
Figure 1: Application pipeline diagram.

1 Why?

Why?

• Most of today’s systems are distributed to some degree

• With the ease of internet access, systems become more dependent on other systems

• Distributed systems

– Able to share resources

– Able to process requests concurrently

– More scalable

– Can handle faults better

• Caveats

– Less predictable

– More complex

– More difficult to secure

– More effort is spent to manage the system

2 Approaches

2.1 Low-level

File

• Applications exchange data by writing into a shared file

• Pipeline processing

• ⇒ Local system

• Problems: format, schema, scalability, concurrency, notifications

1



Figure 2: Applications using shared database.

Database

• Applications share database, possibly use different views of the same database

• No integration layer needed, application data always up to date

• Problems: schema (general or complex), schema evolution, notifications

2.2 Platform-specific

Java RMI

• Remote Method Invocation

• Object-oriented equivalent of remote procedure call (see later)

• Java-specific technology for distributed systems

• Java Remote Method Protocol

– Wire-level protocol (application layer) on top of TCP

– Binary

• RMI supports primitive types and Serializable

Java RMI

• Client invokes methods of a remote interface on a local stub

– Stub is a RMI-generated proxy object representing the remote implementation

• Server implements remote interface to export methods which can be called re-
motely

• RMI registry

– Server registers at RMI registry as a provider of remote objects

– Client uses RMI registry to look up remote objects

2



Figure 3: Schema of Java RMI components.

RMI Alternatives
Similar technologies exist for

• Python – RPyC

• Ruby – Distributed Ruby

• Erlang – built into the language itself

2.3 Platform-independent

RPC

• Remote Procedure Call

• Invocation of subroutine in a different address space (usually a different computer)

• Client-server architecture

• Typically synchronous

XML-RPC

• Standard for remote procedure call using XML as message format

• Platform independent

• Over HTTP

XML-RPC Example
Request

<?xml version="1.0"?>
<methodCall>

<methodName>examples.getStateName</methodName>
<params>

<param>
<value><int>41</int></value>

</param>
</params>

</methodCall>

3



Response

<?xml version="1.0"?>
<methodResponse>

<params>
<param>

<value><string>South Dakota</string></value>
</param>

</params>
</methodResponse>

XML-RPC - Try it Yourself

1. Download/clone a simplistic XML-RPC server implementation from https://
gitlab.fel.cvut.cz/ear/xmlrpcserver

2. Start the server using mvn package exec:java

3. Open Postman or other HTTP client

4. Send a POST request to http://localhost:8080 with body

<?xml version="1.0"?>
<methodCall>

<methodName>EarServer.hello</methodName>
<params>

<param>
<value><string>Master Chief</string></value>

</param>
</params>

</methodCall>

CORBA

• Common Object Request Broker Architecture

• OMG standard for language and platform-independent distributed computing ar-
chitecture

• Similar to RPC but object-oriented

• Transparent location – client is unaware whether invocation is local or remote

– Also a caveat – local invocation cannot be optimized and has to go through
the whole ORB machinery

• Standards for interface definition, communication protocols, location

4



CORBA – Concepts

Interface Definition Language (IDL)

• Standardized language for specification of interface provided by an object

• Mappings for IDL exist in all major programming languages

• Used to generate Stub/Skeleton code

Object Request Broker (ORB)

• Middleware allowing transparent local and remote invocation

• Handles data serialization/deserialization based on IDL

• Knows location of the actual service implementation

• Is able to handle, e.g., transactions

CORBA – Concepts

General InterORB Protocol – GIOP

• Protocol for communications between ORBs

• Best known (and most often used) is IIOP (Internet InterORB Protocol) which
uses TCP/IP

• Other versions exist, e.g., HTIOP, SSLIOP

CORBA - IDL Interface Example

module HelloApp {
interface Hello {
string sayHello();
oneway void shutdown();
};

};

5



CORBA - Java Implementation Example

class HelloImpl extends HelloPOA {
private ORB orb;

public void setORB(ORB orb_val) {
orb = orb_val;

}

public String sayHello() {
return "\nHello world !!\n";

}

public void shutdown() {
orb.shutdown(false);

}
}

What is a web service?

A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network.

— W3C, Web Services Glossary

We can identify two major classes of Web services:

• REST-compliant Web services, in which the primary purpose of the
service is to manipulate XML representations of Web resources using a
uniform set of ”stateless” operations; and

• arbitrary Web services, in which the service may expose an arbitrary
set of operations.

— W3C, Web Services Architecture (2004)

SOAP

• Simple Object Access Protocol

• Standard protocol for web service communication

• Combo SOAP + WSDL + UDDI

• XML-based

• In contrast to CORBA:

– Universal, no language binding (IDL) required

– XML-based (CORBA protocols binary)

– Stateless

– Possibly asynchronous

6



SOAP

WSDL

• Web Service Description Language

• XML-based description of web service interface

• Clients know how to communicate with web service based on WSDL description

– No generated skeleton or stub needed

UDDI

• Universal Description, Discovery and Integration

• Universal register of WSDL descriptions of SOAP web services

• Simplifies web service discovery

SOAP

SOAP

• XML-based protocol

• Messages consist of:

– Envelope – single per request/response

– (Optional) header – additional information, e.g., timeout, security

– Body – data

– (Optional) Fault – error handling

• Over HTTP POST

• Caveats:

– Verbosity and slow parsing of XML

– Client-server interaction model (one is always client, the other is always client)

– Complex structure

SOAP

7



Figure 4: SOAP+WSDL+UDDI. Source:
http://www.wst.univie.ac.at/workgroups/sem-nessi/index.php?t=
semanticweb

3 Architectures

General Remarks
Different characteristics of architectures

• Vertical distribution

– Distribution of logical levels of the system

• Horizontal distribution

– Distribution of clients and servers

• Temporal distribution

– Communication is synchronous or asynchronous?

Client-Server vs. Distributed Objects

Client-Server

• Clients and servers are treated differently

• Servers process requests, provide functionality

• Clients make requests, consume functionality

• Example: SOAP, REST, HTTP

Distributed Objects

• Objects are equivalent, can call each other

• Example: Java RMI, CORBA

8



Figure 5: Source: https://managementmania.com/en/three-tier-architecture

Vertical Distribution

N-tier Architecture

• Layers are distributed between processes, can be distributed between machines as
well

• Examples

– Single-tier – terminal/mainframe configuration

– Two-tier – client + server

– Three-tier – typical, separate client, server application and database

Services

Service Oriented Architecture (SOA)

• System is split into self-contained separate units – services

• Services use each other to provide functionality

• Services can be developed separately, use different technologies, be removed or
replaced without affecting the system as a whole

• NOT to confuse with Web Services

• Example: SSO, text analysis service

Microservices

• No precise definition exists, for some it is a more advanced (purer) implementation
of SOA

• Software units communicating over lightweight mechanisms (HTTP), deployed us-
ing automated machinery and DevOps

9



Communication in SOA

Enterprise Service Bus (ESB)

• ESB is a middleware

• Indirection in service communication – decoupling, routing, synchronous or asyn-
chronous communication

• May support multiple protocols – SOAP, REST

• Simple or Advanced

– Simple – RabbitMQ, Apache Kafka, Apache ActiveMQ

– Advanced – Oracle, IBM, Microsoft

Smart Services and Dump Pipes

• Microservices - decentralized orchestration, often peer to peer

– Each service may have configuration of other possible services it can use

• Or single service registry

Peer to Peer (P2P)

• Decentralized architecture where nodes function as servers and clients

• Content distribution, sharing, grid computing

• Types

– Unstructured – no central node, peers discover each other (each peer starts
with a few possible connections and builds a list of other peers)

– Structured – network has a topology, more efficient peer discovery

– Hybrid – combination of P2P and client/server – usually server helps clients
discover other peers, search etc.

P2P

4 Conclusions

Conclusions

• Most of today’s applications are distributed

– At least tiered – backend and frontend separate

10



Figure 6: Source: https://www.researchgate.net/figure/Blockchain-P2P-Network_
fig1_320127088

• Most applications are integrated using web services

• Services allow to build systems from independent modules

Coming Next Week

• HTTP

• Currently most popular Web service architecture – REST

The End

Thank You

Resources

• https://martinfowler.com/bliki/IntegrationDatabase.html

• M. Fowler: Patterns of Enterprise Application Architecture

• http://xmlrpc.scripting.com/spec.html

• http://www.corba.org/

• K. Richta: Standardy pro webové služby WSDL, UDDI

– https://www.ksi.mff.cuni.cz/˜richta/publications/Richta-MD-2003.pdf

• https://www.slideshare.net/PeterREgli/soap-wsdl-uddi

11



• http://www.aqualab.cs.northwestern.edu/component/attachments/download/228

• https://ifs.host.cs.st-andrews.ac.uk/Books/SE7/Presentations/PDF/ch12.pdf

• https://www.ibm.com/support/knowledgecenter/en/SSMQ79_9.5.1/com.ibm.egl.pg.
doc/topics/pegl_serv_overview.html

• https://martinfowler.com/articles/microservices.html

12


