
VISIBILITY CULLING AND RENDERING
MASSIVE MODELS

VLASTIMIL HAVRAN

BASED ON PRESENTATION BY
JIŘÍ BITTNER

Rendering Massive Models

� Real-time rendering > 60 FPS

� Fast GPUs vs.
– Larger scenes

– More details

– Complex shaders

– Multiple render passes

(2)

Massive Models – Optimizations

� Manual model optimization
– Textures, bump maps, normal maps

� Optimal GPU utility
– Triangle strips, vertex arrays, vertex buffer objects, optimized vertex and

pixel shaders, minimize state changes

� Automatic model optimization
– LODs, bilboards, depth impostors, point sampling, …

� Data management
– Data prefetching, data layout, using coherence

� Visibility culling
– Online culling, preprocessing

(3)

Visibility Culling – Motivation

� Q: Why visibility culling, when:
– Object outside screen culled by HW clipping

– Occluded objects culled by z-buffer in O(n) time

� A: Linear complexity not sufficient!
– Processing too many invisible polygons

� Goal
– Render only what can be seen!

– Make z-buffer output sensitive

(4)

Visibility Culling Methods

� Online
– Applied for every view point at runtime

� Offline
– Partition view space into view cells

– Compute Potentially Visible Sets (PVS)

(5)

Online Visibility Culling

� For every frame cull whole groups of invisible polygons

� Conservative solution
– Conservative determines a superset of visible polygons = guarantee

– Precise visibility solved by z-buffer

� Basic Techniques
– Backface culling

– View-frustum culling

Note: remember computation exact, conservative,

approximate and aggressive

(6)

View Frustum Culling

HBS kD tree

Optimizations: Temporal coherence, efficient intersection test [Assarson00]

(7)

Occlusion Culling

� VFC disregards occlusion

� 99% of scene can be occluded!

� Solution: Detect and cull also occluded objects

(8)

Shadow Frusta

� Construct shadow frusta for several occluders

[Hudson97]

� Object is invisible when it is inside a shadow frustum

� Queries on the spatial hierarchy (9)

Shadow Frusta - Properties

� Properties
– + Easy implementation

– No occluder sorting

– No occluder fusion!

– O(n) query time

– Small number of occluders

(10)

Occlusion Trees

� Occluders sorted into a 2D BSP tree (1998)

� Occlusion tree represents fused occlusion

� Example: occlusion tree for 3 occluders

(11)

Occlusion Tree - Traversal

� Visibility test of a node
– Depth-first-search

– Found empty leaf → tested object is visible

– Depth test in filled leaves

� Example of final visibility

classification of kD-tree

visible

culled by VFC

invisible

viewpoint

view frustum

partially visible

(12)

Occlusion Tree - Properties

� Presorting occluders
– Tree size: worst case O(n2), n = #occluders

– O(log n) visibility test

� + Allows to use more occluders (~100)

� Not usable for scenes with small polygons

(13)

Hierarchical Z-buffer

� Extension of z-buffer to quickly cull larger objects

[Greene 96]

� Ideas
– octree for spatial scene sorting

– z-pyramid for accelerated depth test

(14)

Hierarchical Z-buffer - Example

(15)

Hierarchical Z-buffer - Usage

� Hierarchical test for octree nodes that represent axis-

aligned boxes

� Test on hierarchy node
– Find smallest node of z-pyramid, which contains the tested box

– Box depth > node depth → cull

– Otherwise: recurse to lower z-pyramid level

� Optimization: use temporal coherence
– z-pyramid constructed from polygons visible in the last frame

(16)

HW Occlusion Queries

� ARB_occlusion_query, NV_occlusion_query

� Return #pixels passing the depth test

� Feature which has been missing in old OpenGL!

� + No preprocessing, dynamic scenes

� - Latency, the query costs time

Query proxy geometry Render geometry

Visible?

(17)

Oliver Mattausch 18

Naive Method: Hierarchical Stop & Wait

� For each node: Issue query
– Visible → traverse subtree

– Invisible → cull subtree

� Problem: Query latency
– CPU stalls

– GPU starvation

Cull RenderRender

(18)

Rx Render object x

Qx Query object x

Cx Cull object x

CPU

GPU

CPU Stalls GPU Starvation

R1 Q2

R1 Q2

R2 Q3

R2 Q3

C3 Q4

Q4

R4

R4

time

Waiting time

(19)

Oliver Mattausch 20

Coherent Hierarchical Culling (CHC)

� While waiLng for query result → traverse / render
– Keep query queue

� Use coherence, assume node stays (in)visible

� For previously visible nodes
– Don‘t wait for query result

Issue

query

Render geometry

Use the result in

the next frame
Result

available?

(20)

m1

Snímek 20

m1 too much text: merge
figure: show visible / invsible queries
matt, 5/13/2007

Coherent Hierarchical Culling

� Interleave queries and rendering

� Schedule queries based on temporal coherence

1011

76

5

8

1

29

3

4

5

7 6 8

1011

12 13

query prev.

invisible nodes +

leaves

no queries for previously

visible interior nodes

Prev. invisible nodes:

queries depend on parents
(21)

CHC

Rx Render object x

Qx Query object x

Cx Cull object x

CPU R1 Q2

GPU R1 Q2

R2 Q3

R2 Q3

C3 Q4

Q4

R4

R4

time

(22)

Video: VFC vs. CHC

(23)

Interiors: Cells and Portals

� Partition the scene in cells and portals
– Cells ~rooms

– Portals ~ doors & windows

� Cell adjacency graph

� Constrained search
– Portal visibility test [Luebke 96]

H

B C D F G

EA

(24)

Portal Visibility Test

� Intersection of bounding rectangles of portals

(25)

Cells and Portals Example

� Viewpoint in cell E

A

D

H

FCB

E

G

H

B C D F G

EA

(26)

Cells and Portals - Example

� Adjacent cells DFG

A

D

H

FCB

E

G

H

B C D F G

EA

(27)

Cells and Portals - Example

� Cell A visible through portals E/D+D/A

A

D

H

FCB

E

G

H

B C D F G

EA

(28)

Cells and Portals - Example

� Cell H not visible through portals E/D+D/H

A

D

H

FCB

E

G

H

B C D F G

EA

X

X

(29)

Cells and Portals - Example

� C not visible through portals E/D+D/A+A/C

A

D

H

FCB

E

G

H

B C D F G

EA
X

X

(30)

Cells and Portals - Example

� H not visible through portals E/G+G/H

A

D

H

FCB

E

G

H

B C D F G

EA

X

X

(31)

Visibility Preprocessing

� Preprocessing
– Subdivide view space into view cells

– Compute Potentially Visible Sets (PVS)

– Solves visibility “offline” for all possible view points

� Usage
– Find the view cell (point location)

– Render the associated PVS

(32)

Visibility Preprocessing

� Other benefits
– Prefetching for out-of-core/network walkthroughs

– Communication in multi-user environments

� Problems
– Costly computation (treats all view points and view directions)

– PVS storage

(33)

Interiors – Cells and Portals

� Subdivide the scene into cells and portals

� Constrained DFS on the adjacency graph
– Portal visibility test

� More complex than the online algorithm
– We do not have a view point!

(34)

Interiors – Cells and Portals

� Sampling [Airey90]
– Random rays

– Non-occluded ray → terminate

�

� + Simple implementation

� - Approximate solution
(35)

Interiors – Cells and Portals

� Exact computation [Teller 92]
– Mapping to 5D (Plücker coordinates of lines)

� Portal edges → hyperplanes Hi in 5D

� Halfspace intersection in 5D

(36)

General Scenes - Strong Occlusion

� Occlusion by single object [CohenOr98]

� For each cell and object
– Cast rays defining convex hull of the cell and object

– If a convex occluder intersects all rays → invisible

(37)

General Scenes - Strong Occlusion

� Properties
– + Simple

– - No occluder fusion (no occluder sorting)

– - Too conservative for larger view cells and small objects

(38)

General Scenes: Occlusion Tree

� Extension of the 2D occlusion tree

� 5D BSP tree
– Plücker coordinates of lines

� The tree represents union of occluded rays

(39)

General Scenes: Occlusion Tree

� Process polygons in front-to-back order

� Polygon visible → enlarge tree by visible rays

� Polygon invisible → tree not modified

(40)

� Properties
– + Exact solution

– + Uses visibility coherence

– Difficult implementation

�

General Scenes: Occlusion Tree

(41)

Guided Visibility Sampling (GVS)

� Stochastic + deterministic sampling

� Precision comparable with exact methods

� Useful for very large scenes

� Ideas
– Random “seeding” ray

– Adaptive border sampling

(mutating termination point)

– Reverse sampling

(mutating ray origin)

(42)

Rendering Massive Models – Optimizations

� Manual model optimization
– Textures, bump maps, normal maps

� Optimal GPU utility
– Triangle strips, vertex arrays, vertex buffer objects, optimized vertex and

pixel shaders, minimize state changes

� Automatic model optimization
– LODs, bilboards, depth impostors, point sampling, …

� Data management
– Data prefetching, data layout (out-of-core), using coherence

� Visibility culling
– Online culling, preprocessing

(43)

Hierarchical Levels of Detail (HLOD)

� LOD with each node of the hierarchy (2001)

Invisible (culled)

LOD refinement stoped

Visible leaf

Visible & refined

(44)

Far Voxels

� Gobetti & Marton 2005

� Approximate “far” geometry with view dependent

voxel, original dataset 300 million triangles.

Courtesy of E. Gobetti (SIGGRAPH ‘06 course – Massive Model Visualization)

(45)

Visibility Culling - Summary

� Find visible objects for a view point or view cell

� Online Visibility Culling
– +Dynamic scenes

– +Simple implementation

– -Every frame

– -No global information

� Visibility preprocessing
– -Static scenes

– -Complicated implementation

– +No overhead at runtime

– +Global information

(46)

Surveys on Visibility

� F. Durand. 3D Visibility: Analytical Study and

Applications, 1999.

� D. Cohen-Or et al.: A survey of visibility for walkthrough

applications, 2003.

� J. Bittner and P. Wonka: Visibility in computer graphics,

2003.

(47)

… end of this part

bittner@fel.cvut.cz

2.5D Scenes Occluder Shadows

� Footprint of occluded volume [Wonka00]
– Agrregates the shadow polygons using z-buffer

– Represents intersection of all ‘shadows’

(49)

2.5D Scenes Occluder Shadows

� Conservative solution
– Shrinking occluder polygons

� Properties
– + Relatively easy implementation

– + Uses GPU

– - Large view cells → more conservative solution

– - Needs high resolution cull map

(50)

2.5D Scenes Occlusion Tree + Virtual Portals

� Occlusion tree for visibility in 2D footprint

� Identifies sequences of occluders

� Construct virtual portals over the occluders

� Portal visibility test in 5D [Teller 92]

View cell

Tested

occluder

(51)

2.5D Scenes: Occlusion Tree + Virtual Portals

� Properties
– + exact solution for 2.5D scenes

– + computation time comparable with conservative methods

– - difficult implementation

(52)

Oliver Mattausch 53

Problems of CHC

� Too many queries

� Not really GPU friendly
– Many state changes

– Bounding box query (8 vertices per draw call)

� Can be slower (!) than view frustum culling (VFC)

Most houses visible →

Bad view point for CHC

(53)

Oliver Mattausch 54

Near Optimal Hiearchical Culling

� Guthe et al. 2006
– Query only if cheaper than rendering

– Mostly better than view frustum culling

– Close to self-defined optimum

– Hardware calibration step

– Complex set of rules

� Possible to beat the defined “optimum”
– Can reduce cost of queries

– Can further reduce # queries

(54)

Oliver Mattausch 55

CHC ++

� Mattausch et al. 2008

� Keep simplicity of CHC

� Reduction of
– State changes

– Queries

– Wait time

– Rendered geometry

� Game engine friendly

(55)

Oliver Mattausch 56

Building Blocks of CHC ++

� Query batching
– Reduction of state changes

– Reduction of CPU stalls

� Multiqueries
– Reduction of queries

� Randomization
– Better distribution of queries

� Tight bounding volumes
– Reduction of queries

– Reduction of rendered geometry

� Render queue
– Interface to the game engine

(56)

Oliver Mattausch 57

Query Batching: State Changes

� Switch between render / query mode

→ Need state change (depth write on / off)

� CHC induces one state change per query

� Big overhead on modern GPUs!

(57)

m2

Snímek 57

m2 show image of engine block
matt, 5/13/2007

Query Batching: Previously invisible nodes

� Idea: Store query candidates in separate queue
– Collect n nodes

– Switch to query mode

– Query all nodes

State

change

Oliver Mattausch 58

Query

Query

Query

Query

Query

Candidate queue Query queue

State

change

Render

mode

(58)

Oliver Mattausch 59

Query Batching: Previously visible nodes

� Previously visible nodes
– No dependencies (geometry rendered anyway)

– Can issue query at any time

– Handle them in separate queue

� Issue queries to fill up wait time
– Very likely no new state change

� Issue the rest of queries in the end of the frame

(59)

Oliver Mattausch 60

Query Batching: Visualization

CHC: ~100 state changes CHC++: 2 state changes

(Max. batch size: 50)

Each color represents a state change

(60)

Oliver Mattausch 61

Multiqueries: Idea

� Node invisible for long time
– Likely to stay invisible (e.g., car engine block)

– Cover many nodes with single query

� Test q invisible nodes by single multiquery
– Invisible → saved (q – 1) queries

– Visible → must test individually, wasted one query

(61)

Oliver Mattausch 62

Multiqueries : Minimize #queries

� Use history of nodes

� Estimate probability that node will still be invisible in

frame n+1 if it was invisible in frames ≤ n

� Measurements behave like 1-k*e-x funcLon →

sufficient in practice

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

FITTED

VIENNA

POWERPLANT

FRAMES COHERENT

PROBABILITY OF COHERENCE

Fitted and measured

functions

(62)

Oliver Mattausch 63

Multiqueries: Greedy Optimization

� While node batch not empty
– Add node to multiquery

– Use cost / benefit model

– Query size opLmal → issue mulLquery

Visualization: Each color represents a multiquery

(63)

Oliver Mattausch 64

Multiqueries: Vienna (1M triangles)

Video

(64)

Tight Bounding Volumes: Idea

� Optimization for bounding volume hierarchy (BVH)

� For each node → query bounding boxes of children

(using single query)

Child boxes invisible → Cull node, saved 2 queriesBox visible → Traverse node

Oliver Mattausch 65

(65)

Oliver Mattausch 66

Game Engine Integration

� Modern game/rendering engines
– Collect visible objects in render queue

– Sort by materials

– Render everything at once

� Rendering single nodes is inefficient (CHC)

� With batching:
– Traverse render queue just before processing a query batch

(66)

Oliver Mattausch 67

Queues in CHC++

traversal queue

v-queue (visible nodes)i-queue (invisible nodes)

query queue

Multiquery

(67)

m3

Snímek 67

m3 update picture
matt, 3/30/2008

Oliver Mattausch 68

Results

Powerplant

(12M triangles)

Pompeii

(6M triangles)

(68)

m4

m5

Snímek 68

m4 show teaser: state change reduction or just graph!
only show vfc, chc and chc ++
matt, 3/6/2008

m5 show videos of state changes/ multiqueries
also show videos of walkthroughs?
matt, 3/30/2008

Oliver Mattausch 69

Results: Pompeii (6M triangles)

VISIBILITY ORACLE

 10

 20

 30

 40

 50

 60

 70

 100 200 300 400 500 600 700 800
Frame

Time (ms)

NOHC
NOHC−OPTIMUM
CHC++

(VIS. KNOWN, NEVER QUERY)

 0

(69)

m6

m7

Snímek 69

m6 show teaser: state change reduction or just graph!
only show vfc, chc and chc ++
matt, 3/6/2008

m7 change yellow color, change caption
matt, 3/28/2008

