusions

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 32 / 35



Conclusions

Conclusions

Most of today’s applications are distributed

At least tiered – backend and frontend separate

Most applications are integrated using web services

Services allow to build systems from independent modules

Coming Next Week

HTTP

Currently most popular Web service architecture – REST

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 33 / 35



Conclusions

The End

Thank You

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 34 / 35



Conclusions

Resources

https://martinfowler.com/bliki/IntegrationDatabase.html

M. Fowler: Patterns of Enterprise Application Architecture

http://xmlrpc.scripting.com/spec.html

http://www.corba.org/

K. Richta: Standardy pro webové služby WSDL, UDDI
https://www.ksi.mff.cuni.cz/˜richta/publications/
Richta-MD-2003.pdf

https://www.slideshare.net/PeterREgli/soap-wsdl-uddi

http://www.aqualab.cs.northwestern.edu/component/
attachments/download/228

https://ifs.host.cs.st-andrews.ac.uk/Books/SE7/
Presentations/PDF/ch12.pdf

https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.
1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html

https://martinfowler.com/articles/microservices.html

Martin Ledvinka (martin.ledvinka@fel.cvut.cz) Integration of Applications, Web Services Winter Term 2018 35 / 35

https://martinfowler.com/bliki/IntegrationDatabase.html
http://xmlrpc.scripting.com/spec.html
http://www.corba.org/
https://www.ksi.mff.cuni.cz/~richta/publications/Richta-MD-2003.pdf
https://www.ksi.mff.cuni.cz/~richta/publications/Richta-MD-2003.pdf
https://www.slideshare.net/PeterREgli/soap-wsdl-uddi
http://www.aqualab.cs.northwestern.edu/component/attachments/download/228
http://www.aqualab.cs.northwestern.edu/component/attachments/download/228
https://ifs.host.cs.st-andrews.ac.uk/Books/SE7/Presentations/PDF/ch12.pdf
https://ifs.host.cs.st-andrews.ac.uk/Books/SE7/Presentations/PDF/ch12.pdf
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.doc/topics/pegl_serv_overview.html
https://martinfowler.com/articles/microservices.html

	Why?
	Approaches
	Low-level
	Platform-specific
	Platform-independent

	Architectures
	Conclusions

