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|. General Mathematics

(1) Dirac-impulse (d-function)
o(x) = 0 if xz0

I d(a—x)f(x)dx = f(a) if adD
D

Notation: d(a—x) = 0,(x)
(2) Kronecker o

5;=1if i=]
5; =0 if i#]

General Mathematics



I1. Probability

(3)  Probability density function (pdf)
Constraints: J’p(x)dx =1 Ox: p(x)=0
D

b
Probability that arandom variable y belongstointerva [a, b] : Prob[a<y<b] = J’p(x)dx
a

(4)  Probability distribution function (a.k.a cumulative distribution function or cdf)
P(x) isthe probability that a random variable y, generated using p(y) , has avalue lower than or equal than x.

X

P() = [ P(dX

0 = P(-»)<P(X)<P(0) = 1
(5) Expected value of arandom variable x with pdf p(x)

00 00

EDJ = [ xp(x)dx E[f()] = [ f(x)p(x)dx

—00

(6) Varianceof arandom variable x with pdf p(x)

E[(f(x) —E[f(x)])°]
E[f(x)]] —E[f(x)]°

a’[f(0)]
a’[f(0)]

(7)  Generaterandom variable with given density p(x) , using inver se cdf

Generate uniform random number r, 0 <r <1 then compute x = P_l(r) .

For multidimensional sampling: use marginal or conditional probability distributions, and apply the inverse for

each variable seperately.
p(x) P(x) P(x)
A ¢ N A _
I r I
integration : :
P r
1
— I I
I |
I |
I A I

P(ry) P(ry)
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(8) Generaterandom variable with given density p(x) , using reection sampling

Find M such that Ox: p(x) <M ; generate uniform random tuplet (X,y) O D x [0, M] . If p(x) =y accept
sample X' ; otherwise reject and try again.

P(X)A
reject
M - /
® I
o
‘ |
o |
° {° |
¥/ .

More general:

construct apdf q(x) suchthat Ox: p(x) < Mq(x).

Generate arandom sample X' according to q(x) .

Generate a uniform random numberr, 0<r<1.

If r<p(X)/Mg(x) accept sample X', otherwise reject and try again.

Probability



I11. Geometry

Notations: Ny

dA, Differential surface area at surface point x /@

n,  Surface normal at point x Xl )/k{dAx
(C] Direction vector: © (usually assumed to be normalized)

xy  Direction vector from x toy: xy = y—x

A Union of all surfacesin the scene, also used for total surface area of all
surfacesin the scene.
Ap Collection of al surface patchesin the scene

(99 Ray casting function
Closest surface point visible from (any) point x indirection ©:

r(x,0) = x+t;;[0O surface
tye = INf{t>0:(x+t )0 A r(x, 0)
/. ]

if y=r(x,0) and xOA
O x=r(y,—©) or x = r(r(x, ©),-0)
r(x, @)

surface

0)

Shorthand notation for r(x, ©): x°

(10)  Visibility function

Ox,yOA: V(xy) = ob Txandyaemutuly visible
00 if x andy are not mutually visible

The visihility function is often used in various formulations of the rendering equations using area integrals (e.g.
73), or in the equations describing form factors (e.g. 79).
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(11) Member function

(1 if x belongs to surface patch |

OxOA JOA: M(xj) = . .
P if x does not belong to surface patch j

The member function is a handy shorthand notation when one wants to express whether a surface points bel ongs
to a patch. E.g. computing form factors using Monte Carlo integration (87).
(12) Intersection of ray with object

A good overview of various ray-object intersection techniques can be found at:
http://ww. real ti merendering.conlfint/

A. GEOMETRIC TRANSFORMATIONS

Tranformation in 3D graphics are usually represented by 4x4 matrices. The 4th homogeneous coordinate is needed for
trandlations and perspective transforms. A basic overview can be found in any introductory book on computer graph-
ics.

A right-handed coordinate system is assumed.

(13) Trandation

Translate a point x by trandation vector d: x' = T(d) [k

10 0d, 1 0 0 -,
= |0L0d g o |0 1 0
001d, 0 0 1 -,
0001 00 0 1

(14) Rotation

Rotate point x around the X-axisby angle 8: X' = R (8) [k

1 0 0 0 1 0 0 0
—q _1 i

R (8) = 0 cF)se sn6 0 R1(6) = 0 cqse sne 0
O snB cos®6 O 0O -sinB cos6 O
0 0 0 1 0 0 0 1

Rotate point x around the Y-axisby angle 0: X' = Ry(e) X
cos6 0 snB O cosB 0 -sinB O
0 1 0 0 -1 0 1 0 0

() = (8) =

§ -sin@ 0 cos6 O % snB 0 «cosB O
0 0 0 1 0 0 0 1

Rotate point x around the Z-axisby angle 6: X' = R,(8) [k
cos® -snB 0 0 cosB snB O 0
R(6) = sin@ cos®@ O 0 Rgl(e) _ |-sinB cos6 O 0
0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
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(15)

Rotation such that basis vectors (x,y,z) become orthonormal vectors (u,v,w):

Uy Vy Wy 0 Uy uy uZO
R(uvw) = Uy, vy Wy 0 R_l(uvw) - Y% Wy Vg 0
u, v, w, 0 W, Wy w, 0
0 0 01 0 001

Coordinate transforms
Summary: To transform the coordinates of a point, expressed in coordinate system 1, to coordinates expressed in

coordinate system 2; apply the transformation that transforms the axes of coordinate system 2 into the axes coor-
dinate system 1.

0—xyz: Canonical coordinate system
p —uvw : Coordinate system with originin p, and orthonormal axes uvw (expressed in OXY Z).

Ao—xyz" point g expressed in 0 —xyz
Ao —uvw: point g expressed in p —uvw

qp—uvw = M(p- uVW)qo—xyz

uy, Uy u, 0|1 0 0 —p,
M(p—uvw) = R_l(uvw)T_l(p) - [ Wy Vv 0fo0o 1 O —Py
Wy Wy, w,010 0 1 —p,
0 00120 0 0 1
_ gl
qo—xyz =M (p_UVW)qp—uvw
1 0 0p|u, vow, O U, V, W, Py
M_l(p—uvw) = T(p)R(uvW) = 0 1 0py|u, vyw, OF _ fu, vy, w py
001p,|lu,v,w, 0 u, v, w, p,
00O01]|O0 O 0 1 0001

B. TRIANGLES

(16)

Surface area of atriangle
If a, b, c arethe vertices of atriangle:

aQ = laxb+bxc+cxal

are
2

Geometry 11



(17) Barycentric coordinates (a.k.a. trilinear coordinates or homogeneous coor dinates)

p(a,B.y) = aa+Bb+yc (a+B+y = 1)

O<a<1
p isinsidetriangleif andonly if 0<B <1
O<y<1
q=ta.  lda
A LI Il
A [ly
b b'b
Also: B = — = ———————
AL I+
yofel e
AL H Tl +IL

(A istotal areaof triangle)
(18) Generaterandom point in triangle with probability density p(x) = 1/A

r, and r, arerandom numbers, uniformly generated over theinterval [0, 1]

a=1-/r,
B=(1-ry,Jry

V=10

with (a, 3,y) the barycentric coordinates (see 17) of the random point.

(method as described in R40)

C.DisKs
(19) Generaterandom point on unit disk with probability density p(x) = 1/1
In general, adisk is parametrized by: ¢
¢ O[O0, 2m]
r oo, 1] b =0

Random numbers (r4, r,) O[O0, 1] x [0, 1] need to be mappedto ¢ ,r) coor-
dinates.
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(19a8) Polar map

This map preserves fractional area, but is not bicontinuous and has severe distortions.

2 A

] ’
T /

S e e s I ¢ =0
o

R
| | | >r1

r, and r, arerandom numbers, both uniformly generated over theinterval [0, 1]

r:jr—l

¢ = 2mr,

(19b) Concentric map

This map was first proposed by Shirley in the context of ray tracing and illumination computations (R31)*. This
map preserves fractional area, isbicontinuous and haslow distortion. See reference in footnote for an implemen-

tation.
V\ o

q):

@

r
L

r—|— 7
A
|

L | — 4

r, and r, are random numbers, both uniformly generated over the interval [-1, 1] (This can easily be trans-

formed from random numbersin theinterval [0, 1] ).
1st triangular region (ry >-r, and ry>r,):
r=ry

=7

—:’F—:
=N

1. Picturesin this section of the Compendium are based on the pictures in this book.
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2nd triangular region (ry <r, and ry >-r,):

3rd triangular region (r; <—r, and ry <r,):

r=-r
I P
ZEH“FF

4th triangular region (r{ >r, and ry <-r,):

=4
1

Geometry
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V. Hemispherical Geometry

A. GENERAL

(20) Finite Solid angle

Ny A

Q =

ol >

Solid angles are dimensionless and expressed in steradians.

The solid angle subtended by all space equals 47t. n\

(21) (Hemi-)Spherical coordinates: (¢, 6) parametrisation X

direction © = (¢, 8) AZ

¢ O[O0, 2] direction ©
e 0[O0, /2] solid angle dwg

rcos¢ sin@
rsingsin
Z = rcoso

r:dﬁ+f+f

tandp = y/x

<
1l

X +y
4

tan@ =

dxdydz = r’sin@drdode
Spherical coordinates: above formulas remain the same, except 6 [ [0, 1
(22) Differential solid anglefor (¢, 8) parametrisation

dwg = snBdod¢

2nTY 2
Integral over the hemisphere: If(e)dme = I I f(¢,0)sin6dBdd
Q 00
(23) (¢, c) parametrisation of hemisphere
2nTY 2 2m1
Apply coordinate transform: d:: z ql)—cose: _g[f(e)dw@ = I I f(¢,0)sinbdBdd = _”f(q), c)dcdd
00 00

Equally sized areasin (¢, c) space trandate to equally sized solid angles.

Hemispherical Geometry 15



(24) (&4, &o) parametrisation of hemisphere

El = gsinZ0@ 2nmv/ 2 11f(E £.)
Apply coordinatetransform: ¢ : [f(@)dwg = [ [ (8, $)sin6dedd = [[—= szﬁldEZ
2757 o 00 00 41 =&

Equally sized areasin (&, &,) spacetransate to equally sized, cosine-weighted solid angles.

(25) Transformation between differential surface

area and differential solid angle y
d
deog = cosB dA, A
r)%y solid angle dwg

(26) Solid angle subtended by a surface

_ cosey
Q) = [—2dA,
A My

(27) Visiblesolid angle subtended by a surface

Parts of the surface j might not be visible to x. Therefore, visibility between x and all surface points'y on j
needs to be included explicitly.

cosey

—V(x y)dAy
Xy

vis,.
QM=
A
(28) Solid angle subtended by a polygon
Girard’'s formula
Q = Zai—(n—Z)T[
i
with:

n: number of vertices of the polygon
a; : dihedral angles (angles between the planes formed

by the edges of the polygon and the projection point x)

This formulais valid for convex and concave polygons.
An implementation is given in Graphics Gems (R27, R6).
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(29)

(30)

(31)

(319 I cos"(©, m)cos(O, n,)dwg (cosinelobeisnon-zero on Q, only)

Tangent-sphere function

In the context of global illumination, one is often interested in the cosine of the angle between a direction ©® on
the hemisphere and the normal vector n, at asurface point x, but only if the direction is located at the same side

of the surface of n, . If © is‘below’ the surface, the value is 0. Some authors (R34) introduce the *tangent-
sphere’ function for this purpose:

m, (O if n[©®=0
T, (@ =0" <
otherwise

In this document, the notation cos(©, n,) is often used.

Useful integrals (cosine lobes) over the hemisphere (see also 33, 34, 35 and 36)

2n w2
Idw@ Idcp I sinBdd = 2m
Q 0 0
2n w2
Icos(@ Wdwg = Id(l) I cosfsinBdd = T
0 0
on w2
J’cos”(@, n)dwg = J’dd) J’ cos'0sin6db = Tl
0 0

Integrals of cosine lobes are useful because many BRDF models (e.g. Lafortune model, see 70) make use of
these lobes, athough usually not centered around the normal.

Limiting the integration area to the spherical cap bounded by 6 (1 [0, 6,,,,,] AnX
2m By

I cos(O, n)dwg = J’d¢f cos"0sinBdd = —(1 cos"*16, ..)

Qn 0 o0

Useful integrals over spherical digons

Q,

A method for computing this integral was presented by J. Arvo, as part of a
general method for computing double-axis moments on the hemisphere (R2).
Pseudocode |ooks as follows:

if even(n) then 0 else 1;
lei <=n-2 do

F(nXI m n)
S =0;
d = mny;
c = sqrt(1-d*d);
T =1if even(n) then W2 else c;
A =if even(n) then W2 else tracos(d);
i

5
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S = S+T;
T = T*c*c*(i+1)/ (i +2);
i =0 +2;
endwhi | e

return 2*(T + d*A + d*d*S)/ (n+2)
end

(31b) J’ cos"(©, m)dwg (cosinelobeisnon-zero on Q, only)
Q,

An expression can be derived from the same paper (although this form is not explicitly mentioned):

2(m—6,) + cosB [sn"~16 F _,+sin"3Q F _.+.. +sinB F|

n even: Icos”(@, m)dwg = —
Q,
T+ cos@ [sin"~18_F . +sn"=30 F  .+..+F
n odd: [ cos’(©, mydag = m mn :+1 mn-3 o
Q,
8,, = acos(mtLh,)
where: n—1
Fo==—F Fo=T F,=2

(32) Dirac-impulse on hemisphere (seealso 1)

5(©, —0) = d(cosB; — cosB)d(d, —¢)
0, = (611¢1)
© = (6, 9)

such that:

2n w2
J’ dod(d, —9) I d(cosB)d(cos8; — cos8)f(, 8)
0 0

[3(01-0)f(®)dwg
Q

2n

[ do3(¢; -0)f(4,8,) = (¢4, 8,) = f(,)

0

B. GENERATING POINTS AND DIRECTIONS ON THE (HEMI)SPHERE

Generating random directions over the hemisphere is afundamental operations in most Monte Carlo-based rendering
algorithms. The rendering equation (see section IX) is usually expressed as an integral over the hemisphere, so sam-
pling the hemispherical domain requires generating directions over the hemisphere.

r, andr, arerandom numbers, uniformly generated over theinterval [0, 1] . Some of the formulas can be simplified

by substituting a uniform random variable r with 1 —r or vice versa. Since both have the distribution, the resulting
distribution of directionsis not affected.
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R) with density p(©) = ——

(33) Generaterandom point on sphere (c,, Cy. C 5

Al

4nR
¢ = 2mr X =+ 2Reos(2mry) frp(1-15)
= 2mr, |
8 = acos(1-2r,) y = cy+2Rsm(2nrl)m

c,+R(1-2r,)

(34) Generaterandom direction on unit hemisphere proportional to solid angle

1
PDF: p(@©) = >mt

cos(2mr,) /1—r§

X =
¢ = 2mr,
. 2
8 = acos(r,) y = sin(2mry),/1-r1,
z=r,
With 80[0,6 ] and p(@) = ~——" M
T omax 2m(1-cosb,,,) A

X
|

2
= cos(21r 1-(1-r,(1-cos6
¢ — 2 rl ( 1)A/ ( 2( max))

)

y = sin(anl)A/l—(l—rz(l—cose
1-r,(1-cosb

8 = acos(1-r,(1-cosb,,,))

max)

Generating points uniformly on the disk (see 19), and then applying the following transformation, also produces
a uniform distribution of points on the hemisphere:

Point on disk: (¢4, ry)

2
X = cosdy Erd 2—-ry

¢

Resulting point on hemisphere:

g

or - . _ 2
acos(l—rs) y = Sing [ g2-1q

2

z

(35) Generaterandom direction on unit hemisphere proportional to cosine-weighted solid angle

PDF: p(©) = COTSG
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X
|

= cos(2mry), /1-r,

= sn(2mry),/1-r,
Jr2

and p(@) =

¢ = 2mr,
6 = acos(,/r,)

<
|

N
1

cos6

With 6 00, 8 _CosY_
TSI 0,

max]
= cos(2mr,)sin6 .. /1>
= sin(2mr,)sin®, .. />

J1—r,sin?8, .,

Generating points uniformly on the disk (see 19), and then projecting A
them on the hemisphere, also gives a cosine-weighted distribution of
points on the hemisphere.

x
|

=g
[

= 2mry

acos(,/1-r,sn?8,.,)

D

1
N <
1l |

Point on disk: (¢4, ry)

x
|

= rycosdy

= rqsindy
/1—r§

(36) Generaterandom direction on unit hemisphere proportional to cosine lobe around normal

Resulting point on hemisphere: O! or Y
8 = asin(ry)

N
1

PDF: p(©) = %Tlcosne

2

cos(21rq )\ 1— rg 1

x
1l

¢ = 2mr,
2

n+1

+ = gn(2mry)y1l-r,

<
|

@
1
et

Ohn
acosLf,
. 1

_ n+1
z-r2

(n+1)cos"6
2m(1-cos"*16,,,)

Withe [0, 0 and p(@©) =

max]

2
n+

x
|
[u

o = 2mr, = 005(27“1)«/1—(142(1—Cos“*lemax))

1 2

n+ 1

Sin(zml)’\/l_(l_rz(l_ CosnJrlemax))nJr

1
n+1

= (1-ry(1—cos"*16,,,))

<
1
[N

O
8= acos%(l —r,(1-cos"* 18 ..))

N
|

n = 0 produces (34); n = 1 produces (35).
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(37) Generate uniform random direction on a spherical triangle

See the paper published by J. Arvo in SIGGRAPH 95 for a complete formula and algorithm (R1).

(38) Generate random direction on spherical digon; density proportional to cos'a; a angle from off-normal
axis

1. Generate direction on unit hemisphere proportional to cos8 using (36).
2. Transform direction by transforming normal to off-normal axis.
3. If transformed direction has angle greater then 1v2 with normal, reject direction and try again.

4. Compute correct pdf-value by normalizing cos'a using (31b).
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V. Monte Carlo Integration'?

(39) General Properties of Monte Carlo estimators
Let F(N) beastochastic estimator for quantity Q, using N samples.
Error: F(N)-Q

Bias: B(F(N)) = E[F(N)—-Q] . If biasiszerofor al N, then estimator is unbiased.

. . . . 0. 0 . - . .
Estimator is consistent if: Probjlim F(N) = Q7 = 1. A sufficient condition for an estimator to be unbiased
N O

is: lim B(F(N)) = lim 02[F(N)] =0
N - o N - o
(40) Basic MC integration
| = If(x)dx
D = [ay...5q] x[05...5;5] x... x[ay...B4] (o, 3; 0 0)

nd

-1
0

Generate a sequence of samples (Xy, X5, X3, ..., Xy) using auniform pdf p(x) = Dn (B, - al)%
0

Z f(x)E[Hﬂ (e a)H E[00 = [f(x)dx (unbiased estimator)

i=1 D
o’[00q = +I(f(x)—|)2dx = +E f(x)zdx—ldé
N O[T (B -ap)” N O[T (8- )
i=1 i=1

(41) MCintegration using importance sampling

Generate a sequence of samples (Xy, X, X3, ..., Xy) using pdf p(x)

" i)
_1 i _

fx) _o? f(x)
o} [Elq = NIEb( )—I p(x)dx = Eip(x)dx—lﬁ

1. For anintroduction on Monte Carlo integration: (R18, R37, R21, R14)

2. An excellent text covering Monte Carlo methods for global Illumination isthe Ph.D. thesis of Eric Veach (R44).

Monte Carlo Integration,
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Optimal pdf for importance sampling, giving minimum variance:

If(x)]
If(x)dx
D

p(x) =

For the estimator to be unbiased, p(x) must be non-zero wherever f(x) isnon-zero.

(42) MC integration using stratified sampling

1 ay o, Om_1 1
If(x)dx = If(x)dx+_[f(x)dx+ ot I f(x)dx + I f(x)dx

If each stratum j receives n.

| samples, distributed uniformly within each stratum:

m o m Qo D2
o’ = (@—g; ) f(x)zdx_ f(x)d
3 Bty L f t0ac
i=1 aj-1 i= 1 [P‘J 1 D

If all strata have equal size, and each stratum contains one sample;

1 N Do o°
2 _ 1 2 [l O
= NIf(x) dx— z EJ’ f(x)d%
0 i=1p O

(43) Combined estimators

N
_ 1 f(xi ;)
00 = z ﬁjz Wj(x"j)_pj(xi,Jj)

with X theih sample, from atotal of NJ- , taken from pdf pj(x) .
n
If Z WJ-(X) = 1 for al x, then OO isunbiased.
j=1
(see R43)

(44) Combined estimators: balance heuristic

Balance Heuristic: WJ-(X) = L1 " withN, = ¢N , with N total number of samples.

2GR0 L

If 00, isobtained by the balance heuristic, and (101 by any other set of Wj(X) , then:

o200, <o 2[00 + BL —fo(x)dx

i, >N

Monte Carlo Integration,
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One sample model (N = 1): if P, is cosen with probability c., then the balance heuristic gives the lowest
variance.

(45) Efficiency of a Monte Carlo estimator

€= iz where T isthetime to take 1 sample, and o”isthe variance for 1 sample.
To

(see R21, pp. 91-92)
(46) Quasi-random sequences
Radical inverse function: i = z ajbj O @ (i) = z ajb_j_1
=0 j=0
a. Van der Corput sequence
X = ®p(i)
b. Halton sequence (s dimensions)

X; = (d)bl(i), CDbz(i), CDb3(i), CDbA(i), CDbs(i)) with by, by, b, ..., b relative primes.

¢. Hammersley sequence (s dimensions, length N)

X = EN'_ Py, (i), By, (1), Py (i), Py, (i), ..., (Dbsfl(i)H with by, b,, bg, ..., bg_ 4 relative primes.
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VI.

Radiometry & Photometry

» A general overview of units and measurements can be found at the “How many?” website
(http://ww. unc. edu/ ~row et t/units/index. htm).

* Another overview of light measurements and unitsis compiled in the Light M easurement

Hanbook: htt p: //www. i nt 1 -1i ght.com handbook/ regi st ered. ht n
(47) Radiometric and Photometric units
Radiometry Photometry
Joule Radiant Energy Q - Luminous Energy Talbot
Watt Radiant Power - Luminous Power Lumen (Im)
Watt/m?2 Radiosity (Radiant exitance) - Luminosity Lux (Im/m?)
Irradiance [1luminance
Watt/sr Radiant Intensity - Luminous Intensity Candela? (cd or Im/sr)
Watt/m?sr  Radiance - Luminance Nit (cd/m? or Im/mPsr)

a. Fromthe “How Many” website: Candela: the fundamental Sl unit for measuring the intensity of light. Candelaisthe

(48)

(49)

(50)

Latin word for "candle." The unit has a long and complicated history. Originally, it represented the intensity of an
actual candle, assumed to be burning whale tallow at a specified rate in grains per hour. Later this definition was
replaced with a definition in terms of the light produced by the filament of an incandescent light bulb. Still later a
standard was adopted which defined the candela as the intensity of 1/600 000 square meter of a"black body" (a per-
fect radiator of energy) at the temperature of freezing platinum (2042 K) and a pressure of 1 atmosphere. This defini-
tion has a so been discarded, and the candela is now defined to be the luminous intensity of alight source producing
single-frequency light at a frequency of 540 terahertz (THZz) with a power of 1/683 watt per steradian, or 18.3988
milliwatts over a complete sphere centered at the light source. The frequency of 540 THz corresponds to a wave
length of approximately 555.17 nanometers (nm). Light of this frequency has a yellow-green color and roughly the
same visual brightness as ordinary daylight. In addition, normal human eyes are more sensitive to this wavelength
than to any other. In order to produce 1 candela of single-frequency light of wavelength |, alamp would have to radi-
ate 1/(683V (1)) watts per steradian, where V(1) is the relative sensitivity of the eye at wavelength |. Values of V(1) are
defined by the International Commission on Illumination (CIE).

Flux: radiant energy flowing through a surface per unit time (Watt = Joule/sec)

-p=-94Q
q)_P_dt

Irradiance: incident flux per unit surface area(Watt/mz)

Radiant Intensity: flux per solid angle (Watt/sr)

_ do

dw

Radiometry & Photometry
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51) Radiance: flux per solid angle per unit projected area (Watt/m3sr)
(51) p glep proj

L4 _ _do _ _do
dw dwdAD dwdAcosB

(51a) Notations:

L(x - ©): radiance leaving point x in direction ©

L(x « ©): radiance arriving at point x from direction ©
L(x - y): radiance leaving point x, arriving at point y

L(x < y): radiance arriving at point x, coming from point y

(51b) Wavelength Dependency:

780nm
L(x - ©) = I L(x - ©,A)dA
380nm

Wavelength dependency is usually assumed in radiometric egautions.
(51c) Invariant along straight lines:

Radiance remains invariant along a straight path in vacuum:

L(Xx - y) = L(y « x) if xand y are mutually visible
L(x - ©) = L(r(x, ) « —O)

Proof: consider power exchange d’® between 2 differential surfaces dA, and dAy. Power d°® arrivi ng at
dAy from dA, must equal power leaving dA, in the direction of dAy (full proof see R13 p.24).

(51d) Integration: specify integration domain if specific values are needed

b = IIL(X - ©)cosBdwgdA, = IE(x)dAX = Il(e)dme
E(x) = IL(x ~ ©)cosBdwg
B(x) = J’L(x - ©)cos8dwg

1(©) = J’L(x - ©)cosBdA,

For adiffuse emitter (L(x - ©®) = L) with surface area A and hemispherical solid angle (21t sr):

¢ = LAT
E(x) = LTt
B(x) = LTt
1(®) = LAcosH
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(52) Radiometric quantities —» Photometric quantities

Integrate radiometric quantity R(A) weighted by the spectral luminous efficiency curve V(A) . Thiscurveisthe
same as the color matching function y(A) inthe CIE XY Z color system (see 116)

V() 1
08
0.6
04
0.2
%0 430 480 530 580 630 680 730 70 A(NM)
770nm
P =Ky [ VOORAA K = 680lumenwatt
380nm

Tabular data for the spectral luminous efficiency curve can be found in R16, p. 1170.
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VII. Optics

(53) Réeflection at perfect mirror (incoming, outgoing direction, surface normal in same plane)

8, = 6; (incident angle = reflected angle)

Vector computation (incident direction W, , normal n,, reflection vector W ): W = 2(n, [O¥;) - W,

2(n, W)

(54) Réefraction at transition from vacuum to material (incoming, refracted I
direction, surface normal in same plane) I

. 6 |
smei B ino_ = 1
sne. " WMo Ty
T
0<9i<§ 0<8, <8
5,
for small angles: o = n (Kepler'sformula)
r
(55) Refraction at transition from material to vacuum (incoming, refracted I
direction, surface normal in same plane) I
o, |
. sinG, 1 '
if 0<6. <6 —_— = =
e snB, n |
61
for smal angles: — = =
B, n
(56) Refraction at transition from material 1 to material 2 (incoming,
refracted direction, surface normal in same plane) I
. 0 |
sing;  n,
sn6, n, -2 | N
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(57)

(58)

(59)

Total internal refraction (incoming, refracted direction, surface normal in !
same plane) | nq

ifeg<ei<g 6, =6

Fresnel Reflection - Conductors

n
Material 1 to material 2; relative index of refraction n—2 =n+jk; 0 is angle of incidence. The Fresnel
1

coefficients express the directional -hemispherical spectral specular reflectivity.

_ a’ + b’ — 2acos + cos20
a’ +b? + 2acosb + cos20

£ _ p @ +b°—2asinftand + Sn’6tan’0

S
a2 +b? + 2asinBtand + sin26tan6

where a and b are given by:

2
2a% = J(n2 k2= sir?8)’ + an’? + (n° - % - s26)

2
202 = (N2 k2 sir26)% + 4022 — (N2 -2 — §n26)
Polarized light: reflectance F, = sF + pr withs+p =1

F +F

Unpolarized light: F, = 52 P

F and Fp aredsowrittenas F; and F, in various textbooks.

Fresnel Reflection - Dielectrics

n
Material 1 to material 2; relative index of refraction n—2 =1, 6, isangleof incidence, 6, isangle of refraction
1

(given by 56). The Fresnel coefficients express the directional-hemispherical spectral specular reflectivity.

E o= Dcoser/cosei—l/r]DZ _ sin2(ei_er)
s~ [bosB,/cos; +1/n- " sin2(, +6,)

. £0s6;/ cos6, —1/n-2 _ tan?(6, - 6,)
P Ltos®;/cosd, +1/n  tan?(6, +8,)

(Fs and F, arealso writtenas F; and F; in various textbooks)

F+F Sn2(6. B
Unpolarized light: F, = ———P = % , 2( —%)
$n2(6, +6,)

cos?(8; +6,)0
{]
cos?(8; —6,)0

O
L+
g

1. s standsfor ‘senkrecht’, German for perpendicular.
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(60)

S

- 2 . .
If 6, = 0,andthus 6, = 0: F, = F¢ = Fp = % (also sometimes written as F )

Index of Refraction Data Values

A website listing all sort of possibledataisathtt p: // www. | uxpop. com

Optics
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VIIl. Bidirectional Reflectance Distribution Functions (BRDFS)

A. GENERAL PROPERTIES

y _dl(x-©,)  di(x-©)
(61) BRDF: f,(x,0; - ©,) = dE(x — ©)  L(x - ©;)cos8,dug,
L™ ©
O, dL(x - ©,) O dE(x — ©;)

BRDF isdimensionless but is expressed as 1/sr

BTDF = Bidirectional Transmittance Function: similar as BRDF but defined for transmittance
BSDF = combination of 2 BRDFs and 2 BTDFs (one pair for each side of the surface)

(62) BRDF Reciprocity
f(x0,-0,) =f(Xx06,-06,) =f(Xx0 - 0,

(63) BRDF Energy conservation

De: Ifr(x, © - Wcos(n,, W)dwy, <1
Q

(64) Biconical Reflectance

I Ifr(@in - G)out)coseoutcoseindw@mdmeout

—_ Qothin
p(ein - eout) -
I cosemdw@ln
Qin

Q, and Q,; can be asingle direction, a solid angle, or the hemisphere. Combine the words ‘directional’, * coni-
cal’ and ‘hemispherical’ to obtain the right adjective for the reflectance. E.g. Biconical reflectance; directional-
hemispherical reflectance etc. (definitions from R7, p. 32).

(65) Lambertian Diffuse Reflection
fi(x,©; » ©) = f, 4 = constant

Outgoing radiance due to incoming radiance field:

L(x = ©) = f; 4 [ L(x - 8;p)cosB;dwg = f; 4E
Qin
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Bihemispherical reflectance: py = f, jmand py = E

(B isthe hemispherical radiosity and E isthe hemispherical irradiance, see V1)

B. BRDF MODELS

General notations for BRDF models:

©, Outgoing direction of light.

©, Incoming direction of light

©, Perfect specular directionw.r.t. ©,

©,, Halfway vector between ©, and ©,

n, Normal vector at surface point x where BRDF is eval uated

Spherical coordinates for each direction are using the same index. E.g. for the outgoing direction (¢, 6,)
Cartesian coordinates are al'so using the same index. E.g. for the outgoing direction (x., y,, z,) . Normally, these

will assumed to be normalized.

In general, negative values for cosine-lobes are ignored and set to zero.
(66) Modified Phong-BRDF!
f.(0, - ©,) = ky+kscos'(0,,0,)

or aso:

k

p_d+p5(n+2) 2T[
n+2s

f(0, - ©,) = - o cos"(©,, ©,) with py = 1k, and pg =

Energy conservation: py+ pg< 1. py and pg are the maximum energy (©; = n, ) reflected through the diffuse
part and specular part respectively. In other words:

Pq = I kqcos(n,, W)dw,, P = I kscos"*1(n,, W)dw,, (tocompute, see 30)
Q Qy

The energy reflected through the specular lobe, given adirection ©; :

ps = I kscos"(©,, ©;)cos(n,, W)dwy, Ps < Py (to compute, see 31)
Q,
Proportional sampling: There are various ways to sampl e according to the modified Phong-BRDF, using a com-

bination of 34, 35, 36 and 38. In aglobal illumination context, one is often interested in computing an integral of
the following type (see 72), using Monte Carlo integration:

1(©) = IL(LP)fr(LP « 0)cos(n,, W)dwy,
Q,

1. Themodified Phong-BRDF is very similar to the Phong shading function and was introduced as aBRDF in R26. See also R23.

Bidirectional Reflectance Distribution Functions (BRDFs) 32



Since the modified Phong-BRDF is often used in global illumination algorithms, there are various strategies for
sampling proportional to the modified Phong-BRDF.

a Theintegral can be split in two parts, compute each part independently using PDFs p, (W) and p,(¥).

= IL(LP)kdcos(nX, W)dwy, + J’L(LP)kscos”(qJ, ©,)cos(n,, W)dwy = 1, +1,
Q, Q,
O0= 0,0+ 0,0

N, N
1 L(W;)kycos(n,, W) 1 2L(LlJi)kscos”(llJi,G)s)cos(nx,LIJi)

Ny p(¥)) N (W)
i=1 =1

Some interesting choices for p, (W) :

N,
1 204
py(W) = 7 (see34): 0,0= N_l Z L(W;)cos(n,, ¥))
i=1

N,
cos(n,, W) Py
P (W) = TX (see35): 0,0 = N_l,z L(W)
i=1
Some interesting choices for p,(W):
] ) 1 2TII|(S ’
Uniform over hemisphere (see 34): p,(¥) = or a0= N, z L(W;)cos"(W;, ©,)cos(n,, W¥;)
i=1
N,
. . cos(n,, W) Tk
Cosine -weighted (see 35): p,(¥) = — ; 0= N Z L(W;)cos"(W;, ©y)
2
i=1
cos"(W, ©)

Proportional to specular lobe of BRDF (see 38): p,(¥) =

J’ cos™(W, ©,)dwy,
Q
N,

k.0 O
0,0= N_ZS{ cos™ (W, @s)doo% z L(W,;)cos(n,, ¥;)
) i=1

b. Integral is split in two parts, use discrete probabilistic selection of what term to evaluate.
Select random event based on discrete PDF (qy, d,, q3) with g, +g,+qg; = 1. Then generate W, using

either py (W) or p,(¥).
L(W;)kqcos(n,, ¥;)
1P, (W)
L(W,)kscos"(W;, ©) cos(n,, W,)
AP, (W)

if event 3:eval(W;) = 0 (If L(W) contains recursive evaluations, this can be used to stop recursion).

if event L:eval(W;) =

if event 2:eval(W;) =
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N
Total estimator: 00 = _I%I z eval (¥;)
i=1
Interesting choices for p, (W), p,(¥) : see above.
Interesting choices for (q,, d,,3) :

An obvious choiceisto pick g; = py, d, = Pg, O3 = 1—py—pPs (proportiona to energy reflected in
different modes). However, this requires the evaluation of p. for every value of ©. Another choiceisto

usethefollowing values: q; = py, d, = Pg, d3 = 1—py—pPs- There will be some more samples drawvn

in the specular lobe relative to the reflected energy in the lobe, but this can be countered by NOT resam-
pling any directions that are located in the part of the lobe below the surface. These samples then give a
contribution = 0.

Total PDF is combination of discrete and continuous sampling.
Generate samples as above, then the total PDF of all samples generated is:

P(¥) = qypy (W) +dopy(W) (g +a, = 1)

n+2
L N L(wi)%+%cosn(wi,es)gcos(nx, W)
Od= =
N2 d1P1(W;) + dyp, (W)
i=1
Interesting choices:

1
p (W) = o

po (W) = %ﬂlcos”(w, ©,) (no resampling of directions under surface, so full lobe)

(n+2)

¢ = 2py - (n+1)°s
1 (n+2) 72— (n+2)
2p‘J'Jr(n+1)ps 2pc"Jr(n+1)ps
(n+2) N
2pd+(n+1) s

then the above estimator iswritten as; 00 = N z L(W;)cos(n,, ¥;)

i=1
(directions under the surface in the specular lobe evaluate to 0).
(67) Modified Phong-BRDF - Blinn Variant
(see notations page 32)
f.(0, « ©,) = ky+kscos"6,,
(68) Cook-Torrance-BRDF

(see notations page 32)

_ F®) -, P66
(6 = &) = T Dcoseicoser
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B angle between ©; and ©,, (equal to angle between ©, and ©y,)

F(B) : Fresnel Reflectance (see 58)
D(6,) : Facet distribution
G : Geometric masking term

_[@}
_ 1 m . .
D(6) = — e (m is material-parameter)
m”cos*0
2cos8, cosB. 2cosB,,coso
G = minEﬂ, h 1 h =P

cosf3 cosf3 S
The Cook-Torrance model is described in more detail in R8.

(69) Ward-BRDF

(see notations page 32)

Pd 1 exp(—tan?6, / a®)
a. Isotropic Gaussian Model: f,(©; - ©,) = E+p O 0

S [cos8; cos8, ATt

o isstandard deviation (RMS) of the surface dope.
Energy conservation: py+ p <1

Normalization 1/ 4ma® is accurate as long a isnot much greater than 0.2 (surface is then mostly diffuse).

Proportional sampling of specular part (is already normalized as a pdf):

atan(a, /—log(r,))

21,

Oh
b

b. Anisotropic Elliptical Gaussian Model:

exp(—tan26, (cosd, /o> + sSin2d, /o>
(0 . 0)= de_’_p 0 1 0 p( h( bp/ay b y))

® JcosB, cos8, 4ma,ay

a, and ay areare the standard deviation of the surface dopein the x and y direction at the tangent plane.

Energy conservation: py+ p <1 and 0)2( «1 and G)Z/ «1

Proportional sampling of specular part (is already normalized as a pdf):

O —log(ry) O
atand > %
cos’¢/ ay + sin?d/a

atan %;tan(ZT[rz)H

Oh

=4
1

See R46 for a more complete description of the Ward BRDF.
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(70) Lafortune-BRDF
n
fr(ei - er) = z(cx, kXX + Cy, KYiYr t Cz, kzizr) ‘
k
which can also be written as:
n
(O - ©) = T C(O)(0, 1)
k
where:
(Cx k% Cy Yir C, k%)

=
2 2. .2 2 2 2
«/Cx, KX +Cy Y +C g

N

©

2 2 2 2 2 2.2
Cu(©) = (Cy X +C i +C5 %)
Therefore, the BRDF is a combination of cosine-lobes, each centered around a different axis ©,

Proportional sampling:

1. Integrate different cosine-lobes over spherical digons using (31b)
2. Select cosine-lobe proportional to the above computed values.
3. Generate direction according to this cosine-lobe (38)

See R25 for a complete description.

C. BRDF MEASUREMENTS

(71) Cornell Measurements
The Program of Computer Graphics, Cornell University, has a number of measurements online:

htt p: //ww. graphi cs. cornel | . edu/ onl i ne/ neasur enent s/

Bidirectional Reflectance Distribution Functions (BRDFs)
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| X. Rendering Equation and Global Illumination Formulations

A. RADIANCE TRANSPORT FORMULATIONS

All formulations in this section take radiance as the main transport quantity. For the sake of clarity, the wavelength
dependency of radiance valuesisimplicitly assumed in all equations.

(72) Rendering Equation (Radiance), integration over incoming hemisphere

L(X-0) = L(x-0)+ IL(X - W) (x, ¥ - O)cos(n,, W)dwy,
Qy

Direct illumination only: L(x - ©) = ILe(r(x, W) - —W)f (x, ¥ « ©)cos(n,, ¥)dwy,
Q,
(73) Rendering Equation (Radiance), integration over all surfacesin the scene
L(Xx - ©) = Ly(x - ©) +IL(Z - 2X)f (X, © o zX)G(X, 2)V(X, 2)dA,

A
cos(n,, ®)cos(n,, —O)

Ix—2

G(x,2) =

(many authors include V(x, z) in the definition of G(x, z), but in this document they are kept separate for
clarity).

Direct illumination only: see 74.
(74) Direct Illumination Equation (Radiance), integration over all light sources

(computing direct illumination using various sampling techniques for shadow rays: page 50)

L, : all light sources (i = 1...N, ) inthe scene.

Al_i - areaof light source L; .

Q, (L;): solid angle subtended by light source L; w.r.t. x.

Q;(’is(Li): visible solid angle subtended by light source L; w.r.t. x.

y: intersection of ray (x, W) and light source L;

N, : number of light sourcesin the scene

(74a) Integration over the area of all light sources:

Ny

L(x - ©) = Le(x » ©)+ 5 [Lely - yX)f (X, © o Xy)G(x, y)V(x, y)dA,
i= 1ALi

Rendering Equation and Global Illumination Formulations 37



(74b) Integration over solid angles subtended by light sources:

N
L(X-0) = L(x-0)+ z J’ Loy » —W)f (X, W « ©)cos(n,, ¥)V(X,y)dwy,
i = 19x(L)

(74c) Integration over visible solid angles subtended by light sources:
(inthiscasey=r(x, ¥))

N
L(X - ©) = L(x- 0)+ Z I Lo(y -» =W)f (X, W « O)cos(n,, W)dwy,
i= lQ;”S(Ll)

(75) Continuous Radiosity Equation: diffusereflection, diffuse light sources, integration over surfaces

If al surfaces are diffuse reflectors and light sources are diffuse emitters, radiance values are independent of
direction and can be expressed by the hemispherical radiometric quantities:

B(x) = mL(x)
Bo(x) = 1L (X)
p(x) = mf(x)

B(Y = By() +p() [RACKR AV gy,
A

(76) Participating medium

See also descriptionsin (R7, p. 325) and (R33, p. 174).

There are 4 phenomena that affect the radiance along a path in a medium: \}4 /A/
absorption: the medium absorbs light —
emission: the medium emits light / 'R
in-scattering: light scattersinto the direction of travel absorption in-scattering
out-scattering: light scatters away from the direction of travel

Change in radiance along a path: V\b\ f v

dL(s

% = —K,L(S) +KyLo(S) + KSILi(O)f(O)dm@ ‘// \\‘

L ° ~a emission out-scattering
emission in-scattering

absorption + out-scattering
with:

K,(8) : absorption coefficient (dimension: 1/meter), fraction by which radiance is reduced per unit length due
to absorption in the medium.

K4(S) : scattering coefficient (dimension: 1/meter), fraction by which radiance is reduced per unit length due
to out-scattering.

Ki(S) = K,(S) +Kg(S) : extinction coefficient.
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f(©®) : phase function, describing fraction of radiance arriving from direction © that isin-scattered along the

path. If the medium isisotropic: f e = 4_1n

Solving the above differential equation:

S

L(s) = L(O)T(0,5) * [T(, $)I(S)k(s)ds

0
with:
0% 0
(s, Sp) = expB—J' Kt(S)d%Z transmittance function. If the medium is isotropic, k(s) is constant and thus
O 0
1
—K¢|Sy =S5

(s, Sy) = e

J(s) : source function, describing in-scattering and emission.

3(s) = (1-R(s))L(8) +R(5) [L;(©)(®)dwg
Q

Kg(S)  K(S)
K(S)  Ky(S) +Kg(S)

R(s) = : scattering albedo of the medium

(77) Participating medium, no scattering
Equationsin 76 apply, with K (s) = 0 and K,(s) = K(S)

L(s) = L(O)T(0,5) * [Lo(S)T(S, S)ky(S)ds
0

andif k(s) and Lg(s) constant:

L(s) = L(0)e "+ Ly(1—e ) (can be used as asimple fog-model)

B. DUAL TRANSPORT FORMULATION

Light transport can also be formulated by using the adjoint equations. The adjoint transport quantity is called impor-
tance or potential function by various authors, and an often used notation is W. An intuitive way of thinking about the
potential function isto consider it an incident function in combination with radiance as an exitant function.

(78) Relationship between Flux, Radiance, Potential

See R12 for amore complete description.

Consider aset S of surface points and associated directions S = A, x Q, [T Ax Q. The exitant flux for S can
be written as:

Rendering Equation and Global Illumination Formulations 39



d(S) = IIL(X - @)W (X « O)cos(0, n,)dwgdA,
AQ

with W,(x — ©) theinitia potential, defined as.

if (x,0)0S

Wyx - @) = o~ T (%©)
if (x,©)0S

The above integral can also be formally defined as an inner product: ®(S) = [, W/

Using the dual formulation, ®(S) can also be written as an integral over all light sources, or formally:

®(S) = [[Le(x ~ O)W(X ~ ©)cos(O, n,)dwgdA, = [l WI
AQ

with

W(X « ©) = W(Xx « O) + I W(r(x, @) « W)f (r(x,0),¥ - G))cos(nr(xy o) W)dwy

Qr(x‘ 0)

W(x < ©) isdimensionless and has the same transport properties as radiance (invariant along straight lines).

Rendering Equation and Global Illumination Formulations
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X. Form Factors

Form Factor: the fraction of uniform diffuse radiant energy leaving one surface that is incident upon a second sur-
face.

Form Factor Algebra: mathematical relations between form factors

Notation: The‘sender’ surface iswritten asthefirst index, the ‘receiver’ surface as the second. An arrow indicatesthe
‘energy flow’. This notation is consistent with other notations in literature, where the arrow usually is not used.

Form Factors are usually treated very extensively in books dealing with thermal radiation heat transfer (R32).

A good on-line resource for analytical avaluations of form factors: “A Catalog of Radiation Heat Transfer Configura-
tion Factors’ by John R. Howell: ht t p: / / www. me. ut exas. edu/ ~howel | /

Global illumination context: computing form factors is one of the main elements of radiosity algorithms. Radiosity
algorithms based on some variant of particle tracing often implicitly compute form factors without storing them.
Direct illumination computations in ray tracing using shadow-rays also often implicitly computes a point-to-areaform
factor.

A. GENERAL EXPRESSIONS AND PROPERTIES

(79) Differential element to differential el ement Form Factor

cosE)Xcosey

_ _ G(xy)
dFga, . da, = 2 dAy = ——dA
Xy

With visibility term:

cos0, coso G(x
- y - S yVxy)
dFga, . da, = > V(X y)dA, = - dA,

s Xy

(80) Differential element to element Form Factor

cos6, coso G(x
- y - YV Y)
A Xy A

(81) Differential element to polygon Form Factor; full visibility
E

Faa L= %{ z n, T'; (E=number of edges or vertices of the polygon)

X

i=1
where I, = V; OV, ; and magnitudeof I'; = v;.

See also R3.
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(82) Element to element Form Factor

1 cosexcosey _ 1, .G(xY)
Fi ~j = K‘[I—ZV(X, y)dAydAX = KIITV(X, y)dAydAX
IAi A T[er IAi A

Q,(j) issubtended solid angle covering surface j as seen from x (see 26 and 27; also 9):

Fo= L 0000 i dad

- = A ] TR MO Ddwgda,
Ale(J)

Fooo= O oo dA

[y KII _[ T WedA,
AQ()

(83) Element to element Form Factor; full visibility; Stoke's Theorem
1
'cc
An analytic solution for thisintegral, given any two polygons, was derived by Schréder and Hanrahan (R29).

(84) Form Factor Algebra

a AF = AF

i~ I

b. In aclosed environment: ZFi =1
j

(85 Nusselt’s Analog (projection on a disk)

£ = Do
dAx -] 2
Tw

Form Factors
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(86) Projection on a sphere

A .
F = proj
dA, -
. 4nr2
See also R39.

B. COMPUTING FORM FACTORS USING MONTE CARLO |NTEGRATION1

(87) Uniform area sampling on both surfaces

MC integration applied to (82 - 1st equation):

1
P(X,Y) = =+
" AG(Xe YV(Xe V)
1 j S (X Yid VX Vi
TR
k=1

2 2
2 0= 2B SNV gp ga p? D
o’[F .1 NE«:H 2 AAFS D

(88) Uniform area sampling + uniform solid angle sampling
MC integration applied to (82 - 2nd equation)

P(x ©) = m

N . o .
cos8, Q (IM(x “1)

_ 1
i 0= N Z Tt
k=1
0 52 . 2, 0. O
2 _1 cos 6,Q,())M™(x7, ]) 2
CA Q) it O

By using visibility culling or rejection sampling, sampling and integration can be limited to Q\;is(j) .

1. Extensive coverage of computing form factors using MC integration can be found in the Ph.D. thesis of Ph. Bekaert (R5). This
section is partly based on that text.
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(89) Uniform area sampling + cosine-weighted solid angle sampling
MC integration applied to (82 - 2nd equation)

1 cosf,
p(x©) = +

i | cosB,dwg
Q.(1)

N M(xfk,j) I cosf, dwg

Q.())
2 T

cosGXMz(x@, i) I cos8, dwg

0
0 _ ,
il 1) dwgdA, —F;
A

0

o o o o

A n2

By using visibility culling or rejection sampling, sampling and integration can be limited to Q\;is(j) .

(90) Uniform area sampling + cosine-weighted hemisphere sampling
Directions are sampled over the entire hemisphere Q. and do not need to point to surface element j . Just count

the number of raysarriving at j to get an estimate for F; i

1 _cosB,
p(x, ©) = ASTH
N
F 0= & S M)
k=1
2 1
o[F [ = SF . (A-F )

N

This sampling procedure can be used to compute all F; _ ; simultaneously for agiven i using the same set of

i

rays (X, ©,)
for all patches j: F ,; = 0;
for k =1,...,Ndo

generate a uniformy distributed random point x on patch i
generate a cosine distributed direction ©

j = patch hit by the ray (x, ©)

Fiﬂj += 1/ N

(91) Global Lines

Globa lines methods compute all form factors in the scene without explicitly sampling points on the surface
patchest. Various techniques can be used to compute the global lines:

a. Construct a bounding sphere for the scene. Generate each global line by connecting 2 uniform random points
on the surface of the sphere.

1. Anoverview of global linesin the context of radiosity can be found in the Ph.D. Thesis of Mateu Shert (R28):
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Form Factors

b. Generate arandom direction © on the unit sphere. Project the scene on a plane perpendicular to ©. Generate
auniformly distributed random surface point x in the projection. (x, ®) isaglobal line.

All global lines are intersected with all surfaces in the scene, resulting in several spans on each line. The proba-
bility that alineintersects a surface is proportional to the area of that surface.

Fi_ i is estimated by Nij/Ni , With Nij the number of spans connecting surface patches i and j, and N; the
number of spans starting from surface patch i .
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Xl. Radiosity System & Algorithms

Theterm ‘Radiosity’ is used in various ways in photorealistic image synthesis: as the radiometric quantity describing
incident energy integrated over the hemisphere; but also to indicate a specific class of algorithms that compute an
energy distribution in the scene. Although there is no formal definition of what a‘radiosity algorithm’ actually is, it is
usually assumed that one means a finite-element solution, computing diffuse light interaction only.

Most radiosity literature uses Galerkin Radiosity, a projection method to transform the continuous radiosity equations
(75) into a set of linear equations. Unless otherwise indicated, Galerkin radiosity is used in this section.

Notations:

B, : constant radiosity of patch i (see 49, 51) - expressed in Watt/m?

B, - self-emitted constant radiosity of patch i - expressed in Watt/m?

P, : diffuse bihemispherical reflectance of patch i (see 65) - dimensionless
Fi_ K form factor between patch i and j (see 82) - dimensionless

P, : power of patchi - expressed in Watt P; = A;B,

A, : surface area of patch i - expressed in m?

(92) System of radiosity equations, constant basis functions

Opatchesi: B, = Bei+piZFi Hij

j
1-piFy 1 PiF1 2 o —PiF1 o0 [[Br Be1
—PoFy 1 1-PF5 oo —PoF, 0 ||Bo] — [Be2

_pnFn -1 _pnFn -2 1_pnFn -n Bn Ben

(93) System of power equations, constant basis functions

Opatchesi: P, = Pei+piZFj Hin

j
1-pF1 1 PiFo g o PFlq ||P1 Pe1
—PoF1 Lo 1-PoF5 oo —PoFL Lo [Py Z [Pe2

_pnFlan _pnFZﬁn 1_pnFnﬁn F)n F)en

(94) Discretizing the continuous radiosity equation®

B(2)G(x, Z)V(X, z)dA

Continuous radiosity equation (see 75): B(x) = By(x) + p(X) I -
A

1. Based on chapter 3 of R7.
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N
Approximation of B(x) : B(x) = B(x) = S BiNi(x)
i=1

Residual (substitute B(x) in continuous equation): r(x) = B(x) —B,(x) —p(x)IE(Z)G(X’nZ)V(X’ Z)dAZ
A

N

General approach: pick N weighting functions W, (x) . The norm of residual: [r(x)| = z |Er(x),VVi(x)E|.
i=1

Each of the terms [i(x), W;(x)d = Ir(x)Wi(x)dAx can now be set to be zero, resulting in alinear equation for

A
each W;(X) .

(94a) Point Collocation

Wi (x) = 8(x—x;) (residual is zero for selected number of points x; )

N

then: 0i: z Kiij—Be(xi) = 0 with Kij = Nj(xi)—i;(i)INj(z)G(xi,z)V(xi,z)dAZ
j=1 A
(94b) Galerkin
Wi (x) = N;(x)
N
then: Oi: z Ki;B; —J’Be(x)Ni(x)dAX =0
i=1 A

with Kj; = INi(x)Nj(x)dAx—J’Ip(x)Ni(x)Nj(z)%dAszX
A AA

1 if x belongsto surface element i

, resultsin the classic radiosity formulation (92 or 93).
otherwise

Choosing N;(x) =

(95) Basic Relaxation Algorithm?

Most radiosity algorithms are relaxation methods, that solve the radiosity system through a series of iterations.
This item describes the basic principle of all relaxation algorithms.

Linear system to solve: Ax = e or =

Subsequent iterations: x(o), x(l), x(z),

1. A very good overview of different relaxation techniques for solving the radiosity system can be found in the Ph.D. thesis of
Philippe Bekaert (R5).
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(96)

(). (Kt 1) _ (1), ()

Correction vectors Ax + AX

Residu vectors r (measure for error): r® = e ax® , and therefore rKFD = (0 aAax®
Basic relaxation agorithm:

Choose initial x(9;
r(0 =p . Ax(0;
for k =0, 1, ... until convergence do

conput e Ax(K) (based on x(K) - r (&) other informati on)
r(kl) = (0 oA ax(R);

Gauss-Seidel iteration

O O
Each component of the solution is updated in turn: xg « [B;— Z ag ij/ A
j#s .
Correction vector: Ax; « & srs/ agg (all components 0 except s).

Residu vector: r; « r; —aisrs/aSS (component s equals 0).

Appliedto (93) (a,, = 1 if Fy ¢ = 1):

S

Py« Pes*Ps Y Fj . P,
IEXS

Algorithm:

for all patches j: P, = Pgj;
cycl e through patches until convergence (selected patch = s)
Ps = Pes;
for all patches j
Ps += ps. Fj s- Pj ;

Incremental Gauss-Seidel: compute residu vector explicitly and increment solution vector instead of replacing
previous solution.
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XlI. Radiosity Extensions

(97) Clustering - Equivalent extinction coefficient

When clustering objects, an equivalent isotropic extinction coefficient can be computed for the cluster (R35), in
an analogy with a participating medium (76).

where A isthetotal surface area of objectsin the cluster and V isthe volume of the cluster.

Directional extinction (R34):

A”(0)

k(©) = 2

where AD(O) isthetotal projected areain direction ©.
(98) Final Gathering

A final gathering step is used to make a high-quality rendering of a radiosity solution, using a per-pixel radi-
ance computation. It usualy involves computing a radiance value for the visible surface point through each
pixel, using the radiosity values stored on the surface patches.

Suppose L isthe pre-computed (diffuse) radiosity solution, then the radiance for surface point x in direction ©
can be approximated as (see section X for basic rendering equation):

L(X - ©) = Ly(x - ©) + I[(x - W (x, ¥ - ©)cos(n,, W)dwy, (hemisphereintegration)
Qy
or:

L(X - ©) = Ly(x - ©) + I[(z - 2X)f,(x, © o zX)G(x, 2)V(X, 2)dA, (surface integration)
A

Theintegral in either of the two above formulations can be approximated by an appropriate sampling technique,
thereby ‘gathering’ radiance from the other surfaces. Many different variants are possible, depending on how
much information was stored with the radiosity solution.

Variants: Uniform hemisphere sampling; cosine-weighted hemisphere sampling; uniform area sampling; area
sampling proportional to solid angle; area sampling proportional to cosine weighted angle; area sampling pro-

portional to L ; area sampling sampling proportional to stored (linked) form factors. See (R41, R4) for an over-
view.
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XII1. Pixel-driven Path Tracing Algorithms

Many rendering algorithms use (random) paths in object space to compute illumination values. If these paths are
directly used to compute the illumination of the pixels, one has a specific class of algorithms, of which classic ray
tracing is the best-known. Other algorithmsinclude stochastic ray tracing; light tracing (al so called backward ray trac-
ing or particle tracing); and bidirectional ray tracing.

See also: Ray-object intersections. chapter on Geometry (chapter I11)
A. DIRECT ILLUMINATION USING SHADOW-RAYS

Most algorithms that compute direct illumination using shadow rays apply a specific numerical integration scheme
directly derived from the equations described in 74.

When there are multiple light sources in the scene, the complete sampling procedure can usually be divided in two
parts: a discrete selection of one of the light sources, followed by the generation of a shadow-ray for the selected light
source. Various choices for each of these sampling procedures produce different estimators. The obvious alternativeis
to split the direct illumination integral in seperate integrals, one for each light source, and compute the illumination
due to each light source seperately.

A good general overview for direct lighting cal culations using Monte Carlo techniques can be found in R30.

(99) Singlelight source, uniform sampling of light source area

Apply Monte Carlo integration to integral 74a:

p(Y) = /A,
A N
L(x - 0= 5 T Ll = YO (6 Xy o+ ©@)G(X YIV(x ¥
k=1

Graphical representation:
1. generate point on light source, evaluate L

2. evauate V, G

(100) Singlelight source, uniform sampling of solid angle subtended by light source
Apply Monte Carlo integration to integral 74b:
p(W) = 1/7Q,(L)
N
Q,(L)

(x - ©)= N z Lo(yg = =W (x, W « ©)cos(n,, ¥, V(X Y,)
k=1

with y, =intersectionof ray (x, ¥,) and light source L
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Graphical representation
3. evaluate Lo

2. evaluate V

Solid angle sampling of the light source usually yields lower variance as opposed to area sampling (99), due to
the abscence of a cosine and inverse distance factor in the estimator.

(101) Multiplelight sources, uniform random sour ce selection, uniform sampling of light source area

Apply 2 sampling steps for Monte Carlo evaluation of integral 74a:
1. Select alight source i using adiscrete pdf p, (i) = 1/N_

2. Select asurface point y on light source i using a uniform pdf p(y) = 17A,

N

N _ _
L(x - ©)0= = 5 ALk = Y (% X = @G, V(X Yi)
k=1

Graphical representation:
1. pick random light source

/‘/// \

2. generate point on
light source, evaluate L

(102) Multiplelight sources, uniform random sour ce selection, uniform sampling of light source solid angle

Apply 2 sampling steps Monte Carlo evaluation of integral 74b:
1. Select alight source i using adiscrete pdf p, (i) = 1/N_

2. Select arandom direction W within solid angle subtended by light source i using pdf p(W¥) = 1/Q,(L)
N N
L
L(x - ©)= N Z Q, (L)L (- “WOf.(x, W, « ©)cos(n,, ¥, )V(X,Y,)
k=1

with y, =intersection of ray (x, ¥,) and light source L,

Pixel-driven Path Tracing Algorithms 51



Graphical representation
1. pick random light source

P P
- \ 4. evaluate L

3. evaluate visibility

2. generate direction in solid angle

Wy
7" 5 evaluate cosine, f,

Solid angle sampling of the light source usually yields lower variance as opposed to area sampling (101), due to
the absence of acosine and inverse distance factor in the estimator.

(103) Multiplelight sources, non-uniform random sour ce selection, non-uniform sampling of light source area

Apply 2 sampling steps during the Monte Carlo evaluation of 74a
1. Select alight source i using adiscrete pdf p, (i)

2. Select asurface point y on light sourcei using a pdf p(y)

Lok = Vi) (X Xy, o ©)G(X, Y )V(X, ¥})
pL()P(Y,)

_1
L(x-00=5 Y
k=1

Some interesting choices:

p, (i) can be chosen proportional to the power emitted by each light source (bright light sources get sampled

more often). E.g. for diffuse light sources: ®; = L,A;mt and thus p, (i) = @,/ P, where @, . isthe total
emitted power of all light sources.

N _
q) f X! X « @ G X, V X,
Inthis case: [L(X » @)0= —= (6 X )G V(X ¥
TN ‘ Aip(y,)
=1

N

. Prot s
andif p(y) = I/A;: L(x - ©)0= N z (X Xy, « ©)G(X, Y )V(X Yy)

k=1
(104) Variousstrategiesfor computing direct illumination dueto multiple light sour ces

Various schemes for speeding up the computation of direct illumination due to multiple light sources have been
proposed by several authors. These usually involve a smart choice for the pdf p, (i) in 103, taking into account

light source brightness, visibility, etc.

G. Ward (R45) proposes to rank all light sources according to their potential illumination contribution to the
point to be shaded (that is, without taking into account visibility). Then, the illumination of the light source
ranked first is computed first (e.g. using 99), followed by the light source ranked second, and so on; until the
potential contribution of the remaining light sources falls below a certain threshold. The illumination due to the
remaining light sourcesis then computed using e.g. 101 or 103. Alternatively, one can estimate the contribution
of the remaining light sources by multiplying their potential contribution by the average hit ratio of shadow rays
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send to these light sources so far (e.g. when computing previous points). The accuracy goal can be relaxed by a
user-specified parameter.

In (R30), an approach is presented where the sceneis divided in octree cells. Each cell maintainsalist of ‘impor-
tant’ light sources for the points in that cell, based on intensity of the light source, distance, and reflectivity.
When selecting a light source, the important light sources are sampled proportional to their potential contribu-
tion (not taking into account visibility), and all remaining light sources are selected with equal probability. The
number of samples used for the important and unimportant light sources can vary. In (R48), an extension using
the visibility function to classify light sources is presented.

The same authors also describe the following technique: instead of using two different sampling steps (pick the
light source first, then sample within the light source), a single procedure can be used that only uses 2 random

numbers. Suppose we want to pick light source i with probability a;. Generate &, uniform over [0, 1] .

Choose light source i if;
i—-1

Zcxj<al< ZC(J-

=1 i=1

To sample the light source, use the pair (€', §,) with &,' = %1 ‘ D/0(

Graphically, thismeans all light sources are mapped into the [0, 1] x [0, 1] domain:
light source 1 light source 3
light source 2 light source 4

Wl

0 E1
0 N T >
4 AN
/ N g
{ Yt
0 1

Advantage: one less random variable, so stratified sampling becomes more effective; less variance.
(105) Multiplelight sources, uniform sampling of hemisphere

The main difference with the previous methods is that shadow rays are not targeted towards light sources, but are
generated over the entire hemisphere. Apply Monte Carlo evaluation to direct illumination equation of 72.

p(¥) = 1/2m (uniform sampling of hemisphere, see 34)

N
L(x - )= ZW” T Lo(r(x W) — W1, (x, Wy - ©)cos(n,, W)
k=1
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(106) Multiplelight sources, non-uniform sampling of hemisphere

The main difference with the previous methods is that shadow rays are not targeted towards light sources, but are
generated over the entire hemisphere. Apply Monte Carlo evaluation to direct illumination equation of 72.

Choose a pdf for generating random directions: p(W)

Lo(r(x, W) - =W (x, ¥, » O©)cos(n, ¥,)

=1
L(x - ©)= N Z
k=1

p(Wy)

Graphical representation:

2. find nearest intersection point;
if on light source, evaluate L

3. evaluate f.cos

Some interesting choices: uniform sampling, cosine-sampling, brdf sampling, brdf.cosine sampling.

(106a) Multiple light sources, uniform sampling of hemisphere: see 105

(106b) Multiple light sources, cosine-sampling of hemisphere
p(W) = cos(n,, W)/ (cosine sampling of hemisphere, see 35)

N
L(x-©)0= T Le(r(x W) ~ "W, (x ¥ - ©)
k=1

(106¢) Multiple light sources, BRDF-sampling of hemisphere

f(x, W - O
p(w) = 22

[f,(x ¥ < ©)dwy
Q,

[ ¥ < ©)dwy

L(x » O)J= < Y Le(r(x W) — =W cos(n, W)
k=1

For a general BRDF, the appropriate sampling function might be very difficult to construct. Rejection sampling
can be used (see 8), but might yield very high variance, especially when the BRDF has a narrow peak.
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(106d) Multiple light sources, BRDF.cosine-sampling of hemisphere

f.(x, W - ©)cos(n,, ¥)

p(¥) =
Ifr(x, ¥ o 0©)cos(n,, W)dwy,
Q,
Ifr(x, W o 0)cos(n, W)dwy
L(x - @)= N S Le(r(x W) = =¥y

k=1

For a general BRDF, the appropriate sampling function might be very difficult to construct. Rejection sampling
can be used (see 8), but might yield very high variance, especially when the BRDF has a narrow peak.

B. RAY TRACING

Theterm ‘ray tracing’ has been used for different algorithms over the years. In the context of global illumination, ‘ray
tracing’ usually implies ‘ stochastic ray tracing’, where one can compute a full solution to the rendering equation. The
traditional ray tracing algorithm (R47) isthen often referred to as ‘ classic ray tracing’ or ‘Whitted-style ray tracing’.

Stochastic ray tracing computes the radiance value for a given surface point in a given direction. These points are usu-
ally points visible through a pixel, and by averaging such radiance values using an appropriate filter, one can compute
the illumination value of apixel in the image.

(107) Stochasticray tracing - general idea
Rendering equation (72): L(X - ©) = L (x - ©) + IL(x < Wf.(x, ¥ - O)cos(n,, ¥)dwy,
Q,

Monte Carlo integration using pdf p(W¥), and invariance property of radiance
(L(x « W) = L(r(x, ¥;) - =¥)):

" L(r(X, L'J|) g _Lpi)fr(X, LlJi © @)COS(nX, L'JI)

p(¥;)

1
[L(x - O)d= Ly(x - @)+N

i=1

L(r(x, ¥;) - —¥;) isevaluated recursively using the same procedure.
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(108) Next event estimation (split in direct and indirect term)

Rewrite rendering equation (72,74) as integral over area of al light sources and hemispherical integral of all
indirect light (not directly from light sources).

L(X - O) = Le(X - O) + LF(X - O)

L (x - O) IL(X « W) (x, ¥ ~ O)cos(n,, ¥)dwy,

Qy

ILe(y - ﬁ()fr(x, 0 o xy)G(x, y)V(X, y)dAy+ ILi(x <« W (x, ¥ - ©)cos(n,, ¥)dwy,
A Qy
= I‘direct(x - 0)+ I‘indirect(x - ©)

and Li(x « W) = L (r(x¥,) - —¥).

Lgirect(X — ©) isevaluated using any of the techniques for direct illumination (99 - 106). L (x> 0O)is

indirect
evaluated with Monte Carlo integration:

L (r(x, ¥;) - =W)f.(x, ¥; « ©)cos(n,, ¥;)

ELindirect(X - o) = p(qu)

2l
"Mz

L (r(x, ¥,) - =W¥,) isevaluated recursively.

Some interesting choices for p(W) : uniform sampling, cosine-sampling, brdf sampling, brdf.cosine sampling.

(108a) Uniform sampling of hemisphere

_1
p(¥) = 5
N
21
i=1

(108b) Cosine-sampling of hemisphere
p(W¥) = cos(n,, W)/ (cosine sampling of hemisphere, see 35)

N
Tt
LipgirectX = 0= 5 F Lr(x W) = ~¥)f,(x ¥; - ©)
i=1

(108c) BRDF-sampling of hemisphere

f(xW o ©)

p(¥) =
Ifr(x, Y o O)dwy
Q
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Ifr(x, Y o 0)dwy
— Q
EI-indirect(x - )=

L (r(x,¥.) - =W.)cos(n,, ¥:)
z r | | X |
i=1

N

For a general BRDF, the appropriate sampling function might be very difficult to construct. Rejection sampling
can be used (see 8), but might yield very high variance, especially when the BRDF has a narrow peak.

(108d) Multiple light sources, BRDF.cosine-sampling of hemisphere

f.(x, W - ©)cos(n,, ¥)

p(¥) =
Ifr(x, Y .« ©)cos(n,, W)dwy
Q

Ifr(x, Y o 0)cos(n,, W)dwy

Qy
L ndirect(* ~ ©)I = N z L. (r(x,¥;,) - =¥,
i=1

For a general BRDF, the appropriate sampling function might be very difficult to construct. Rejection sampling
can be used (see 8), but might yield very high variance, especially when the BRDF has a narrow peak.

(109) End of recursion - Russian Roulette

Russian Roulette is atechnique that can be used to ends recursive eval uation, but still keeps the final result unbi-
ased. For any (recursive) expression A to be evaluated, use the following procedure:

Pick value a 0 [0, 1] , and generate uniform random number r O [0, 1] :

if r<a: = A
a

if r>a: [AO=0
Expected value: E[ CA] = a E§+(1—G)[D =A

Global illumination context: when recursively tracing rays, Russian Roulette can be used to stop the recursion.
Any value for a can be used, but a popular choice is the directional-hemispherica reflectance (64) of the sur-
face point where the reflection is being considered.

Another variant of looking at RR is by rescaling the function to be integrated, such that part of the integration
domainyields 0, and thereby effectively stopping any further evaluations.

E.g. computation of the one-dimensiond integral

1 a
_ - cix0
I—ﬁmm—fy%ﬂx
0 0

Using pdf p(x) :
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f(x;/a)
a Lh(x)
if x,>a: O0=0

if x;<a: 0O0=

Graphical representation:

C.LIGHT TRACING

Light tracing is the dual algorithm of ray tracing. Instead of shooting rays from the eye through a pixel, and working
towards the light source, light tracing shoots rays from the light sources, and works towards the pixels.

References: R9, R10, R11, R12
Principle:

— ~contributions to
pixels

Variants:

a. If the eyeisasurface, one could just let the light particles bounce around the scenetill they hit the eye surface.
A contribution to the relevant pixel is then recorded. This would be the dual of stochastic ray tracing without
shadow rays.

b. All hit points of al light particles can be stored in the scene. When the camera moves, the hit points can be
reprojected to new camera view. This requires a re-evaluation of the BRDF at the reprojected hit points. This
could be combined with any visibility determination scheme used in reprojection algorithms, or even using
the original geometry.

D. BIDIRECTIONAL TRACING

Bidirectional ray tracing constructs paths from the light sources and the eye simultaneously, and employs a meet-in-
the-middle strategy for the paths generated. Ray tracing and light tracing can be considered to be special cases of bidi-
rectional tracing.
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References: R22, R24, R42
Principle:

possible contributions

eye path (random walk)

If thelight paths are of length O (only arandom point on the light source is generated), bidirectional tracing behaves as
stochastic ray tracing. If the eye path is of length O, bidirectional tracing becomes identical to light tracing.
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X1V. Multipass Algorithms

Multipass algorithms denote a class of algorithms that combine several global illumination passes into a single solu-
tion. Different passes are selected to compute subsets of all light paths. Clever combinations of different passes have
been the subject of many global illumination papers. Often, one or more passes are used to store partial illumination
information in the scene, which is then read out by a subsequent pass.

To classify the different types of lightpaths, regular expressions can be used based on Heckbert's notation (R19). See
also (R38).

D, D,, D, : diffuse reflection, transmission

G, G,, G, glossy reflection, transmission

S S, S : specular reflection, transmission

X: (D|S|G)

E: theeye

L : alight source

* . Zero or more occurences

+ . 0he or more occurences
|:“or”

A. PHOTON MAPPING

Photon mapping traces light particles or photons through the scenes, and stores all possible hits of the random walks.
During a subsequent stochastic ray tracing pass, information from the stored photonsis used to compute several light-
ing illumination components.

References: R20
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XV. Test Scenesfor Global Illumination

(110) Mother of all test scenes
Datafor the original Cornell Box can be found at:
htt p: //ww. graphi cs. cornel | . edu/ onl i ne/ box/

(111) Analytic Solution - General Rendering Equation

If O(x, ©): Lo(X - ©) + Idwwfr(x, Y o 0)cos(n,, W) = 1 andif the environment is closed, then:
Q

L(x -~ ©) =1 isthesolutionfor L(x - ©) = L (X - ©) + Idwq,L(x < Wf.(x, ¥ - O)cos(n,, ¥) (72).
Q,

For diffuse surfaces: 0(x, ©): La(X > @)+py =1

In other words, every surface point emits exactly the amount of energy that is absorbed at the point.
(112) Analytic Solution - Radiosity System

if Opatchesi: P +P; = 1 andif the environment is closed, then:

Oi: P, = 1 isthesolution for the linear system P; = Pei+piZFj ~ in (93).
i

(113) Testing global illumination algorithms

Brian Smits and Henrik Jensen have proposed a number of simple and elegant scenes to test light transport
modes (R36), available at the following URL: ht t p: / / ww. cs. ut ah. edu/ ~bes/ paper s/ scenes/.

A number of scenes, designed to test performance and overall image appearance, made available by Greg Ward
Larson and Peter Shirley are available from the RADIANCE website: ht t p: // radsi te. | bl . gov/ ngf /.

Andrew Willmott and Paul Heckbert have designed parametrized test scenes for diffuse global illumination
(radiosity), so that algorithms' sensitivity to various parameters, such as reflectance or scene complexity, can be
tested. They also described a scheme for making comparisons that normalizes for differencesin error and time.
All information can be found at the following URL: htt p://wwv. cs. cnu. edu/ ~r adi osi ty/.

(114) Testing ray tracing performance

The classic Standard Procedural Database (R17), designed by Eric Haines to test the performance of classic ray
tracers, isavailable from: ht t p: / / www. acm or g/ t og/ r esour ces/ SPD/ over vi ew. ht mi .

(115) Testing animated ray tracing

Jonas Lext, Ulf Assarsson, and Tomas Mdller have designed a number of scenesto test animated ray tracing.
http://ww. ce. chal ners. se/ BART/ .
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XVI. Color & Display1

(116) Spectrum C()) to CIE XYZ

Color matching functions X(A), ¥(A), z(A) 2

18

z(A)
16
14
12 _
y(A) X(A)
1
0.8
0.6
04
0.2
o |
380 430 480 530 580 630 680 730 780 )\
780nm 780nm 780nm
X = J’ C(A)X(A)dA Y = J’ C(A)y(A)dA Z = J’ C(A)z(N)dA
380nm 380nm 380nm
W= X =Y ;= 2
X+vy+z YT X¥v+z X+Y+Z

(117) xyY toXYZ

X:Y)_( Y=Y Z:Yw
y y

(118) CIE XYZ to Spectrum C(A)

Choose 3 linearly independent functions F(A) , F5(A) and F5(A).
C(A) canbewrittten as aF,(A) + bF,(A) + cF5(A) with a, b, ¢ determined by:

. 10X [F,(0ZA)AN [F3M)R(A )N

Y| = [[FL00500AN [F,00500dh [F5g(A)dh||b
C

IFl()\)Z()\)d)\ J'Fz()\)z()\)d)\ J'Fs()\)z()\)d)\

N

See also R15.

1. A good source for color data: htt p: / / cvi si on. ucsd. edu/ basi ci ndex. ht m
2. Tabular datafor the color matching curves can be found in R16, p. 1170.
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E.g. 1: Dirac-impulse functions

X(Ay) X(Ay) X(A)| [4
= YA YA) YA || b
z(Ay) Z(A) Z(A,)|LC

N < X
|

E.g. 2: First three Fourier basis functions defined on interval [A

F,(\) = 10

atwavelengths A, A, and A,

= [380, 780]

min )‘max]

Fo(A) = E’Hsn%n)‘ 401:’)8 il

Fa(A) = %E‘Hcos%n)\_%q%

400

(119) CIE XYZ to/from NTSC standard RGB based on standard CIE phospors and D6500 white point.

Scaling is such that RGB=[1,1,1] produces the chromaticity values of the white point with Y=1.0 (R16, p.104).

X

y

r 0.670 0.330

s T @

0.5893 0.1789 0.1831
= 10.2904 0.6051 0.1045
10.0000 0.0684 1.0202

N < X
[

T O 0
1l

| 1.967 —0.548 —0.297
—0.955 1.938 —0.027
| 0.064 -0.130 0.982

0.210 0.710
0.140 0.080
0.313 0.329

N < X, @ 6O 1,

(120) CIE XYZ to/from L'u'v color space

Defined w.r.t. white point (X,

R |]Y/ Y, = 0.008856
EIY/ Y, < 0.008856

c
Il

13L° (u-up)

<
1

18L° (V= V,)

Y, Z,,) » usually scaled such that Y, = 100.

- AX
X +15Y +3Z
116(Y/Y,) 9y
903.3(Y/Y,) ~ X+15Y+3Z
where ax,
N X,+15Y,+3Z,
9y,
n X, +15Y,+3Z,

/3
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X = —%+3ZE

Q =
* 3
Y=Y |j: + 167 where
nlJ 116 U R =
5 - (Q=4)A—15QRY
12R A=

*+un

13L

*+Vn

13L
3Y(5R-3)

(121) CIE XYZ to/from L'ab color space

Defined w.r.t. white point (X, Y,,, Z,) , usualy scaled such that Y,, = 100.

R OY/'Y, = 0.008856

1/3

116(Y/Y,)"° 16

=0
OY/Y,<0008856  903.3(Y/Y,)

) ) where (1) =  =0.008856

a = 500L (f(X/X)—f(Y/Y.)) [F < 0.008856

b = 200L (f(Y/Y,)-(2/Z,))

* 3
1/3 O
X = Xn%_g_g + a *D
n 500L U

v =y b6
n0 116 U
* 3
1/3 O
Z= Zn%TYE +""9'"'$D
n 200L U

1/3
r

7.787r + 16/ 116
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