
1 Java 8 Features

1.1 Lambdas and Method References

Behaviour Parametrization
What do these have in common?

for (Report r : reports) {
if (!r.getAuthor().equals(me)) {
throw new AuthorizationException("You cannnot edit other people’s reports.");

}
}

for (Report r : reports) {
if (cache.contains(r)) {

cache.evict(r);
}

}

Behaviour Parametrization before Java 8

Functors

interface Filter {...}
class AuthorizationFilter implements Filter {...}
class CacheEvictingFilter implements Filter {...}

processReports(reports, new AuthorizationFilter());

Anonymous Class

interface Filter {...}

processReports(reports, new Filter {

process(Report r) {
// ...

}
});

Behaviour Parametrization in Java 8

processReports(reports, r -> {
if (!r.getAuthor().equals(me)) {

throw new AuthorizationException("You cannnot edit other people’s reports.");
}

});

Lambdas
A lambda is an anonymous function.

• Based on Lambda calculus,

1



• Quick throwaway function without a name,

• A way to express a closure,

– Closure can access the lexical scope it is defined in,

– In Java, this access is read-only.

Function<Integer> createAdder(int toAdd) {
return n -> n + toAdd;

}

Function<Integer> addTwo = createAdder(2);
Function<Integer> addFive = createAdder(5);
int result = addTwo(1); // result = 3
result = addFive(result); // result = 8

References to Functions

• Functions become first-class citizens in Java 8,

– Can have references to function/methods,

• Further step in behaviour parametrization.

They allows us to:

• Store references to functions/methods,

• Pass references as arguments to other functions/methods.

Predicate<Integer> isEven = n -> n % 2 == 0;

void processReports(Collection<Report> reports, Consumer<Report> fn) {
for (Report r : reports) {

fn.accept(r);
}

}

How Does it Work?

Functional Interfaces

• Interface with a single abstract method,

• Provide target types for lambdas and method references,

– i.e. They are used as parameter/variable types.

• A number of them defined in java.util.function:

– e.g. Consumer, Function, Producer, Predicate.

Technically

• Lambda captures all effectively final variables in its lexical scope,

• Improved type inference.

2



Method References

• Syntactic shortcut,

• References to:

– Static method,

– Instance method of a particular object,

– Instance method of an arbitrary object of a particular type,

– Constructor.

Arrays.sort(stringArray, String::compareToIgnoreCase);

// instead of

Arrays.sort(stringArray, (a, b) -> a.compareToIgnoreCase(b));

Syntax

Lambda

(arg1, arg2) -> {
// Do something
return result;

}

() -> result

Method Reference

processReports(reports, Filter::accept);

processReports(reports, myFilter::accept);

1.2 Stream API

Stream API
A stream is a sequence of elements supporting aggregate operations.

• Mostly used in collection processing,

• Generation of numeric data,

• Pipelines – operations on streams returning streams,

• Provide internal iteration,

• Code is:

– Declarative,

– Composable,

– Parallelizable.

3



Figure 1: Stream processing visualization. Source: https://www.toptal.com/
java/why-you-need-to-upgrade-to-java-8-already

Stream v Collection

Collection

• Eager collection of data,

• Data structure holds all values the collection currently has,

• External iteration (for cycle, iterator).

Stream

• Elements computed on demand,

• Allows processing of possibly infinite data structures (e.g. prime numbers),

• Traversable only once,

• Internal iteration (not controlled by programmer).

Stream

Stream Operations

Intermediate operations support pipeline processing – multiple operations executed on
data. E.g. filter, map, limit.

Terminal Operations close the stream. E.g. collect, forEach.

4



Figure 2: Stream operations.

Stream Examples

reports.parallelStream().filter(r -> !r.getAuthor().equals(me)).findAny();

reports.stream().filter(cache::contains).forEach(cache::evict);

List<String> todaysReports = reports.stream()
.filter(r -> r.getDate().after(midnight))
.map(Report::getName)
.collect(Collectors.toList());

int sum = numbers.stream().reduce(0, Integer::sum);

Stream.generate(Math::random).limit(5).collect(Collectors.toList());

1.3 Optional

Optional
Allows to avoid null reference checks and NullPointerExceptions.

• Optional.empty()

• Optional.of(T)

• Optional.ofNullable(T)

• get()

• ifPresent(Consumer)

• isPresent()

• map(Function)

• orElse(T)

• orElseGet(Supplier)

• orElseThrow(Supplier)

5



Optional Examples

Null Check

final Report latest = findLatestRevision(fileNumber);
if (latest == null) {

throw new NotFoundException("Report with fileNumber " + fileNumber + " not found.");
}
return latest;

↓
final Optional<Report> latest = findLatestRevision(fileNumber);
return latest.orElseThrow(() -> new NotFoundException("Report with fileNumber " +
fileNumber + " not found."));

Optional<Report> notMine = reports.parallelStream().filter(r ->
!r.getAuthor().equals(me)).findAny();

notMine.ifPresent(r -> {
throw new AuthorizationException();

});

2 Continuous Integration

Continuous Integration

• Term coined by Grady Booch,

• Adopted by the Extreme Programming community,

• Developers in a team integrate work at least daily,

• Integration verified by an automated build,

• Quick detection of errors, cheaper fixes, fewer integration issues.

CI Practices

• Single source code repository, use CI server,

– Should contain all the code and configuration, so that clean clone from the
repository is buildable,

• Automated build,

– e.g. using Maven, Gradle,

– Quick on developer machine,

– Including automated tests,

• Build before commit/push,

6



• Push every day (commit → pull changes → resolve conflicts → push),

• Every push triggers build on the CI server,

• Fix broken builds immediately,

• Test in a clone of the production environment,

• Automate deployment.

CI Tools

SCM

• Git,

• Subversion,

• RTC.

CI Servers

• Jenkins

– Open-source, free,

– Highly configurable, lots of plugins.

• TeamCity

– Free for 3 agents and 20 build configurations,

– Developed by JetBrains,

– More suitable for enterprises.

• Travis CI

– Hosted solution,

– Free for open-source projects (often used by Github projects).

3 Static Source Code Analysis Tools

Static Code Analysis
Analysis of software without actually executing the program.

• Can be formal, but usually not feasible for larger programs,

– Used in high risk industries,

– E.g. aviation, power plants, medicine,

• Mostly based on heuristics,

– False positives possible,

• Detects suspicious patterns in code.

7



SCA Tools

• IDE

– Most IDEs contain some sort of SCA feature.

• Checkstyle

– Can be integrated into Maven build.

• FindBugs

– Older tool. Plugins exist for all major IDEs and CI servers.

• Sonarqube

– Multiplatform code analysis tool.

• Upsource

– Code review, SCA, team collaboration.

Sonarqube

4 Application Monitoring and Administration

4.1 JMX

Java Management Extensions (JMX)

• Allow management of resources in an application,

• Standard part of the Java platform,

• Resources represented by Managed Beans (MBeans), registered in an MBean server,

8



• Accessible via JMX connectors.

Managed Beans

• Operations (MBean methods), through which the application can be managed,

• Attributes (getters/setters) for information/configuration.

Application Management via JMX

• Connect to application with JConsole,

• Locate the desired MBean,

– Invoke managed operations,

– View/configure attributes,

• MBean server set up in Spring – @EnableMBeanExport.

4.2 Monitoring Tools

JConsole

• GUI-based Java monitoring tool,

• JMX compliant,

• Allows connection to local or remote (if configured) processes,

• Part of the JDK.

9



VisualVM

• GUI-based Java monitoring tool,

• Allows collection and saving of monitoring data,

– Thread dump, heap dump,

• Profiling, sampling,

– CPU, memory,

– Local applications only,

– Profiling has major impact on application performance,

• Support for plugins,

• Analysis of stored thread or heap dumps.

More Tools

JDK

• jmap – memory-related statistics about a VM, obsolete,

• jcmd – send diagnostic commands to JVM, internally used by the GUI tools,

• jstat – monitors JVM statistics, lots of options.

• Eclipse MAT – advanced memory analyzer,

• Java Mission Control and Java Flight Recorder – commercial JVM moni-
toring tools by Oracle,

• StageMonitor, MoSKito etc. – open source alternatives.

10



5 Conclusions

The End

Thank You

Resources

• R. Urma, M. Fusco and A. Mycroft: Java 8 in Action,

• http://www.oracle.com/technetwork/articles/java/architect-lambdas-part1-2080972.
html,

• http://www.oracle.com/technetwork/articles/java/ma14-java-se-8-streams-2177646.
html,

• https://martinfowler.com/articles/continuousIntegration.html,

• http://docs.oracle.com/javase/tutorial/jmx/mbeans/index.html,

• http://docs.oracle.com/javase/7/docs/technotes/guides/management/jconsole.
html,

• https://visualvm.github.io/documentation.html.

11


