
Ing. Petr Aubrecht, Ph.D.

Real Deployments of
JavaEE Applications



Introductory Question

• What technology would you choose to implement 
really big e-shop?

• How much can you bet on the reliability? SLA will 
include a fee per hour of not working system.

• How much are you sure it will not crash?
– Out of memory
– Unexpected behavior
– Hardware error recovery

• Is it scaling?



Agenda

• What Is Enterprise Application? What to 
Consider? THE “Right” Technology...

• Development
• Deployment

• Production



Keep in Mind

• This whole presentation represents MY 
opinion, even in my company are people 
different view.

• If you don’t agree – DISCUSS!

Example – what do you think about SAP?



What is...

• What is enterprise application?



What Is Enterprise Application?

• Help people to do their business, they depend on it!
• SLA expresses the importance, the sw simply cannot stop 

working. How much bank looses per hour of not working 
home banking?

• Examples: ERP (manufacturing, hotels), management of 
anything, payments/billing processing, on-line 
marketplace...

• Most of the biggest enterprise applications 
– run on mainframes and
– are done in COBOL.



What to Consider (I)

• How long will be supported enterprise application?
– Enterprise application = implemented today, supported for 

many ears with small changes and small team.
– Cannot use bleeding edge: Google, Youtube, FB, Twitter 

rewrites front page frequently!
• Did you know, that in backend, FB has enterprise apps as well?

– We need programmer for the technology in 10 year from 
now!

– We need the technology to be supported in 10 year from 
now, maybe much longer!



• What features we need? We ARE 
specialists in business logic, but not in 
these areas:
– Reliability (transactions, recovery)
– Performance (optimization, caching, pools)
– Scalability (vertical, horizontal)
– Security (authorization, authentication)

What to Consider (II)

Reliability – multigeneration architecture in SQL dbs, 2-phase locking, prevention of deadlock
Preformance – optimization to the latest processor, branching optimization, why b-tree over 
binary tree,...
Scalability – theory of network computation, ...
Security – SQL injection, XSS, session stealing, rainbow tables, ...



What is THE “Right” Technology Forever?

• Win32
• VBX
• Delphi
• MFC
• ActiveX
• Java Servlet
• JSP
• JSF
• GWT
• JavaEE 3, 4, ...

• COM/DCOM
• C# + .net
• Javascript
• HTML 5
• Angular 1, 2
• ReactJS
• Grid
• Cluster
• Cloud
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Sustaining

Not mature

• AJAX
• WS-SOAP
• REST
• Single Page
• node.js
• Struts 1,2

• COBOL!
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Few Myths – MySQL

• MySQL – fast db
– MyISAM is fast, stupid
– InnoDB – featureful (transactions, foreign 

keys), but slow
– Must be good, FB uses it! Yes – they employ 

40(!) people working ON mysql.
– Either you can pay somebody to modify mysql 

or use PG/Oracle/MSSQL.



Predictability

• Why is predictability important?

• Only stable technologies have known 
limitations
– There are projects rewritten from PHP to Java 

because of memory… predictability!
– Example: xml-sql mapping library in metadata 

builder



Development

• OK, we chose the right technology, what to 
keep in mind during development?



Just Few Ideas For JavaEE

• Consider Remote stateless bean – it allows  
load balancing

• Learn EntityManager behavior, usual source of 
problems

• Learn from Clean Code, Effective Java, Adam 
Bien

• Some cool tools: JRebel, VisualVM for 
memory dumps



Usual Development Setup

• Unit test! TDD whenever possible.
• Simple setup (maven), newcomer must be productive 

from day 1.
• Automate

– Continuous integration (Jenkins)
– Continuous deployment

• QA server with night build
• Stable server with RC
• Copy of production server(s) for performance of specific testing

– Continuous verification of performance



Deployment

• Well, the application is developed, so we 
click in Jenkins to deploy to production and 
we are done!



Deployment – Servers

• 99.999 % reliability = mainframe
• Servers – choose one and stick with it

– Tomcat, not JEE, but useful for Spring, simple
– TomEE – lightweight, simple
– Glassfish/Payara – full, reference 

implementation, nice GUI
– IBM WebShere – full, “enterprise”, “IBM-way”
– BEA Weblogic – very advanced and expensive



Deployment – (Virtual) Hardware

• SaaS – Software as a Service

• Virtualization
– Docker
– VMWare ESX, VirtualBox

• Paravirtualization
– XEN – Citrix

• Cloud
– Amazon - “THE” cloud
– Either simply borrow a virtual machine with your server from last slide… → 

VPS
– ...or use Amazon services (e.g. database) → cloud app
– Others: Azure



Deployment of a New Version

• Can we simply deploy a new version?
– Database changes
– What if it will not work?
– Didn’t you forget backup?
– What is the revert strategy?



New Version – Database Upgrade

• Usually we use library for DB upgrade
– Liquibase (Flyway)
– Keeps track of history of upgrades
– Automates structure changes in all databases
– Only forward and only step by step

• Verifiable

• Reliable



Deployment of a New Version

• Internal servers
– QA – nightly, testers review
– Stable version for demos, performance test, RC
– Production copies
– UAT
– Production at customer’s

site



Deployment – Blue-Green

• Blue-Green
– Copy of traffic to both servers during transition
– Runs one or

the other.



Deployment – Canary Deployment

• Canary Deployment
– Sends only small amount of traffic to new 

version



Production

• The app is on the server, customers 
applaud, are we done?



Production – Monitoring

• It’s important to monitor running application
– Available memory
– Exceptional states
– Performance problems

• VisualVM – simple view of running JVM

• Wily – komplex system for JavaEE monitoring

• JProfiler, jhat



VisualVM

• VisualVM
– Part of Java SE
– Able to watch processes, memory, dumps



CA Vily Introscope

• Vily is very detail view into JavaEE
– Video?



New Relic



JRocket Mission Control



Performance Measurement

• Jmeter – the easy to use load generator

• At the end – performance is not always a 
priority. Why?

Citation from interview: “I prefer 
readable code over performance.”

Want performing code? Write it simple, readable.



Future Development

• Keep meaningful architecture, it makes 
sense
– Direct access to database from multiple points 

is simple and tempting
• In the future, synchronization will be huge problem

• Intermediate layer keeping model and doing 
messaging

• Example: EQUAL, manager of tests



My Own Experience

• MSM, Vantage

• Hotel planning support

• KNBox



Conclusion Question

• What technology would you choose NOW?
Are you still confident with your favorite? Can 
you fulfill all requirements?

• Did you support any app for > 10 years? 15 
years?
Not very funny :-)
My own example: not using Windows anymore, 
JDBC doesn’t support ODBC, lack of continuity. 



Conclusion

• Review
– TDD, jUnit as a part of build
– Continuous deployment, functional tests
– Careful deployment
– Monitor in production

Petr.Aubrecht@stringdata.cz

Thank you
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