
Performance, Scalability and High-availability of
Enterprise Applications

Miroslav Blaško

miroslav.blasko@fel.cvut.cz

Winter Term 2017

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 1 / 35



Contents

1 Motivation

2 Core concepts

3 Techniques

4 Tools

5 Demo application

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 2 / 35



Motivation

Motivation

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 3 / 35



Motivation

Motivation

There are applications for which it is critical to establish certain
availability, consistency, performance etc.

How can we define/measure such non-functional application’s
requirements ?

What techniques/tools can we use to provide such application ?

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 4 / 35



Core concepts

Core concepts

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 5 / 35



Core concepts

Understanding Core Concepts

Mission-critical application is an application that is essential to the
survival of a business or organization, i.e. failure or interruption of the
application significantly impacts business operations.

Important properties of such application

How well it can be adapted to handle bigger amounts of work ?
(scalability)
How well it provides useful resources over time period ?
(availability)
What is rate of processing over specified workload and time period ?
(performance)

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 6 / 35



Core concepts

Scalability of an application

Scalability is property of an application which defines

how it can be easily expanded to satisfy increased demand for network,
processing, database access, file-system resources etc.
how well it handles the increased amount of work

There are 2 ways to scale an application

horizontally (scaling out) – expanding by adding new nodes with
identical functionality to existing ones.
vertically (scaling up) – expanding by adding processor units, main
memory, storage or network interfaces to a node.

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 7 / 35



Core concepts

Horizontal Scaling Example

Figure: Clustering Example – horizontal scaling of SOA systems/web services by
adding more servers nodes to a load-balanced network [1].

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 8 / 35



Core concepts

Vertical Scaling Example

Figure: Virtualization Example – vertical scaling of hosting services by increasing
number of processors, the amount of main memory to host more virtual
servers [1].

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 9 / 35



Core concepts

High-availability of an application

Uptime, (downtime) is time during which application is running
(not running). Sometimes uptime, downtime is used to express its
probability.

Availability describes how well an application provides its assumed
functions over particular time period, expressed in percentages (%) as
A = (1 − tuptime/tunplanned downtime) ∗ 100

Note, that uptime and availability are different concepts.

High-availability characterizes applications that is obliged to have
availability close to 100 %.

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 10 / 35



Core concepts

Measuring availability

Availability Downtime per year Downtime per week Downtime per day
90% (”one nine”) 36.5 days 16.8 hours 2.4 hours

95% 18.25 days 8.4 hours 1.2 hours

97% 10.96 days 5.04 hours 43.2 minutes

98% 7.30 days 3.36 hours 28.8 minutes

99% (”two nines”) 3.65 days 1.68 hours 14.4 minutes

99.9% (”three nines”) 8.76 hours 10.1 minutes 1.44 minutes

99.99% (”four nines”) 52.56 minutes 1.01 minutes 8.66 seconds

99.999% (”five nines”) 5.26 minutes 6.05 seconds 864.3 milliseconds

99.9999% (”six nines”) 31.5 seconds 604.8 milliseconds 86.4 milliseconds

99.99999% (”seven nines”) 3.15 seconds 60.48 milliseconds 8.64 milliseconds

Table: Measuring Availability – vendors typically define availability as given
number of “nines”.

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 11 / 35



Core concepts

Service Level Agreement (SLA)

Service Level Agreement (SLA) defines obligations of involved parties
in delivering and using an application e.g.

minimal/target levels of availability

maintance windows

performance and metrics for its evaluation

billing

consequences for not meeting obligations

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 12 / 35



Techniques

Techniques

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 13 / 35



Techniques

Load balancing

Response time defines amount of time system takes to process a
request after it has received one. In remote calls (e.g. web services)
it’s often used term latency referring to response time lowered by
processing time of the request on a server.

Throughput defines number of transactions per second that
application can handle.

Load balancing is a technique for minimizing response time and
maximizing throughput by delegating requests among multiple nodes.

Load balancer is responsible for routing requests to available nodes
based on scheduling rules.

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 14 / 35



Techniques

Load Balancer

Figure: Load Balancer. It uses scheduling rules to decide which request will be
served by which node [1].

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 15 / 35



Techniques

Sticky Load Balancer

Figure: Sticky Load Balancer – stateful applications require persistent/sticky load
balancing, where consumer is guaranteed to maintain a session with specific
node [1].

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 16 / 35



Techniques

Common Features of Load Balancers

asymmetric load distribution – different loads are assigned to different
nodes

priority activation – if loads gets too high, some standby nodes are
activated

content filtering – modifies traffic on the way through

firewalling – deciding whether traffic might pass through an interface
or not base on security rules

TCP buffering – buffer responses from servers for slow clients

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 17 / 35



Techniques

Caching

Caching is a technique for sharing data among multiple data consumers.
It is useful for data that are expensive to compute or fetch. E.g. stateful
load balancing requires data sharing among the service providers.

implemented by index tables where key is used to retrieve cached
entry (datum)

query for datum using cache can lead to cache hit or cache miss

cached data can be refreshed according to different policies

write-through – a synchronous write
write-behind (write-back) – updated only if dirty datum is requested
no-write allocation (write-around) – only reads are beeing cached

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 18 / 35



Techniques

Write-through with No-write Allocation

Figure: A write-through cache with no-write allocation taken from
https://en.wikipedia.org/wiki/Cache_(computing)

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 19 / 35

https://en.wikipedia.org/wiki/Cache_(computing)


Techniques

Write-behind Cache with Write Allocation

Figure: A write-behind cache with write allocation taken from
https://en.wikipedia.org/wiki/Cache_(computing)

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 20 / 35

https://en.wikipedia.org/wiki/Cache_(computing)


Techniques

Caching types

application cache
implicit vs. explicit application caching – with little/no participation of
a programmer (e.g. Terracotta) vs. using caching API (e.g.
memcached)

web cache
client side (browser) vs. server side caching
web-accelerators – operates on behalf of the server of origin (e.g.
content distribution networks, Akmai)
proxy caches – serve requests to a group of client accessing same
resources. Used for content filtering and reducing bandwidth usage
(e.g. Apache)

distributed cache – implemented across multiple systems that serves
requests for multiple customers and from multiple resources (e.g.
distributed web cache Akmai, distributed application cache
memcached)

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 21 / 35



Techniques

Clustering

Cluster is group of computer systems that work together in a form
that appears from the user perspective as a single system.

Load-balancing cluster (Active/Active) – distributes load to
redundant nodes, while all nodes are active at the same time offering
full-service capabilities

High-availability cluster (Active/Passive) – improves service
availability by redundant nodes eliminating single points of failures.

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 22 / 35



Techniques

Load-Balancing Cluster

Figure: Load-Balancing Cluster (Active/Active) [1]

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 23 / 35



Techniques

High-Availability Cluster

Figure: High-Availability Cluster (Active/Passive) [1]. It uses “heartbeat” to
detect if nodes are ready and routing mechanism to switch traffic if a node fails.

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 24 / 35



Techniques

Principles to Achieve High Availability

Elimination single points of failure – adding redundancy so failure of a
component does not cause failure of the entire application

Reliable crossover – ability to switch to from failing node to new node
without loosing

Detection of failures as they occur – failing node should maintain
activity, not user’s attention.

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 25 / 35



Techniques

Cloud Computing

Cloud Computing is a type of internet-based computing where
applications are running on distributed resources owned and operated
by a third-party.

Typically used for end-user applications

Service models within cloud computing :

Software as a Service (SaaS) – using providers application with limited
control over the application e.g. CRM, emails, virtual desktop
Platform as a Service (PaaS) – using providers services, libraries, tools
with control over deployed application e.g. execution runtime,
database, web-server, development
Infrastructure as a Service (IaaS) – control over operating system but
not underlaying infrastructure e.g. virtual machines, servers, load
balancers, network

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 26 / 35



Techniques

System performance testing

Performance refers to application throughput with specified
workload and period of time.

Performance specifications are typically documented in SLA document

Troubleshooting performance issues requires multiple types of testing
such as

endurance testing – identifies resource leaks under the continuous,
expected load
load testing – show application behavior under a specific load
spike testing – shows application behaviour under dramatic changes in
load
stress testing – identifies the breaking point for the application under
dramatic load changes for extended periods of time

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 27 / 35



Tools

Tools

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 28 / 35



Tools

Tools for critical-mission applications

Spring/JSR-107 Cache API (java libraries)

Netbeans Profiler, Intellij Idea Profiler or VisualVm (profiling)

Apache JMeter or Gatling (performance testing by scripts)

Apache Server (load balancing and high-availability)

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 29 / 35



Demo application

Demo application

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 30 / 35



Demo application

Spring Cache Abstraction

@Cacheable – triggers cache population

@CacheEvict – triggers cache eviction

@CachePut – updates the cache without interfering with the method
execution

@Caching – regroups multiple cache operations to be applied on a
method

@CacheConfig – shares some common cache-related settings at
class-level

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 31 / 35



Demo application

Caching with Spring vs. JSR-107 annotation

Spring JSR-107
@Cacheable @CacheResult

@CachePut @CachePut

@CacheEvict @CacheRemove

@CacheEvict(allEntries=true) @CacheRemoveAll

@CacheConfig @CacheDefaults

Table: Alternative annotations within Spring and JSR-107

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 32 / 35



Demo application

Experiments Reporting Tool Application

VisualVM profiling

Intellij Idea Memory Monitor plugin

JMeter load testing

Testing cache

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 33 / 35



Demo application

The End

Thank You

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 34 / 35



Demo application

Resources

1 E. Ciurana, Scalability & High Availability, 2009
https://dzone.com/storage/assets/
4333-rc043-010d-scalability_3.pdf

2 Spring Framework Reference, http://docs.spring.io/
spring/docs/current/spring-framework-reference

Miroslav Blaško (miroslav.blasko@fel.cvut.cz)Performance, Scalability and High-availability of Enterprise ApplicationsWinter Term 2017 35 / 35

https://dzone.com/storage/assets/4333-rc043-010d-scalability_3.pdf
https://dzone.com/storage/assets/4333-rc043-010d-scalability_3.pdf
http://docs.spring.io/spring/docs/current/spring-framework-reference
http://docs.spring.io/spring/docs/current/spring-framework-reference

	Motivation
	Core concepts
	Techniques
	Tools
	Demo application

