
Chapter 11

SAMPLING AND

QUANTIZATION

ARTIFACTS

From the information or signal processing point of view, modeling can be

regarded as the de�nition of the intended world by digital and discrete

data which are processed later by image synthesis. Since the intended

world model, like the real world, is continuous, modeling always involves

an analog-digital conversion to the internal representation of the digital

computer. Later in image synthesis, the digital model is resampled and re-

quantized to meet the requirements of the display hardware, which is much

more drastic than the sampling of modeling, making this step responsible

for the generation of artifacts due to the approximation error in the sam-

pling process. In this chapter, the problems of discrete sampling will be

discussed �rst, then the issue of quantization will be addressed.

The sampling of a two-dimensional color distribution, I(x; y), can be

described mathematically as a multiplication by a \comb function" which

keeps the value of the sampled function in the sampling points, but makes

it zero elsewhere:

Is(x; y) = I(x; y) �
X
i

X
j

�(x� i ��x; y � j ��y): (11:1)
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The 2D Fourier transformation of this signal is:

I�s (�; �) =

1Z

�1

1Z

�1

Is(x; y) � e�|x� � e�|y�dxdy =

1

�x ��y
X
i

X
j

I�(�� 2�i

�x
; � � 2�j

�y
): (11:2)

The sampling would be correct if the requirements of the sampling the-

orem could be met. The sampling theorem states that a continuous signal

can be reconstructed exactly from its samples by an ideal low-pass �lter only

if it is band-limited to a maximum frequency which is less than half of the

sampling frequency. That is also obvious from equation 11.2, since it repeats

the spectrum of the signal in�nitely by periods 2�=�x and 2�=�y, which

means that the spectrum of non-band-limited signals will be destroyed by

their repeated copies.

spectrum of the original signal

repeated spectra due to sampling

reconstruction by a non-ideal
low pass filter
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Figure 11.1: Analysis of the spectrum of the sampled color distribution

The real world is never band-limited, because objects appear suddenly

(like step functions) as we move along a path, introducing in�nitely high

frequencies. Thus, the sampling theorem can never be satis�ed in computer

graphics, causing the repeated spectra of the color distribution to overlap,

and destroying even the low frequency components of the �nal spectrum.



11. SAMPLING AND QUANTIZATION ARTIFACTS 309

The phenomenon of the appearance of high frequency components in the

lower frequency ranges due to incorrect sampling is called aliasing (�g-

ure 11.1). The situation is made even worse by the method of reconstruc-

tion of the continuous signal. As has been discussed, raster systems use a

0-order hold circuit in their D/A converter to generate a continuous signal,

which is far from being an ideal low-pass �lter.

The results of the unsatisfactory sampling and reconstruction are well-

known in computer graphics. Polygon edges will have stairsteps or jaggies

which are aliases of unwanted high frequency components. The sharp cor-

ners of the jaggies are caused by the inadequate low-pass �lter not suppress-

ing those higher components. The situation is even worse for small objects

of a size comparable with pixels, such as small characters or textures, be-

cause they can totally disappear from the screen depending on the actual

sampling grid. In order to reduce the irritating e�ects of aliasing, three

di�erent approaches can be taken:

1. Increasing the resolution of the displays. This approach has not only

clear technological constraints, but has proven ine�cient for eliminat-

ing the e�ects of aliasing, since the human eye is very sensitive to the

regular patterns that aliasing causes.

2. Band-limiting the image by applying a low pass �lter before sam-

pling. Although the high frequency behavior of the image will not

be accurate, at least the more important low frequency range will

not be destroyed by aliases. This anti-aliasing approach is called

pre-�ltering, since the �ltering is done before the sampling.

3. The method which �lters the generated image after sampling is called

post-�ltering. Since the signal being sampled is not band-limited,

the aliases will inevitably occur on the image, and cannot be removed

by a late �ltering process. If the sampling uses the resolution of the

�nal image, the same aliases occur, and post-�ltering can only re-

duce the sharp edges of jaggies, improving the reconstruction process.

The �ltering cannot make a distinction between aliases and normal

image patterns, causing a decrease in the sharpness of the picture.

Thus, post-�ltering is only e�ective if it is combined with higher reso-

lution sampling, called supersampling, because the higher sampling

frequency will reduce the inevitable aliasing if the spectrum energy
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falls o� with increasing frequency, since higher sampling frequency

increases the periods of repetition of the spectrum by factors 2�=�x

and 2�=�y. Supersampling generates the image at a higher resolu-

tion than is needed by the display hardware, the �nal image is then

produced by sophisticated digital �ltering methods which produce the

�ltered image at the required resolution.

Comparing the last two basic approaches, we can conclude that pre-

�ltering works in continuous space allowing for the elimination of aliases

in theory, but that e�ciency considerations usually inhibit the use of accu-

rate low-pass �lters in practice. Post-�ltering, on the other hand, samples

the non-band-limited signal at a higher sampling rate and reduces, but does

not eliminate aliasing, and allows a fairly sophisticated and accurate low-

pass �lter to be used for the reconstruction of the continuous image at the

normal resolution.

11.1 Low-pass �ltering

According to the sampling theorem, the Nyquist limits of a 2D signal

sampled at �x;�y periodicity are �=�x and �=�y respectively, requiring a

low-pass �lter suppressing all frequency components above the Nyquist lim-

its, but leaving those below the cut-o� point untouched. The �lter function

in the frequency domain is:

F (�; �) =

8<
:
1 if j�j < �=�x and j�j < �=�y

0 otherwise

(11:3)

The �ltering process is a multiplication by the �lter function in the fre-

quency domain, or equivalently, a convolution in the spatial domain by the

pulse response of the �lter (f(x; y)) which is the inverse Fourier transform

of the �lter function:

I�f (�; �) = I�(�; �) � F (�; �);

If(x; y) = I(x; y) � f(x; y) =
1Z

�1

1Z

�1

I(t; � ) � f(x� t; y � � ) dtd�: (11:4)
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The pulse response of the ideal low-pass �lter is based on the well-known

sinc function:

f(x; y) =
sin(x � �=�x)
x � �=�x � sin(y � �=�y)

y � �=�y = sinc(
x � �
�x

) � sinc(y � �
�y

): (11:5)

The realization of the low-pass �ltering as a convolution with the 2D sinc

function has some serious disadvantages. The sinc function decays very

slowly, thus a great portion of the image can a�ect the color on a single

point of the �ltered picture, making the �ltering complicated to accomplish.

In addition to that, the sinc function has negative portions, which may

result in negative colors in the �ltered image. Sharp transitions of color in

the original image cause noticeable ringing, called the Gibbs phenomenon,

in the �ltered picture. In order to overcome these problems, all positive,

smooth, �nite extent or nearly �nite extent approximations of the ideal sinc

function are used for �ltering instead. These �lters are expected to have

unit gain for � = 0; � = 0 frequencies, thus the integral of their impulse

response must also be 1:

F (0; 0) =

1Z

�1

1Z

�1

f(x; y) dxdy = 1 (11:6)

Some of the most widely used �lters (�gure 11.2) are:

1. Box �lter: In the spatial domain:

f(x; y) =

8<
:
1 if jxj < �x=2 and jyj < �y=2

0 otherwise

(11:7)

In the frequency domain the box �lter is a sinc function which is not

at all accurate approximation of the ideal low-pass �lters.

2. Cone �lter: In the spatial domain, letting the normalized distance

from the point (0,0) be r(x; y) =
q
(x=�x)2 + (y=�y)2 :

f(x; y) =

8<
:
(1� r) � 3=� if r < 1

0 otherwise

(11:8)
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Figure 11.2: Frequency and spatial behavior of ideal and approximate low-pass

�lters

The coe�cient 3=� guarantees that the total volume of the cone, that

is the integral of the impulse response of the �lter, is 1. The Fourier

transformation of this impulse response is a sinc2 type function which

provides better high frequency suppression than the box �lter.

3. Gaussian �lter: This �lter uses the Gaussian distribution function

e�r
2

to approximate the sinc function by a positive, smooth function,

where r =
q
(x=�x)2 + (y=�y)2 as for the cone �lter. Although the

Gaussian is not a �nite extent function, it decays quickly making the

contribution of distant points negligible.

Having de�ned the �lter either in the frequency or in the spatial domain,

there are basically two ways to accomplish the �ltering. It can be done

either in the spatial domain by evaluating the convolution of the original

image and the impulse response of the �lter, or in the frequency domain by

multiplying the frequency distributions of the image by the �lter function.

Since the original image is available in spatial coordinates, and the �ltered

image is also expected in spatial coordinates, the latter approach requires

a transformation of the image to the frequency domain before the �ltering,



11.2. PRE-FILTERING ANTI-ALIASING TECHNIQUES 313

then a transformation back to the spatial domain after the �ltering. The

computational burden of the two Fourier transformations makes frequency

domain �ltering acceptable only for special applications, even if e�ective

methods, such as Fast Fourier Transform (FFT), are used.

11.2 Pre-�ltering anti-aliasing techniques

Pre-�ltering methods sample the image after �ltering at the sample rate

de�ned by the resolution of the display hardware (�x = 1;�y = 1). If the

�ltering has been accomplished in the spatial domain, then the �ltered and

sampled signal is:

Isf (x; y) = [I(x; y) � f(x; y)] �
X
i

X
j

�(x� i; y � j): (11:9)

For a given pixel of X;Y integer coordinates:

Isf (X;Y ) = I(x; y)�f(x; y)��(x�X; y�Y ) =
1Z

�1

1Z

�1

I(t; � )�f(X�t; Y�� ) dtd�:

(11:10)

For �nite extent impulse response (FIR) �lters, the in�nite range of the

above integral is replaced by a �nite interval. For a box �lter:

Is;box(X;Y ) =

X+0:5Z

X�0:5

Y +0:5Z

Y�0:5

I(t; � ) dtd�: (11:11)

Suppose P number of constant color primitives have intersection with the

1 � 1 rectangle of X;Y pixel. Let the color and the area of intersection of

a primitive p be Ip and Ap, respectively. The integral 11.11 is then:

Is;box(X;Y ) =
PX
p=1

Ip �Ap: (11:12)

For a cone �lter, assuming a polar coordinate system (r; �) centered

around (X;Y ), the �ltered signal is:

Is;cone(X;Y ) =
3

�

Z

x2+y2

Z

�1

I(x; y)�(1�r) dxdy = 3

�

1Z

r=0

2�Z

�=0

I(r; �)�(1�r)�r d�dr:

(11:13)
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As for the box �lter, the special case is examined when P constant color

primitives can contribute to a pixel, that is, they have intersection with the

unit radius circle around the (X;Y ) pixel, assuming the color and the area

of intersection of primitive p to be Ip and Ap, respectively:

Is;cone(X;Y ) =
3

�

PX
p=1

Ip

Z

Ap

(1� r) dA (11:14)

where
R
Ap

(1� r) dA is the volume above the Ap area bounded by the surface

of the cone.

11.2.1 Pre-�ltering regions

An algorithm which uses a box �lter needs to evaluate the area of the inter-

section of a given pixel and the surfaces visible in it. The visible intersections

can be generated by an appropriate object precision visibility calculation

technique (Catmull used the Weiler{Atherton method in his anti-aliasing

algorithm [Cat78]) if the window is set such that it covers a single pixel.

The color of the resulting pixel is then simply the weighted average of all vis-

ible polygon fragments. Although this is a very clear approach theoretically,

it is computationally enormously expensive.

A more e�ective method can take advantage of the fact that regions tend

to produce aliases along their edges where the color gradient is high. Thus an

anti-aliased polygon generation method can be composed of an anti-aliasing

line drawing algorithms to produce the edges, and a normal polygon �lling

method to draw all the internal pixels. Note that edge drawing must precede

interior �lling, since only the outer side of the edges should be �ltered.

11.2.2 Pre-�ltering lines

Recall that non-anti-aliased line segments with a slant of between 0 and 45

degrees are drawn by setting the color of those pixels in each column which

are the closest to the line. This method can also be regarded as the point

sampling of a one-pixel wide line segment.

Anti-aliasing line drawing algorithms, on the other hand, have to calculate

an integral over the intersection of the one-pixel wide line and a �nite region

centered around the pixel concerned depending on the selected �lter type.
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Box-�ltering lines

For box �ltering, the intersection of the one-pixel wide line segment and the

pixel concerned has to calculated. Looking at �gure 11.3, we can see that a

maximum of three pixels may intersect a pixel rectangle in each column if

the slant is between 0 and 45 degrees. Let the vertical distance of the three

closest pixels to the center of the line be r,s and t respectively, and suppose

s < t � r. By geometric considerations s; t < 1, s+ t = 1 and r � 1 should

also hold.

one pixel wide
line segment

Figure 11.3: Box �ltering of a line segment

Unfortunately, the areas of intersection, As; At and Ar, depend not only

on r,s and t, but also on the slant of the line segment. This dependence,

however, can be rendered unimportant by using the following approxima-

tion:

As � (1 � s); At � (1 � t); Ar � 0 (11:15)

These equations are accurate only if the line segment is horizontal, but

can be accepted as fair approximations for lines with a slant from 0 to 45

degrees. Variables s and t are calculated for a line y = m � x+ b:

s = m � x+ b� Round(m � x+ b) = Error(x) and t = 1� s (11:16)

where Error(x) is, in fact, the accuracy of the digital approximation of the

line for vertical coordinate x. The color contribution of the two closest

pixels in this pixel column is:

Is = I � (1� Error(x)); It = I � Error(x) (11:17)

(I stands for any color coordinate R;G or B).
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These formulae are also primary candidates for incremental evaluation,

since if the closest pixel has the same y coordinate for an x+ 1 as for x:

Is(x+ 1) = Is(x)� I �m; It(x+ 1) = It(x) + I �m: (11:18)

If the y coordinate has been incremented when stepping from x to x + 1,

then:

Is(x+ 1) = Is(x)� I �m+ I; It(x+ 1) = It(x) + I �m� I: (11:19)

The color computation can be combined with an incremental y coordinate

calculation algorithm, such as the Bresenham's line generator:

AntiAliasedBresenhamLine(x1; y1; x2; y2; I)

�x = x2 � x1; �y = y2 � y1;

E = �2�x;
dE+ = 2(�y ��x); dE� = 2�y;

dI� = �y=�x � I; dI+ = I � dI�;

Is = I + dI�; It = �dI�;
y = y1;

for x = x1 to x2 do

if E � 0 then E += dE�; Is -= dI�; It += dI�;

else E += dE+; Is += dI+; It -= dI+; y++;

Add Frame Bu�er(x; y; Is);

Add Frame Bu�er(x; y + 1; It);

endfor

This algorithm assumes that the frame bu�er is initialized such that each

pixel has the color derived without taking this new line into account, and

thus the new contribution can simply be added to it. This is true only if

the frame bu�er is initialized to the color of a black background and lines

do not cross each other. The artifact resulting from crossed lines is usually

negligible.

In general cases I must rather be regarded as a weight value determining

the portions of the new line color and the color already stored in the frame

bu�er, which corresponds to the color of objects behind the new line.
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The program line \Add Frame Bu�er(x; y; I)" should be replaced by the

following:

colorold = frame bu�er[x; y];

frame bu�er[x; y] = colorline � I + colorold � (1� I);

These statements must be executed for each color coordinate R;G;B.

Cone �ltering lines

For cone �ltering, the volume of the intersection between the one-pixel wide

line segment and the one pixel radius cone centered around the pixel con-

cerned has to be calculated. The height of the cone must be selected to

guarantee that the volume of the cone is 1. Looking at �gure 11.4, we can

see that a maximum of three pixels may have intersection with a base circle

of the cone in each column if the slant is between 0 and 45 degrees.

D

Figure 11.4: Cone �ltering of a line segment

Let the distance between the pixel center and the center of the line be D.

For possible intersection, D must be in the range of [�1:5::1:5]. For a pixel
center (X;Y ), the convolution integral | that is the volume of the cone

segment above a pixel | depends only on the value of D, thus it can be

computed for discrete D values and stored in a lookup table V (D) during

the design of the algorithm. The number of table entries depends on the

number of intensity levels available to render lines, which in turn determines

the necessary precision of the representation ofD. Since 8{16 intensity levels
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are enough to eliminate the aliasing, the lookup table is de�ned here for

three and four fractional bits. Since function V (D) is obviously symmetrical,

the number of necessary table entries for three and four fractional bits is

1:5 � 23 = 12 and 1:5 � 24 = 24 respectively. The precomputed V (D) tables,

for 3 and 4 fractional bits, are shown in �gure 11.5.

0 1 2 3 4 5 6 7 8 9 10 11

7 6 6 5 4 3 2 1 1 0 0 0

D3

V (D3)

0 1 2 3 4 5 6 7 8 9 10 11

14 14 13 13 12 12 11 10 9 8 7 6

D4

V (D4)

12 13 14 15 16 17 18 19 20 21 22 23

5 4 3 3 2 2 1 1 0 0 0 0

Figure 11.5: Precomputed V (D) weight tables

Now the business of the generation of D and the subsequent pixel co-

ordinates must be discussed. Gupta and Sproull [GSS81] proposed the

Bresenham algorithm to produce the pixel addresses and introduced an

incremental scheme to generate the subsequent D distances.

∆

∆

φ

φ
d

D

D

D

H

L

y

x

Figure 11.6: Incremental calculation of distance D

Let the obliqueness of the line be �, and the vertical distance between

the center of the line and the closest pixel be d (note that for the sake of
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simplicity only lines with obliquities in the range of [0::45] are considered

as in the previous sections).

For geometric reasons, illustrated by �gure 11.6, the D values for the

three vertically arranged pixels are:

D = d � cos� =
d ��xq

(�x)2 + (�y)2
;

DH = (1 � d) � cos � = �D +
�xq

(�x)2 + (�y)2
;

DL = (1 + d) � cos � = D +
�xq

(�x)2 + (�y)2
: (11.20)

A direct correspondence can be established between the distance variable d

and the integer error variable E of the Bresenham line drawing algorithm

that generates the y coordinates of the subsequent pixels (see section 2.3).

The k fractional error variable of the Bresenham algorithm is the required

distance plus 0.5 to replace the rounding operation by a simpler truncation,

thus d = k � 0:5. If over
ow happens in k, then d = k � 1:5. Using the

de�nition of the integer error variable E, and supposing that there is no

over
ow in k, the correspondence between E and d is:

E = 2�x � (k � 1) = 2�x � (d� 0:5) =) 2d ��x = E +�x: (11:21)

If over
ow happens in k, then:

E = 2�x � (k � 1) = 2�x � (d+ 0:5) =) 2d ��x = E ��x: (11:22)

These formulae allow the incremental calculation of 2d ��x; thus in equa-

tion 11.20 the numerators and denominators must be multiplied by two.

The complicated operations including divisions and a square root should

be executed once for the whole line, thus the pixel level algorithms con-

tain just simple instructions and a single multiplication not counting the

averaging with the colors already stored in the frame bu�er. In the subse-

quent program, expressions that are di�cult to calculate are evaluated at

the beginning, and stored in the following variables:

denom =
1

2
q
(�x)2 + (�y)2

; �D =
2�x

2
q
(�x)2 + (�y)2

: (11:23)

In each cycle nume = 2d ��x is determined by the incremental formulae.
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The complete algorithm is:

GuptaSproullLine(x1; y1; x2; y2; I)

�x = x2 � x1; �y = y2 � y1;

E = ��x;
dE+ = 2(�y ��x); dE� = 2�y;

denom = 1=(2
q
(�x)2 + (�y)2);

�D = 2 ��x � denom;

y = y1;

for x = x1 to x2 do

if E � 0 then nume = E +�x; E += dE�;

else nume = E ��x; E += dE+; y++;

D = nume � denom;

DL = D +�D; DH = �D +�D;

Add Frame Bu�er(x; y; V (D));

Add Frame Bu�er(x; y + 1; V (DH));

Add Frame Bu�er(x; y � 1; V (DL));

endfor

Figure 11.7: Comparison of normal, box-�ltered and cone-�ltered lines
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11.3 Post-�ltering anti-aliasing techniques

Post-�ltering methods sample the image at a higher sample rate than needed

by the resolution of the display hardware (�x = 1=N;�y = 1=N), then

some digital �ltering algorithm is used to calculate pixel colors.

For digital �ltering, the spatial integrals of convolution are replaced by

in�nite sums:

Isf (X;Y ) = [I(x; y)
X
i

X
j

�(x� i ��x; y� j ��y)] � f(x; y)jx=X;y=Y =

X
i

X
j

I(i ��x; j ��y) � f(X � i ��x; Y � j ��y): (11:24)

Finite extent digital �lters simplify the in�nite sums to �nite expressions.

One of the simplest digital �lters is the discrete equivalent of the continuous

box �lter:

Is;box(X;Y ) =
1

(N + 1)2

N=2X
i=�N=2

N=2X
j=�N=2

I(X � i ��x; Y � j ��y): (11:25)

This expression states that the average of subpixel colors must be taken

to produce the color of the real pixel. The color of the subpixels can be de-

termined by a normal, non-anti-aliasing image generation algorithm. Thus,

ordinary image synthesis methods can be used, but at a higher resolution,

to produce anti-aliased pictures since the anti-aliasing is provided by the

�nal step reducing the resolution to meet the requirements of the display

hardware. One may think that this method has the serious drawback of re-

quiring a great amount of additional memory to store the image at a higher

resolution, but that is not necessarily true. Ray tracing, for example, gener-

ates the image on a pixel-by-pixel basis. When all the subpixels a�ecting a

pixel have been calculated, the pixel color can be evaluated and written into

the raster memory, and the very same extra memory can be used again for

the subpixels of other pixels. Scan-line methods, on the other hand, require

those subpixels which may contribute to the real pixels in the scan-line to

be calculated and stored. For the next scan-line, the same subpixel memory

can be used again.

As has been stated, discrete algorithms have linear complexity in terms

of the pixel number of the image. From that perspective, supersampling
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may increase the computational time by a factor of the number of subpixels

a�ecting a real pixel, which is usually not justi�ed by the improvement of

image quality, because aliasing is concentrated mainly around sharp edges,

and the �ltering does not make any signi�cant di�erence in great homoge-

neous areas. Therefore, it is worth examining whether the color gradient is

great in the neighborhood of a pixel, or whether instead the color is nearly

constant, and thus dividing the pixels into subpixels only if required by a

high color gradient. This method is called adaptive supersampling.

Finally, it is worth mentioning that jaggies can be greatly reduced without

increasing the sample frequency at all, simply by moving the sample points

from the middle of pixels to the corner of pixels, and generating the color

of the pixel as the average of the colors of its corners. Since pixels have four

corners, and each internal corner point belongs to four pixels, the number

of corner points is only slightly greater than the number of pixel centers.

Although this method is not superior in eliminating aliases, it does have a

better reconstruction �lter for reducing the sharp edges of jaggies.

11.4 Stochastic sampling

Sampling methods applying regular grids produce regularly spaced artifacts

that are easily detected by the human eye, since it is especially sensitive to

regular and periodic signals. Random placement of sample locations can

break up the periodicity of the aliasing artifacts, converting the aliasing

e�ects to random noise which is more tolerable for human observers. Two

types of random sampling patterns have been proposed [Coo86], namely the

Poisson disk distribution and the jittered sampling.

11.4.1 Poisson disk distribution

Poisson disk distribution is, in fact, the simulation of the sampling process

of the human eye [Yel83]. In e�ect, it places the sample points randomly

with the restriction that the distances of the samples are greater than a

speci�ed minimum. Poisson disk distribution has a characteristic distribu-

tion in the frequency domain consisting of a spike at zero frequency and

a uniform noise beyond the Nyquist limit. Signals having white-noise-like

spectrum at higher frequencies, but low-frequency attenuation, are usually
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regarded as blue noise. This low-frequency attenuation is responsible for

the approximation of the minimal distance constraint of Poisson disk dis-

tribution.

The sampling process by a Poisson disk distributed grid can be under-

stood as follows: Sampling is, in fact, a multiplication by a \comb function"

of the sampling grid. In the frequency domain it is equivalent to convolution

by the Fourier transform of this \comb function", which is a blue-noise-like

spectrum for Poisson disk distribution except for the spike at 0. Signal com-

ponents below the Nyquist limit are not a�ected by this convolution, but

components above this limit are turned to a wide range spectrum of noise.

Signal components not meeting the requirements of the sampling theorem

have been traded o� for noise, and thus aliasing in the form of periodic

signals can be avoided.

Sampling by Poisson disk distribution is very expensive computationally.

One way of approximating appropriate sampling points is based on error

di�usion dithering algorithms (see section 11.5 on reduction of quantization

e�ects), since dithering is somehow similar to this process [Mit87], but now

the sampling position must be dithered.

11.4.2 Jittered sampling

Jittered sampling is based on a regular sampling grid which is perturbed

slightly by random noise [Bal62]. Unlike the application of dithering al-

gorithms, the perturbations are now assumed to be independent random

variables. Compared to Poisson disk sampling its result is admittedly not

quite as good, but it is less expensive computationally and is well suited to

image generation algorithms designed for regular sampling grids.

For notational simplicity, the theory of jittered sampling will be discussed

in one-dimension. Suppose function g(t) is sampled and then reconstructed

by an ideal low-pass �lter. The perturbations of the various sample locations

are assumed to be uncorrelated random variables de�ned by the probability

density function p(x). The e�ect of jittering can be simulated by replacing

g(t) by g(t � �(t)), and sampling it by a regular grid, where function �(t)

is an independent stochastic process whose probability density function, for

any t, is p(x) (�gure 11.8).

Jittered sampling can be analyzed by comparing the spectral power dis-

tributions of g(t� �(t)) and g(t).
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Figure 11.8: Signal processing model of jittered sampling

Since g(t � �(t)) is a random process, if it were stationary and ergodic

[Lam72], then its frequency distribution would be best described by the

power density spectrum which is the Fourier transform of its autocorrelation

function.

The autocorrelation function of g(t � �(t)) is derived as an expectation

value for any � 6= 0, taking into account that �(t) and �(t+ � ) are stochas-

tically independent random variables:

R(t; � ) = E[g(t� �(t)) � g(t+ � � �(t+ � ))] =Z
x

Z
y

g(t� x) � g(t+ � � y) � p(x) � p(y) dx dy = (g � p)jt � (g � p)jt+� (11:26)

where g � p is the convolution of the two functions. If � = 0, then:

R(t; 0) = E[g(t� �(t))2] =
Z
x

g2(t� x) � p(x) dx = (g2 � p)jt: (11:27)

Thus the autocorrelation function of g(t� �(t)) for any � is:

R(t; � ) = (g � p)jt � (g � p)jt+� + [(g2 � p)� (g � p)2]jt � �(� ) (11:28)

where �(� ) is the delta function which is 1 for � = 0 and 0 for � 6= 0. This

delta function introduces an \impulse" in the autocorrelation function at

� = 0.
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Assuming t = 0 the size of the impulse at � = 0 can be given an interesting

interpretation if p(x) is an even function (p(x) = p(�x)).

[(g2 � p)� (g � p)2]jt=0 =
Z

x

g2(�x) � p(x)dx� [

Z

x

g(�x) � p(x)dx]2 =

E[g2(�)]� E2[g(�)] = �2

g(�): (11:29)

Hence, the size of the impulse in the autocorrelation function is the variance

of the random variable g(�). Moving the origin of the coordinate system to

t we can conclude that the size of the impulse is generally the variance of

the random variable g(t� �(t)).

Unfortunately g(t��(t)) is usually not a stationary process, thus in order

to analyze its spectral properties, the power density spectrum is calculated

from the \average" autocorrelation function which is de�ned as:

R̂(� ) = lim
T!1

1

2T

TZ

�T

R(t; � ) dt: (11:30)

The \average" power density of g(t � �(t)), supposing p(x) to be even,

can be expressed using the de�nition of the Fourier transform and some

identity relations:

Ŝ(f) = FR̂(� ) = lim
T!1

1

2T
[FT (g � p)]� � [F(g � p)] + �2

g(�) (11:31)

where superscript � means the conjugate complex pair of a number, �2

g(�) is

the average variance of the random variable g(t� �(t)) for di�erent t values,

and FT stands for the limited Fourier transform de�ned by the following

equation:

FT x(t) =

TZ

�T

x(t) � e�2�|ft dt; | =
p
�1 (11:32)

Let us compare this power density (Ŝ(f)) of the time perturbed signal

with the power density of the original function g(t), which can be de�ned

as follows:

Sg(f) = lim
T!1

1

2T
jFT g(t)j2: (11:33)
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This can be substituted into equation 11.31 yielding:

Ŝ(f) =
jF(g � p)j2
jFgj2 � Sg(f) + �2

g(�): (11:34)

The spectrum consists of a part proportional to the spectrum of the un-

perturbed g(t) signal and an additive noise carrying �2

g(�) power in a unit

frequency range. Thus the perturbation of time can, in fact, be modeled by

a linear network or �lter and some additive noise (Figure 11.9).

The gain of the �lter perturbing the time variable by an independent ran-

dom process can be calculated as the ratio of the power density distributions

of g(t) and g(t� �(t)) ignoring the additive noise:

Gain(f) =
jF(g � p)j2
jFgj2 =

jFgj2 � jFpj2
jFgj2 = jFpj2: (11:35)

Thus, the gain is the Fourier transform of the probability density used

for jittering the time.

noise
generator

[Fp](f)- -�

��

6

-

-

g(t)
+

g(t� �(t))

��
S
S

��

Figure 11.9: System model of time perturbation

Two types of jitters are often used in practice:

1. White noise jitter, which distributes the values uniformly between

�T=2 and T=2, where T is the periodicity of the regular sampling

grid. The gain of the white noise jitter is:

Gainwn(f) = [
sin�fT

�fT
]
2
: (11:36)
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2. Gaussian jitter, which selects the sample points by Gaussian distri-

bution with variance �2.

Gaingauss(f) = e�(2�f�)
2

: (11:37)

Both the white noise jitter and the Gaussian jitter (if � � T=6) are fairly

good low-pass �lters suppressing the spectrum of the sampled signal above

the Nyquist limit, and thus greatly reducing aliasing artifacts.

Jittering trades o� aliasing for noise. In order to intuitively explain this

result, let us consider the time perturbation for a sine wave. If the extent

of the possible perturbations is less than the length of half a period of the

sine wave, the perturbation does not change the basic shape of the signal,

just distorts it a little bit. The level of distortion depends on the extent of

the perturbation and the \average derivative" of the perturbed function as

suggested by the formula of the noise intensity de�ning it as the variance

�2

g(�). If the extent of the perturbations exceeds the length of period, the

result is an almost random value in place of the amplitude. The sine wave

has disappeared from the signal, only the noise remains.

11.5 Reduction of quantization e�ects

In digital data processing, not only the number of data must be �nite,

but also the information represented by a single data element. Thus in

computer graphics we have to deal with problems posed by the fact that

color information can be represented by a few discrete levels in addition to

the �nite sampling which allows for the calculation of this color at discrete

points only.

In �gure 11.10 the color distribution of a shaded sphere is shown. The

ideal continuous color is sampled and quantized according to the pixel res-

olution and the number of quantization levels resulting in a stair-like func-

tion in the color space. (Note that aliasing caused stair-like jaggies in pixel

space.) The width of these stair-steps is usually equal to the size of many

pixels if there are not too many quantization levels, which makes the ef-

fect clearly noticeable in the form of quasi-concentric circles on the surface

of our sphere. Cheaper graphics systems use eight bits for the representa-

tion of a single pixel allowing R;G;B color coordinates to be described by
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Figure 11.10: Quantization e�ects

three, three and two bits respectively in true color mode, which is far from

adequate. Expensive workstations provide eight bits for every single color

coordinate, that is 24 bits for a pixel, making it possible to produce over

sixteen million colors simultaneously on the computer screen, but this is

still less than the number of colors that can be distinguished by the human

eye.

If we have just a limited set of colors but want to produce more, the

obvious solution is to try to mix new ones from the available set. At �rst

we might think that this mixing is beyond the capabilities of computer

graphics, because the available set of colors is on the computer screen,

and thus the mixing should happen when the eye perceives these colors,

something which seemingly cannot be controlled from inside the computer.

This is fortunately not exactly true. Mixing means a weighted average

which can be realized by a low-pass �lter, and the eye is known to be a

fairly good low-pass �lter. Thus, if the color information is provided in

such a way that high frequency variation of color is generated where mixing

is required, the eye will �lter these variations and \compute" its average

which exactly amounts to a mixed color.

These high-frequency variations can be produced by either sacri�cing the

resolution or without decreasing it at all. The respective methods are called

halftoning and dithering.
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11.5.1 Halftoning

Halftoning is a well-known technique in the printing industry where gray-

level images are produced by placing black points onto the paper, keeping

the density of these points proportional to the desired gray level. On the

computer screen the same e�ect can be simulated if adjacent pixels are

grouped together to form logical pixels. The color of a logical pixel is gen-

erated by the pattern of the colors of its physical pixels. Using an n � n

array of bi-level physical pixels, the number of producible colors is n2 + 1

for the price of reducing the resolution by a factor of n in both directions

(�gure 11.11). This idea can be applied to interpolate between any two

subsequent quantization levels (even for any two colors, but this is not used

in practice).

Figure 11.11: Halftone patterns for n = 4

11.5.2 Dithering

Unlike halftoning, dithering does not reduce the e�ective resolution of the

display. This technique was originated in measuring theory where the goal

was the improvement of the e�ective resolution of A/D converters. Suppose

we have a one-bit quantization unit (a comparator), and a slowly changing

signal needs to be measured. Is it possible to say more about the signal

than to determine whether it is above or below the threshold level of the

comparator?

In fact, the value of the slowly changing signal can be measured accu-

rately if another symmetrical signal, called a dither, having a mean of 0

and appropriate peak value, is added to the signal before quantization. The

perturbed signal will spend some of the time below, while the rest remains

above the threshold level of the comparator (�gure 11.12). The respective

times | that is the average or the �ltered composite signal | will show
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Figure 11.12: Measuring the mean value of a signal by a one-bit quantizer

the mean value of the original signal accurately if the �ltering process elim-

inates the higher frequencies of the dither signal but does not interfere with

the low frequency range of the original signal. Thus the frequency charac-

teristic of the dither must be carefully de�ned: it should contain only high

frequency components; that is, it should be blue noise.

This idea can readily be applied in computer graphics as well. Suppose

the color coordinates of pixels are calculated at a higher level of accuracy

than is needed by the frame bu�er storage. Let us assume that the frame

bu�er represents each R;G;B value by n bits and the color computation

results in values of n + d bit precision. This can be regarded as a �xed

point representation of the colors with d number of fractional bits. Simple

truncation would cut o� the low d bits, but before truncation a dither

signal is added, which is uniformly distributed in the range of [0..1]; that is,

it eventually produces distribution in the range of [-0.5..0.5] if truncation

is also taken into consideration. This added signal can either be a random

or a deterministic function. Periodic deterministic dither functions are also

called ordered dithers. Taking into account the blue noise criterion, the

dither must be a high frequency signal. The maximal frequency dithers are

those which have di�erent values on adjacent pixels, and are preferably not

periodic. In this context, ordered dithers are not optimal, but they allow

for simple hardware implementation, and thus they are the most frequently

used methods of reducing the quantization e�ects in computer graphics.
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The averaging of the dithered colors to produce mixed colors is left to the

human eye as in halftoning.

Ordered dithers

The behavior of ordered dithers is de�ned by a periodic function D(i; j)

which must be added to the color computed at higher precision. Let the

periodicity of this function be N in both vertical and horizontal directions,

so D can thus conveniently be described by an N�N matrix called a dither

table. The dithering operation for any color coordinate I is then:

I[X;Y ]( Trunc(I[X;Y ] +D[X mod N , Y mod N ]): (11:38)

The expectations of a \good" dither can be summarized as follows:

1. It should approximate blue noise, that is, neighboring values should

not be too close.

2. It should prevent periodic e�ects.

3. It must contain uniformly distributed values in the range of [0::1]. If

�xed point representation is used with d fractional bits, the decimal

equivalents of the codes must be uniformly distributed in the range of

[0::2d].

4. The computation of the dithered color must be simple, fast and ap-

propriate for hardware realization. This requirement has two conse-

quences. First, the precision of the fractional representation should

correspond to the number of elements in the dither matrix to avoid

super
uous bits in the representation. Secondly, dithering requires

two modulo N divisions which are easy to accomplish if N is a power

of two.

A dither which meets the above requirements would be:

D(4) =

2
6664

0 8 2 10

12 4 14 6

3 11 1 9

15 7 13 5

3
7775 (11:39)
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where a four-bit fractional representation was assumed, that is, to calculate

the real value equivalents of the dither, the matrix elements must be divided

by 16.

Let us denote the low k bits and the high k bits of a binary number B

by Bjk and Bjk respectively. The complete dithering algorithm is then:

Calculate the (R;G;B) color of pixel (X;Y ) and

represent it in an n-integer-bit + 4-fractional-bit form;

R = (R +D[Xj2; Y j2])jn;
G = (G +D[Xj2; Y j2])jn;
B = (B +D[Xj2; Y j2])jn;

color
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Figure 11.13: Dithering hardware

This expression can readily be implemented in hardware as is shown in

�gure 11.13.


