
Ing. Petr Aubrecht, Ph.D.

Real Deployments of
JavaEE Applications

Introductory Question

• What technology would you choose to implement
really big e-shop?

• How much can you bet on the reliability? SLA will
include a fee per hour of not working system.

• How much are you sure it will not crash?
– Out of memory
– Unexpected behavior
– Hardware error recovery

• Is it scaling?

Agenda

• What Is Enterprise Application? What to
Consider? THE “Right” Technology...

• Development
• Deployment

• Production

Keep in Mind

• This whole presentation represents MY
opinion, even in my company are people
different view.

• If you don’t agree – DISCUSS!

Example – what do you think about SAP?

What is...

• What is enterprise application?

What Is Enterprise Application?

• Help people to do their business, they depend on it!
• SLA expresses the importance, the sw simply cannot stop

working. How much bank looses per hour of not working
home banking?

• Examples: ERP (manufacturing, hotels), management of
anything, payments/billing processing, on-line
marketplace...

• Most of the biggest enterprise applications
– run on mainframes and
– are done in COBOL.

What to Consider (I)

• How long will be supported enterprise application?
– Enterprise application = implemented today, supported for

many ears with small changes and small team.
– Cannot use bleeding edge: Google, Youtube, FB, Twitter

rewrites front page frequently!
• Did you know, that in backend, FB has enterprise apps as well?

– We need programmer for the technology in 10 year from
now!

– We need the technology to be supported in 10 year from
now, maybe much longer!

• What features we need? We ARE
specialists in business logic, but not in
these areas:
– Reliability (transactions, recovery)
– Performance (optimization, caching, pools)
– Scalability (vertical, horizontal)
– Security (authorization, authentication)

What to Consider (II)

Reliability – multigeneration architecture in SQL dbs, 2-phase locking, prevention of deadlock
Preformance – optimization to the latest processor, branching optimization, why b-tree over
binary tree,...
Scalability – theory of network computation, ...
Security – SQL injection, XSS, session stealing, rainbow tables, ...

What is THE “Right” Technology Forever?

• Win32
• VBX
• Delphi
• MFC
• ActiveX
• Java Servlet
• JSP
• JSF
• GWT
• JavaEE 3, 4, ...

• COM/DCOM
• C# + .net
• Javascript
• HTML 5
• Angular 1, 2
• ReactJS
• Grid
• Cluster
• Cloud

DEAD

DEAD

DEAD

DEAD

DEAD

DEAD

DEAD

DEAD

DEAD

DEAD

Sustaining

Not mature

• AJAX
• WS-SOAP
• REST
• Single Page
• node.js
• Struts 1,2

• COBOL!

DEAD

DEADDEAD

DEAD

DEAD

Few Myths – MySQL

• MySQL – fast db
– MyISAM is fast, stupid
– InnoDB – featureful (transactions, foreign

keys), but slow
– Must be good, FB uses it! Yes – they employ

40(!) people working ON mysql.
– Either you can pay somebody to modify mysql

or use PG/Oracle/MSSQL.

Predictability

• Why is predictability important?

• Only stable technologies have known
limitations
– There are projects rewritten from PHP to Java

because of memory… predictability!
– Example: xml-sql mapping library in metadata

builder

Development

• OK, we chose the right technology, what to
keep in mind during development?

Just Few Ideas For JavaEE

• Consider Remote stateless bean – it allows
load balancing

• Learn EntityManager behavior, usual source of
problems

• Learn from Clean Code, Effective Java, Adam
Bien

• Some cool tools: JRebel, VisualVM for
memory dumps

Usual Development Setup

• Unit test! TDD whenever possible.
• Simple setup (maven), newcomer must be productive

from day 1.
• Automate

– Continuous integration (Jenkins)
– Continuous deployment

• QA server with night build
• Stable server with RC
• Copy of production server(s) for performance of specific testing

– Continuous verification of performance

Deployment

• Well, the application is developed, so we
click in Jenkins to deploy to production and
we are done!

Deployment – Servers

• 99.999 % reliability = mainframe
• Servers – choose one and stick with it

– Tomcat, not JEE, but useful for Spring, simple
– TomEE – lightweight, simple
– Glassfish/Payara – full, reference

implementation, nice GUI
– IBM WebShere – full, “enterprise”, “IBM-way”
– BEA Weblogic – very advanced and expensive

Deployment – (Virtual) Hardware

• SaaS – Software as a Service

• Virtualization
– Docker
– VMWare ESX, VirtualBox

• Paravirtualization
– XEN – Citrix

• Cloud
– Amazon - “THE” cloud
– Either simply borrow a virtual machine with your server from last slide… →

VPS
– ...or use Amazon services (e.g. database) → cloud app
– Others: Azure

Deployment of a New Version

• Can we simply deploy a new version?
– Database changes
– What if it will not work?
– Didn’t you forget backup?
– What is the revert strategy?

New Version – Database Upgrade

• Usually we use library for DB upgrade
– Liquibase (Flyway)
– Keeps track of history of upgrades
– Automates structure changes in all databases
– Only forward and only step by step

• Verifiable

• Reliable

Deployment of a New Version

• Internal servers
– QA – nightly, testers review
– Stable version for demos, performance test, RC
– Production copies
– UAT
– Production at customer’s

site

Deployment – Blue-Green

• Blue-Green
– Copy of traffic to both servers during transition
– Runs one or

the other.

Deployment – Canary Deployment

• Canary Deployment
– Sends only small amount of traffic to new

version

Production

• The app is on the server, customers
applaud, are we done?

Production – Monitoring

• It’s important to monitor running application
– Available memory
– Exceptional states
– Performance problems

• VisualVM – simple view of running JVM

• Wily – komplex system for JavaEE monitoring

• JProfiler, jhat

VisualVM

• VisualVM
– Part of Java SE
– Able to watch processes, memory, dumps

CA Vily Introscope

• Vily is very detail view into JavaEE
– Video?

New Relic

JRocket Mission Control

Performance Measurement

• Jmeter – the easy to use load generator

• At the end – performance is not always a
priority. Why?

Citation from interview: “I prefer
readable code over performance.”

Want performing code? Write it simple, readable.

Future Development

• Keep meaningful architecture, it makes
sense
– Direct access to database from multiple points

is simple and tempting
• In the future, synchronization will be huge problem

• Intermediate layer keeping model and doing
messaging

• Example: EQUAL, manager of tests

My Own Experience

• MSM, Vantage

• Hotel planning support

• KNBox

Conclusion Question

• What technology would you choose NOW?
Are you still confident with your favorite? Can
you fulfill all requirements?

• Did you support any app for > 10 years? 15
years?
Not very funny :-)
My own example: not using Windows anymore,
JDBC doesn’t support ODBC, lack of continuity.

Conclusion

• Review
– TDD, jUnit as a part of build
– Continuous deployment, functional tests
– Careful deployment
– Monitor in production

Petr.Aubrecht@stringdata.cz

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

