
Figure 1: Distribution of different API protocols and styles based on Pro-
grammableWeb’s directory of more than 2,000 web APIs. Source: http:
//royal.pingdom.com/2010/10/15/rest-in-peace-soap/

1 Web services

What is a web service?

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network.

— W3C, Web Services Glossary

We can identify two major classes of Web services:

• REST-compliant Web services, in which the primary purpose of the
service is to manipulate XML representations of Web resources using a
uniform set of ”stateless” operations; and

• arbitrary Web services, in which the service may expose an arbitrary
set of operations.

— W3C, Web Services Architecture (2004)

Comparison of API protocols and styles (2008-2010)

Interest over time for major web service APIs

2 RESTful web services

Basic terms

• Uniform Resource Identifier (URI) is a string of characters used to identify
a resource. (e.g. http://www.fel.cvut.cz/cz/education/)

1

Figure 2: Interest over time for REST API versus SOAP API based on Google Insights
for Search. Source: https://www.google.com/trends

• The Hypertext Transfer Protocol (HTTP) is an application protocol for
distributed, collaborative, hypermedia information systems. It is foundation of
data communication for the World Wide Web.

– initiated by Tim Berners-Lee at CERN in 1989

• Representational State Transfer (REST) is architectural style for distributed
hypermedia systems.

– defined in 2000 by Roy Fielding in his doctoral dissertation

HTTP protocol basics

• HTTP is a client-server application-level protocol

• typically runs over a TCP/IP connection

Example of HTTP Request Message (left part) and HTTP Response Message(right part). The request accesses

URL http://www.test101.com/doc/test.html?bookId=12345&author=Tan+Ah+Teck. In addition to the description, the request line

can be devided into 3 parts: request method (i.e. “GET”), request URI (i.e. “/doc/test.html”) and HTTP protocol version (i.e.

“HTTP/1.1”). Request message body consist of 2 request parameters “bookId” and “author”. Source: https://www.ntu.edu.sg/

home/ehchua/programming/webprogramming/HTTP_Basics.html

2

Understanding REST

• REST is architectural style, not standard.

• It was designed for distributed systems to address architectural properties such as
performance, scalability, simplicity, modifiability, visibility, portability, and relia-
bility.

• REST architectural style is defined by 6 principles/architectural constraints (e.g.
client-server, stateless).

• System/API that conforms to the constraints of REST can be called RESTful.

REST principles

• client-server

• uniform interface

– resource-based

– manipulation of resource through representation

– self-descriptive messages

– hypermedia as the engine of application state

• stateless interactions

• cacheable

• layered system

• code on demand (optional)

Building RESTful API

• can be build on top of existing web technologies

• reuseing semantics of HTTP 1.1 methods

– safe and idempotent methods

– typicaly called HTTP verbs in context of services

3

– resource oriented, correspond to CRUD operations

– satisfies uniform interface constraint

• HTTP Headers to describe requests & responses

HTTP verbs – GET

• requests a representation of the specified resource

• should be safe and idempotent

• can have side-effects, but not expected

• can be conditional, or partial (If-Modified-Since, Range)

Example – retrieve user with id 123
GET /users/123

HTTP verbs – POST

• requests to do something with the specified resource

• does not have to be safe or idempotent

• can be used for create and update

Example – create user
POST /users { “firstName”: “Karel”, “lastName”: “Novak” }

HTTP verbs – PUT

• requests to store specified entity at a specified URI

• should be idempotent, but not safe

• can be used for create and update

Example – update user with id 123
PUT /users/123 { “firstName”: “Karel”, “lastName”: “Novak” }

HTTP verbs – DELETE

• deletes specified resource

• should be idempotent, but not safe

• deletition does not have to be immediate

Example – delete user with id 123
DELETE /users/123

4

HTTP Status Codes

• classifies the result of the HTTP request

• main categories of status codes, with most common specific codes are

– 1xx - informational

– 2xx - success

– 3xx - redirection

– 4xx - client error

– 5xx - server error

Common HTTP status codes indicating error

• 4xx - client error

– 400 Bad Request – malformed syntax, retry with modified request

– 401 Unauthorized – authentication is required

– 403 Forbidden – server has understood, but refuses request

– 404 Not Found – server cannot find a resource by specified URI

– 409 Conflict – resource conflicts with client request

• 5xx - server error

– 500 Internal Server Error – server encountered an unexpected condition
which prevented it from fulfilling the request

Other common HTTP status codes

• 200 OK – request has succeeded

• 201 Created – returns a Location header for new resource

• 204 No Content – server fulfilled request but has nothing to return

• 304 Not Modified – accessed document was not modified thus cache can be used

Recommended interaction of HTTP methods w.r.t. URIs

5

HTTP Verb CRUD Collection (e.g. /users) Specific Item (e.g. /users/{id})

POST Create 201 Created∗1 404 Not Found/409 Conflict∗3

GET Read 200 OK, list of users 200 OK, single user/404 Not Found∗4

PUT Update/Replace 404 Not Found∗2 200 OK/204 No Content/404 Not Found∗4

PATCH Update/Modify 404 Not Found∗2 200 OK/204 No Content/404 Not Found∗4

DELETE Delete 404 Not Found∗2 200 OK/404 Not Found∗4

Table 1: Recommended return values of HTTP methods in combination with the re-
source URIs. (*1) – returns Location header with link to /users/{id} contain-
ing new ID; (*2) – unless you want to update/replace/modify/delete whole
collection; (*3) – if resource already exists; (*4) – if ID not found or invalid.

Naming conventions

• resources should have name as nouns, not as verbs or actions

• plural if possible to apply

• URI should follow a predicatable (i.e. consistent usage), and hierarchical structure
(based on structure-relationships of data)

Correct usages
POST /customers/12345/orders/121/lineitems GET /customers/12345/orders/121/lineitems/3
GET|PUT|DELETE /customers/12345/configuration

Anti-patterns
GET /services?op=update customer&id=12345&format=json PUT /customers/12345/update

The Richardson Maturity Model

• provides a way to evaluate compliance of API to REST constraints

3 Linked data

What is Linked data ?

• Linked Data is a method of publishing structured data so that it can be inter-
linked and queried

• it builds upon standard Web technologies to share information in a way that can
be read automatically by computers

• there is already a vast amount of data in Linked Data format available on the Web
(e.g. Linking Open Data cloud)

• JSON-LD (JSON for Linking Data) a lightweight Linked Data format based on
JSON

6

Figure 3: A model (developed by Leonard Richardson) that breaks down the principal
elements of a REST approach into three steps about resources, http verbs, and
hypermedia controls. Source: http://martinfowler.com/articles/
richardsonMaturityModel.html

Linked open cloud

Hydra: Hypermedia-Driven Web APIs (1)

• Hydra is an effort to combine Linked Data principles to publish data and REST
principles for web services

• REST services are used with JSON-LD format instead of plain JSON

Hydra: Hypermedia-Driven Web APIs (2)

Example – retrieve user with id 123
GET /user/123

Response is in JSON-LD
{ “@context”: “http://schema.org/”, “@type”: “Person” “@id”: “/user/123”
“givenName”: “Karel” “familyName”: “Novak” }

• Type of the resource (i.e. “http://schema.org/Person”) as well as specific proper-
ties (i.e. “http://schema.org/givenName”, “http://schema.org/familyName”) are
dereferencable. It is used to describe semantics of the schema in human-readable
as well as machine-readable way.

The End

Thank You

7

Figure 4: Linked Open Data cloud. Each buble represent a dataset, while edges represent
links across datasets. There are about 1011 statements about resources within
all datasets of the cloud. Source: http://lod-cloud.net

Resources

• Fielding, R.T., 2000. Architectural styles and the design of network-based software
architectures (Doctoral dissertation, University of California, Irvine),

• Fowler, M., 2010. Richardson Maturity Model: steps toward the glory of REST.
Online at http://martinfowler.com/articles/richardsonMaturityModel.html.

• Lanthaler, M. and Gütl, C., 2012, April. On using JSON-LD to create evolvable RESTful services.
In Proceedings of the Third International Workshop on RESTful Design (pp. 25-32). ACM.

• https://spring.io/understanding/REST

• http://www.restapitutorial.com

8

