
1 Information About the Course

You Will Learn How to

Design enterprise applications using Java web technologies, including pieces of the Java
EE stack

Implement the applications in Java, Spring, EclipseLink

Think about high-availability, clustering, security, and other stuff...

Source: https://techcodegeek.wordpress.com

1



Teachers
Lecturers:

• Petr Aubrecht, aubrecht@asoftware.cz

• Martin Ledvinka, martin.ledvinka@fel.cvut.cz

Course Assistants:

• Jana Ahmad, ahmadjan@fel.cvut.cz

• Petr Aubrecht, aubrecht@asoftware.cz

• Bogdan Kostov, kostobog@fel.cvut.cz

• Martin Ledvinka, martin.ledvinka@fel.cvut.cz

• Lama Saeeda, saeedla1@fel.cvut.cz

Course Organization

• Go through https://cw.fel.cvut.cz/wiki/courses/b6b33ear care-
fully, including subsections:

– Lectures
https://cw.fel.cvut.cz/wiki/courses/b6b33ear/lectures

– Seminars
https://cw.fel.cvut.cz/wiki/courses/b6b33ear/seminars

– Assessment
https://cw.fel.cvut.cz/wiki/courses/b6b33ear/hodnoceni

– Materials
https://cw.fel.cvut.cz/wiki/courses/ear/materials

• The course will be split into two parts:

Basic topics – lectures 1-7

Advanced topics – lectures 8-13

• 14th week – Credit exam (pre-date)

2 Enterprise Applications

Why Java?
Answer #1: Usage of programming languages in 2018 (not much has changed in 2019)

2



Source: https://www.codingdojo.com/blog/7-most-in-demand-programming-languages-of-2018/

Why Java?
Answer #2:

• Well-established

• Portable (bytecode)

• Optimized in runtime

• Public specifications JSR based on community discussion

• Editions

Java Editions

• Java ME – micro edition (Java ME 8.3)

• Java SE – standard edition (Java SE 12)

• Jakarta EE – enterprise edition

– Formerly Java EE 8, submitted to Eclipse Foundation by Oracle

• (Android), ...

Desktop Application

3



Desktop

Application. Single-user access.

Client – Server Paradigm

Web Application

Web

Application. Multi-user access, single client (web), no integration with other systems.

Enterprise Application (EA)

4



Web

Application. Multi-user access, multiple clients (web, mobile, desktop, terminal ...), integration with other

enterprise systems (ERP, DWH, ...).

Multi-tier Architecture
Application split into tiers which can be run in separate processes or even on separate

machines. Typically three-tier

1. Presentation

2. Business logic

3. Data storage

Unidirectional control flow – top-down.

Multi-tier Architecture

5



Enterprise Application Architecture
Martin Fowler: Patterns of Enterprise Application Architecture

“... display, manipulation and storage of large amounts of
complex data and the support or automation of business

processes with that data.”

Enterprise Applications – Requirements

Persistent Data using relational databases, graph databases, NoSQL databases, RDF
triple stores,

Complex Data Integration of different volume, accuracy, update frequency, quality and
meaning → data integration,

Concurrent Data Access by many users at once with different scenarios (writing, read-
ing different parts of data),

Multiple Input Interfaces involving complex user interfaces (many forms, web pages),
(sensoric) data sources, operational data,

Process Automation involving integration with other enterprise applications, batch
processing, etc.

Performance, Robustness involving (horizontal/vertical) scalability, load balancing, high-
availability

6



Data Integration

Enterprise Conceptual Models – produces among others shared vocabularies (on-
tologies) to avoid data ambiguity

Master Data1 – data spanning the whole enterprise, like customers, products, accounts,
contracts and locations

Ontology Management – Is It Worth?
9/11 – One or Two Events ?

7



... matter of billions of USD
Source:https://www.metabunk.org/larry-silversteins-9-11-insurance.t2375

Integration with other EA

Messaging systems for asynchronous messaging

• Java Message Service (JSR 343)

Remote Procedure Calls for synchronous calls

8



• RPC

• RMI

• CORBA

• Web Services

Performance Testing2

Metrics

Response time – server-side request processing time,

Latency – client-side request processing time (response time + network delay),

Throughput – transactions per seconds,

Scalability – sensitivity to resource (hardware) addition/removal,

Scaling up (vertical) – add resource (RAM) to one server

Scaling out (horizontal) – add more servers

Contextual Information

Load – number of requests/transactions

Load sensitivity – sensitivity of a metric w.r.t load

Use Case – External B2C System
Like e-shops, social networks

Characteristics

• Many concurrent users

• Web client

• Relational database with a simple model

• Enterprise data store integration

2https://nirajrules.wordpress.com/2009/09/17/measuring-performance-response-vs-latency-vs-throughput-vs-

load-vs-scalability-vs-stress-vs-robustness

9



Use Case – Internal Enterprise System
Like Car Insurance System

Characteristics

• (Not so many) Concurrent users – mainly company employees

• Thick client for company employees

• Relational database, complex domain model capturing enterprise know-how

– E.g., conditions for obtaining an insurance contract

• ERP, CRM integration

3 Java EE

Java EE = Java Enterprise Edition

Java EE Principles

• Single specification, more implementations

• Bunch of technologies integrated in a single Java EE platform

Application server – full Java EE stack (e.g. Glassfish, WildFly (RedHat),. . .)

Web Container – only Java EE web profile (e.g. Apache Tomcat, Jetty, . . .)

10



Technologies Used in This Course
Technology Java EE Description

JPA (EclipseLink) X object persistence layer,
alternative to Hiber-
nate, OpenJPA, etc.

Spring × alternative to Java EE
Session Beans, CDI

Spring Web Services × web service layer, alter-
native to JAX-RS

Websockets X client-server bidirec-
tional communication

Servlets X basic HTTP request
processing

4 Servlets

Context

4.1 HTTP Basics

HTTP Protocol

11



HTTP Response

HTTP/1.1 200 OK
Date: Fri, 14 Sep 2018 12:07:38 GMT
Server: Apache
X-Content-Type-Options: nosniff
X-Frame-Options: sameorigin
X-XSS-Protection: 1; mode=block
Referrer-Policy: same-origin
Allow: GET, POST
Access-Control-Allow-Origin: https://www.fel.cvut.cz
Set-Cookie: PHPSESSID=5ccksgfok3f75o08tq9jdt8405; path=/, ;HttpOnly;Secure;samesite=

strict
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-check=0
Pragma: no-cache
Set-Cookie: lang=cz; expires=Sun, 14-Oct-2018 12:07:38 GMT; path=/
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html; charset=UTF-8

HTTP methods

HTTP 1.0

GET – requests a representation of a resource

POST – requests the server to accept the entity enclosed in the request as a new
subordinate of the web resource identified by the URI

HEAD – same as GET, but no response body is expected

12



HTTP methods II

HTTP 1.1 (rfc2616, rfc5789)

OPTIONS – returns the HTTP methods supported for URL

PUT – requests that the enclosed entity is stored under the supplied URI

DELETE – requests deletion of the specified resource

TRACE – echoes the received request (to see the changes made by intermediate servers)

CONNECT – converts the connection to a transparent TCP/IP tunnel (for HTTPs)

PATCH – applies partial modifications to a resource

4.2 Servlet Basics

First Servlet

package cz.cvut.kbss.ear.servlet;
import java.io.IOException;
import javax.servlet.annotation.WebServlet;
import javax.servlet.http.*;

@WebServlet(urlPatterns = {"/hello/*"})
public class HelloWorldServlet extends HttpServlet {

protected void doGet(HttpServletRequest req,
HttpServletResponse resp) throws IOException {
resp.setContentType("text/plain");
resp.getWriter().write("HELLO");

}
}

Servlet

• Java runtime is running (no need to run it)

• Thread pool for request processing

• Memory sharing

• JSESSIONID in cookies

• Local/remote debugging

• Might be a singleton or not

13



Servlet Container Ensures

• TCP/IP connection

• HTTP protocol processing

• Parameter processing

• Resource management (thread pools)

General servlets are in javax.servlet.* package, but we will deal with HTTP
servlets (javax.servlet.http.* package)

GET vs. POST
Often processed the same way ...

public class AServlet extends HttpServlet
{
public void doGet(HttpServletRequest request,
HttpServletResponse response)

{ processRequest(request, response); }

public void doPost(HttpServletRequest request,
HttpServletResponse response)

{ processRequest(request, response); }

public void processRequest(HttpServletRequest request,
HttpServletResponse response)

{ _processRequest(request, response); }
}

web.xml

@WebServlet(urlPatterns = {"/hello/*"})
public class HelloWorldServlet extends HttpServlet {
...

Can be alternatively expressed in web.xml as

<servlet>
<servlet-name>HelloWorldServlet</servlet-name>
<servletclass>cz.cvut.kbss.ear.
servlet.HelloWorldServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>HelloWorldServlet</servlet-name>

14



<url-pattern>/hello/*</url-pattern>
</servlet-mapping>

XMLs are an “old-style” solution, but they can (sometimes) do more than annotations
(e.g. error-page configuration). They override annotations.

Init parameters
java.lang.Object javax.servlet.GenericServlet javax.servlet.http.HttpServlet

public class HelloWorldServlet extends HttpServlet {
public void init(ServletConfig config) throws
ServletException {
super.init(config);
System.out.println("Created by " +
getInitParameter("brand"));

}
public void destroy(){

super.destroy();
System.out.println("Closing down.");

}
...

}

4.3 Managing State

Servlet Lifecycle

Source: http://
idlebrains.org/tutorials/java-tutorials/servlets-init-service-destroy/

15



How to share data between requests ?

• Application-wide – request.getServletContext()

• Session-wide – request.getSession()

• Request-wide – request

example

String product_id = request.getParameter("product_id");
User login = (User)
request.getSession().getAttribute("currentuser");

Client Session State
HTTP is stateless and the session state might be large... Web client can store the

session using

URL parameters – but the URL length is limited, problems with bookmarking, param-
eters shown to the user

Hidden input fields – not shown to the user

Cookies – might be banned by the client; cookies might become mixed up when two
apps from the same domain use the same cookie ...

HTTP Cookies

16



Client Session State

• State management on the client helps in clustering (stateless failover)

• Should be encrypted for sensitive data → extra time

• Server should check the incoming data to ensure their consistency

Server Session State

• The client state contains only server session identifier – JSESSIONID. Beware of
Session stealing – the user modifies session ID in order to get someone
else’s session.

• The server session is represented either as a BLOB (binary object) or as a text
(e.g. XML)

Locally – in the application server (AS) memory, in AS filesystem, in AS local
DB. Failover problematic.

Unstructured shared DB – in a database as BLOBs, session expiration needs to
be handled

Structured shared DB – in a database tables (e.g. session ID column)

4.4 Filters

Connection Info
The HttpServletRequest offers many information about the HTTP connection

• Client

– request.getRemoteAddr()

– request.getRemoteHost()

• Server

– request.getServerName()

– request.getServerPort()

– request.getContextPath()

E.g., for authorization (isSecure, isUserInRole, getAuthType, getCookies,
getHeaderNames).

17



First Filter

package cz.cvut.kbss.ear.servlet;
import java.io.IOException;
import javax.servlet.*;

@WebFilter(filterName = "Only localhost requests")
public class LocalhostFilter implements Filter {

public void doFilter(ServletRequest req, ServletResponse
res, FilterChain ch) throws IOException, ServletException
{
final String addr = req.getLocalAddr();
if (addr.matches("127.0.0.1")) {

ch.doFilter(req, res);
}

}
}

Filter Chains

Source: https://www.packtpub.com/mapt/book/application_
development/9781847199744/2/ch02lvl1sec15/
security-is-complicated--the-architecture-of-secured-web-requests

Filter Logic

public class FilterTemplate implements Filter {

public void init(FilterConfig cfg) { ... }

18



public void doFilter(ServletRequest req, ServletResponse
res, FilterChain ch) throws IOException, ServletException
{

// actions before servlet processing

ch.doFilter(req, res);

// actions after servlet processing
}
public void destroy { ... }

}

What can be filters good for?

• Authentication

• Logging and auditing

• Image conversion

• Data compression

• Encryption

• Tokenizing

• Resource access events

• XSL/T

• Mime-type chain

4.5 What is new in Servlet 4.0

Servlets 4.0

HTTP/2 Support • Client requests an HTML file page.html

• Server finds out that page.html links other resources, say page.css and
page.js

• Server pushes page.css and page.js to the client

• Server responds with page.html and closes the request

PushBuilder pb = req.newPushBuilder();
pb.path("/page.css");
pb.path("/page.js");
pb.push();

19



HttpServletMapping • Checking the pattern matched upon request

5 Summary

Summary

Don’t forget!

• Servlets provide an API for HTTP processing

• Many other Java EE technologies are based on servlets

And the next week?

• Enterprise application architectures

• Design patterns

THANK YOU

20


