
1

Data Structures for Computer Graphics

Searching in High-Dimensional Spaces

Lectured by Vlastimil Havran

2

Lecture Content

• Some principles and applications

• Tree-based data structures

– VP-tree

– gH-tree

– GNAT

– mB-tree

– M-tree

• Simple scan methods

• Distance matrix methods – AESA, LAESA

D

r

3

Applications

• Pattern recognition: fingerprints, speaker identity, optical
characters, recognition of faces, etc.

• Plagiarism detection, near-duplicate detection

• Content based retrieval:

– find a similar picture (SIFT=Scale invariant feature transforms or
other feature descriptors)

– volume data (magnetic resonance images, tomography, CAD
shapes, time series)

• Searching for similar DNA sequences

• Spelling correction

• Description of a set of objects via feature vectors

• Searching performed in a set of feature vectors

4

Implementations

• Point queries (exact match)

• Range queries (similar objects)

• (Approximate) nearest neighbor queries

(similar objects)

• All-closest-pairs queries (=spatial join query)

8 finding all pairs of objects that are

sufficiently similar

5

Problem = Curse of Dimensionality

• For dimensions > 15 to 20

– data structures such as kd-trees and R-trees
cease to work well

• For many tasks the dimensionality is in order
of thousands

– kd-trees get near linear query time for high
dimensions

– become slower than a naïve solution

R=rectangle

6

Recall Metric Spaces and Distance Functions

• Examples:

– Positiveness: for all x,y in X, d(x,y) >= 0

– Symmetry: for all x,y in X, d(x,y)=d(y,x)

– Reflexivity: for all x in X, d(x,x) = 0

– triangular inequality:

for all x,y,z in X, d(x,y) <= d(x,z) + d(z,y)

• Examples:

– Arbitrary metric spaces, some distance functions

– Vector spaces with Euclidean distance

– String with Hamming or Levenshtein distance

7

Triangle Inequality

• d(p, x) + d(q, x) >= d(p, q)

• For every element x such that is in distance

from p by d(p, x) and we know d(p, q) the

triangle inequality implies for d(q, x) that

d(q, x) >= d(p, q) – d(p, x)

p x

q

8

Branch and Bound Technique

• We represent the original set S = {p1, p2, p3,

8, pn} by a tree

• Every node corresponds to a subset of S

• Root corresponds to S

• Every node contains some information about

its subtrees that allows to provide lower

bound for any query with the subset in the

whole subtree

9

Range Search and NN-search

{p1, p2, p3, p4, p5}

{p1, p2, p3} {p4, p5}

{p1} {p2, p3} {p4} {p5}

{p2} {p3}

10

Vantage-Point Trees (VP-trees)

ConstructionAlgorithm(set of objects)

• IF there is a single object, construct a leaf and return.

ELSE choose randomly some object p in a set. ENDIF

• Choose partitioning radius rp

• Put all pi such that d(pi , p) <= r into “inner” part, other
points to the “outer“ part of a ball

• Recurse

rp

p

11

For Range Search

• Circular range search with radius r

• IF d(p, q) < (rp - r), THEN prune the outer branch

• IF d(p, q) > (rp + r), THEN prune the inner branch

• Otherwise it holds: rp - r < d(p, q) < rp + r and we
have to visit both branches

rp

p
q
r

rp

p

q
r

rp

pq
r

12

VP-tree Example

Image from SIGGRAPH 2007 course notes by Samet

in out

13

Variants of VP-trees

• Burkhard-Keller tree

– pivot used to divide the space into m rings

– m-ary tree at each node

• MVP-tree

– collapse several levels of VP-tree to a single node

– use the same pivot for different nodes in one level

• Post-office tree

– use (rp + eps) for inner branch

– (rp − eps) for outer branch

14

Generalized Hyperplane Tree (gH-tree)

We use generalized hyperplane partitioning

method based on two pivots

• Select p1 and p2 from S and partition S into

two subsets S1 and S2 so for the objects we

apply this rule:

S1 = { o in S \ {p1,p2} and d(o, p1) <= d(o, p2) }

S2 = { o in S \ {p1,p2} and d(o, p1) > d(o, p2) }

• Apply recursively, yielding a binary tree

15

General Hyperplane Concept

Pivot p1

Pivot p2

16

Properties of gH-trees

• Each interior node contains two pivots, pivot

p1 and pivot p2

• A hyperplane corresponds to all points o

satisfying condition: d(p1,o) = d(p2, o)

• Objects in S1 are closer to p1

• Objects in S2 are closer to p2

• The regions of a tree are implicit (defined by

pivot objects) instead of being explicit

17

gH-tree Example

Image from SIGGRAPH 2007 course notes by Samet

18

Circular Search with gH-tree

• Query “q” with radius “r”

• Left subtree containing pivot p1 is visited if
and only if when:

d(q,p1) - d(q,p2) < 2r

• Right subtree containing pivot p2 is visited if
and only if when:

d(q,p2) - d(q,p1) < 2r

• These rules are approximate, but work
conservatively.

19

p2

p1

p2

p1

p2

p1

r

r

q

q
r

p2

p1

r
q

q

q
p2

p1

r r

0 > d(q,p1) - d(q,p2) < 2r 0 > d(q,p2) - d(q,p1) < 2r

d(q,p2) - d(q,p1) > 2r d(q,p1) - d(q,p2) > 2r

0 < d(q,p2) - d(q,p1) < 2r

0 > d(q,p1) - d(q,p2) < 2r

r

q p1

p2

20

Geometric Near-neighbor Access Tree (GNAT)

• Generalization of gH-tree

• We use more than two pivots to partition the data
set at each node – m pivots

• Possible Heuristics

– Pickup 3*m pivots randomly

– First pivot randomly from 3*m pivots

– Second pivot: the farthest one from the first pivot

– Third pivot: the farthest one from the first and second
pivot

– N-th pivot: similarly - total sum from all previous pivots is
maximized.

21

mB-tree – Monotonous Bisector Tree

• Similar to the gH-tree

• Inherits one pivot from ancestor node

• Advantage - fewer distances computations

• Deeper tree

22

mB-Tree Example

Image from SIGGRAPH 2007 course notes by Samet

23

Nearest Neighbor Search with Tree

Structures

• Applies to VP-tree, gH-tree, GNAT, mB-tree

• We use depth first search starting from a root

with a priority queue (best fit search)

• The search is finished once we have all the

nodes to be visited farther than the closest

object found so far

24

M-tree

• Dynamic data structure similar to GNAT

• All objects stored only in leaf nodes, some

objects used as a pivots at the same time

• Inner node n has 2 pivot entries. Entry:

– p – pivot

– r – corresponding covering radius

– D – distance value from p to the parent pivot

– T – reference to a child node of n

D

r

25

M-tree Construction

• Unlike previous tree-based methods constructed from bottom to
top – can be used for dynamic data

• The insertion of point “p” uses heuristics, for example:

– Insert “p” to such a leaf which covers it (radius)

– If there is not such a leaf or more such leaves contain p, pickup
such a leaf which has the closest distance to “p”.

– Upon insertion update covering radii up to the root node

• Once a leaf has too many entries, then it is split - two pivots are
selected and are added to the parent node, which can cause
another split

• The details and other heuristics in the paper: Ciaccia et al.,
1997: M-tree: an efficient access method for similarity search in
metric spaces.

D

r

26

Simple Methods using Sequential Scan

over dimensions

• Partial Sum: When the partial sum of

squared differences of a candidate already

exceeds the squared distance to the nearest

neighbor so far, the candidate is rejected

• Sampling: We select a predefined part of

each feature vector and pre-select the

candidates for which we further compute the

distance – this yields approximation (without

guarantee)

27

Simple Methods contd.

• Recall that the distance is a sum of terms.

• For partial sum we sum all terms until we

exceed already found minimum distance.

The result is exact.

• Sampling: we sum only some terms so we

cannot guarantee the exactness. We can try

to select such dimensions that we maximize

the distance results. The result is only

approximate.

28

Array-based Distance Methods

• Based on computing distance between some

or all data entries in the structure

• Based on the known distances we can prune

the search extensively

• They can be time efficient but memory

demanding in order O(N2)

• Two methods: AESA and LAESA

29

AESA – Approximating and

Eliminating Search Algorithm

• It precomputes all the distances between the
objects

• Hence the space complexity is O(N2)

• During nearest neighbor search it selects an
arbitrary object (pivot p) and establishes
lower bound distances to all other objects (o)

• The number of distance computations for
search can be remarkably low

• It can also be used for range searching and
kNN search

30

AESA – Graphical Illustration

pq

o

d(p,o)

d(q,p)

d(q,o) >= |d(q,p) – d(p,o)|

We know (precomputed): d(p,o)

We computed: d(q,p)

We compute lower bound for d(q,o)

d(q,o) = ?

31

AESA - Use of Triangle Inequality

• For a query “q”, an object “o”, and a pivot “p” we know:

d(q,o) >= |d(q,p) – d(p,o)|

• If we have more pivots, the greatest lower bound
d(q,o) is computed as:

d(q,o) = Max(|d(q,pi) – d(pi,o)|)

for all pivots i where we have

already the distance d(q,pi)

32

AESA NN-search

• Mark all objects as candidate NN-neighbors

• Given a query “q” pickup arbitrary object “p” and
add it to a set “P” (set of pivots)

• Compute closest distance so far e = d(q,p)

• While more than one candidate is possible
NN-neighbor do in a loop:

– Computing greatest lower bound d(q,o) = Max(|d(q,pi) –
d(pi,o)| for all possible remaining candidates and all pivots
pi in “P”

– Exclude those remaining candidates from the computation
that are farther than “e” from the query (including those in
“P”)

– Select another pivot (the estimated closest candidate) and
compute new distance d(q,p) and add it to the set “P”

33

AESA conclusion

• If you have a small number of candidates and

enough memory – very low number of distance

calculations

• The use of AESA makes sense only if the number

of queries is substantially higher than the number of

data entries in the distance array

• It can be used in dynamic version – computing

distances on the demand

34

LAESA – linear AESA

• Selects only limited number M of pivots given

by a user

• The space complexity is therefore only

O(N*M) where M is the number of selected

pivots

• The pivots are selected in such a way that

they are maximally separated

• The search becomes more complicated

35

LAESA versus AESA

• The difference during the search is that we

do not exclude from candidate objects the

pivot objects.

• The search is faster with increasing M

• We can tradeoff the space complexity and

the search complexity

36

Dimension Reduction Techniques

• Principle is to project the original space to

some other space, for example a plane that

is described by fewer coordinates

• The selection of a projection plane is of

crucial importance for the algorithm

performance – we reduce such dimensions

to not to lose too much of the information in

the data.

• Currently active research area (PCA, LPCA,

8) although used for many years

37

Literature

• G.R. Hjaltason and H. Samet: Index-Driven
Similarity Search in Metric Spaces, 2003

• E. Chavez, G. Navarro, R. Baeza-Yates, J. L.
Marroquin: Searching in Metric Spaces, 2000.

• H. Samet: Foundations of Multidimensional
and Metric Data Structures, 2006. (chapter 4)

Software:

Metric Spaces Library: http://www.sisap.org

38

Introduction to Sampling

• Many applications require sampling of different

types.

• For many reasons uniform equidistant sampling is

not a right choice.

• A Poisson-disk point set is a set of points taken

from a uniform distribution in which no two points

are closer than some minimum distance “R”.

• Blue noise characteristics

– density proportional to f over a finite frequency range.

– power density increases 3dB per octave

39

Poisson-disk Point Set Example

Minimum low frequency components and no spikes in energy.

40

Generation: Hierarchical Dart Throwing

• Initial active squares

• Check if the square is covered

d2
fc = (|xc – xp| + b/2)2 + (|yc – yp| + b/2)2

COVERED if d2
fc < r2 center

C=(xc,yc) 8 square center

P=(xp,yp) 8 disk center

b 8 size of a square
P

C1r dfc

C2

41

Sampling Algorithm Overview

• Put base level squared on active list 0 (the base level)

• Initialize the point set to be empty

• While there are active squares

– Choose an active square S with probability proportional to the area.

– Let “i” be the index of the active list containing “S”.

– Remove S from the active lists.

– Choose a random point, P, inside square S.

– IF P satisfies the minimum distance condition THEN (use grid index, O(1))

add P to the point set.

– ELSE

�Split S into four child squares.

�Check each child square to see if it is covered

�Put each non-covered child of S on active list i+1

– ENDIF

42

Algorithm Summary

• In practice O(N) complexity for sampling N

samples when we have O(1) search to find

nearest neighbors.

• Practically 30 times faster than other

algorithms published so far.

• Details in the paper:

K. B. White, D. Cline, P.K. Egbert: Poisson

Disk Point Sets by Hierarchical Dart

Throwing, 2007.

Thank you for your attention!

43

