Data Structures for Computer Graphics

Searching in High-Dimensional Spaces

Lecture Content

- Some principles and applications
- Tree-based data structures
 - − VP-tree •
 - gH-tree ●/•
 - GNAT ◆
 - mB-tree •∕•
- Simple scan methods
- Distance matrix methods AESA, LAESA

Applications

- Pattern recognition: fingerprints, speaker identity, optical characters, recognition of faces, etc.
- Plagiarism detection, near-duplicate detection
- Content based retrieval:
 - find a similar picture (SIFT=Scale invariant feature transforms or other feature descriptors)
 - volume data (magnetic resonance images, tomography, CAD shapes, time series)
- Searching for similar DNA sequences
- Spelling correction
- Description of a set of objects via feature vectors
- Searching performed in a set of feature vectors

Implementations

- Point queries (exact match)
- Range queries (similar objects)
- (Approximate) nearest neighbor queries (similar objects)
- All-closest-pairs queries (=spatial join query)
 ... finding all pairs of objects that are sufficiently similar

Problem = Curse of Dimensionality

For dimensions > 15 to 20

R=rectangle

- data structures such as kd-trees and R-trees cease to work well
- For many tasks the dimensionality is in order of thousands
 - kd-trees get near linear query time for high dimensions
 - become slower than a naïve solution

Recall Metric Spaces and Distance Functions

Examples:

- Positiveness: for all x,y in X, d(x,y) >= 0
- Symmetry: for all x,y in X, d(x,y)=d(y,x)
- Reflexivity: for all x in X, d(x,x) = 0
- triangular inequality:

```
for all x,y,z in X, d(x,y) \le d(x,z) + d(z,y)
```

Examples:

- Arbitrary metric spaces, some distance functions
- Vector spaces with Euclidean distance
- String with Hamming or Levenshtein distance

Triangle Inequality

•
$$d(p, x) + d(q, x) >= d(p, q)$$

 For every element x such that is in distance from p by d(p, x) and we know d(p, q) the triangle inequality implies for d(q, x) that

$$d(q, x) >= \underline{d(p, q)} - \underline{d(p, x)}$$

Branch and Bound Technique

- We represent the original set S = {p₁, p₂, p₃, ..., p_n} by a tree
- Every node corresponds to a subset of S
- Root corresponds to S
- Every node contains some information about its subtrees that allows to provide lower bound for any query with the subset in the whole subtree

Range Search and NN-search

Vantage-Point Trees (VP-trees)

ConstructionAlgorithm(set of objects)

- IF there is a single object, construct a leaf and return.
 ELSE choose randomly some object p in a set. ENDIF
- Choose partitioning radius r_p
- Put all p_i such that d(p_i, p) <= r into "inner" part, other points to the "outer" part of a ball
- Recurse

For Range Search

- Circular range search with radius r
- IF $d(p, q) < (r_p r)$, THEN prune the outer branch
- IF $d(p, q) > (r_p + r)$, THEN prune the inner branch
- Otherwise it holds: $r_p r < d(p, q) < r_p + r$ and we have to visit both branches

VP-tree Example

Variants of VP-trees

•

- Burkhard-Keller tree
 - pivot used to divide the space into m rings
 - m-ary tree at each node
- MVP-tree
 - collapse several levels of VP-tree to a single node
 - use the same pivot for different nodes in one level
- Post-office tree
 - use $(r_p + eps)$ for inner branch
 - $-(r_p eps)$ for outer branch

Generalized Hyperplane Tree (gH-tree) */•

We use generalized hyperplane partitioning method based on two pivots

 Select p₁ and p₂ from S and partition S into two subsets S₁ and S₂ so for the objects we apply this rule:

$$S_1 = \{ o \text{ in } S \setminus \{p_1, p_2\} \text{ and } d(o, p_1) \le d(o, p_2) \}$$

 $S_2 = \{ o \text{ in } S \setminus \{p_1, p_2\} \text{ and } d(o, p_1) \ge d(o, p_2) \}$

Apply recursively, yielding a binary tree

General Hyperplane Concept

Properties of gH-trees

- •/•
- Each interior node contains two pivots, pivot
 p₁ and pivot p₂
- A hyperplane corresponds to all points o satisfying condition: d(p₁,o) = d(p₂, o)
- Objects in S₁ are closer to p₁
- Objects in S₂ are closer to p₂
- The regions of a tree are implicit (defined by pivot objects) instead of being explicit

gH-tree Example

Circular Search with gH-tree

•/•

- Query "q" with radius "r"
- Left subtree containing pivot p₁ is visited if and only if when:

$$d(q,p_1) - d(q,p_2) < 2r$$

 Right subtree containing pivot p₂ is visited if and only if when:

$$d(q,p_2) - d(q,p_1) < 2r$$

 These rules are approximate, but work conservatively.

$$0 > d(q,p1) - d(q,p2) < 2r$$

 $d(q,p2) - d(q,p1) > 2r$

$$0 > d(q,p2) - d(q,p1) < 2r$$

 $d(q,p1) - d(q,p2) > 2r$

$$0 < d(q,p2) - d(q,p1) < 2r$$

$$0 > d(q,p1) - d(q,p2) < 2r$$

Geometric Near-neighbor Access Tree (GNAT) •>

- Generalization of gH-tree
- We use more than two pivots to partition the data set at each node – m pivots
- Possible Heuristics
 - Pickup 3*m pivots randomly
 - First pivot randomly from 3*m pivots
 - Second pivot: the farthest one from the first pivot
 - Third pivot: the farthest one from the first and second pivot
 - N-th pivot: similarly total sum from all previous pivots is maximized.

mB-tree – Monotonous Bisector Tree

- Similar to the gH-tree
- Inherits one pivot from ancestor node
- Advantage fewer distances computations
- Deeper tree

mB-Tree Example

Nearest Neighbor Search with Tree Structures

- Applies to VP-tree, gH-tree, GNAT, mB-tree
- We use depth first search starting from a root with a priority queue (best fit search)
- The search is finished once we have all the nodes to be visited farther than the closest object found so far

M-tree

- Dynamic data structure similar to GNAT
- All objects stored only in leaf nodes, some objects used as a pivots at the same time
- Inner node n has 2 pivot entries. Entry:
 - -p-pivot
 - r corresponding covering radius
 - D distance value from p to the parent pivot
 - T reference to a child node of n

M-tree Construction

- Unlike previous tree-based methods constructed from bottom to top – can be used for dynamic data
- The insertion of point "p" uses heuristics, for example:
 - Insert "p" to such a leaf which covers it (radius)
 - If there is not such a leaf or more such leaves contain p, pickup such a leaf which has the closest distance to "p".
 - Upon insertion update covering radii up to the root node
- Once a leaf has too many entries, then it is split two pivots are selected and are added to the parent node, which can cause another split
- The details and other heuristics in the paper: Ciaccia et al., 1997: M-tree: an efficient access method for similarity search in metric spaces.

Simple Methods using Sequential Scan over dimensions

- Partial Sum: When the partial sum of squared differences of a candidate already exceeds the squared distance to the nearest neighbor so far, the candidate is rejected
- Sampling: We select a predefined part of each feature vector and pre-select the candidates for which we further compute the distance – this yields approximation (without guarantee)

Simple Methods contd.

- Recall that the distance is a sum of terms.
- For partial sum we sum all terms until we exceed already found minimum distance.
 The result is exact.
- Sampling: we sum only some terms so we cannot guarantee the exactness. We can try to select such dimensions that we maximize the distance results. The result is *only approximate*.

Array-based Distance Methods

- Based on computing distance between some or all data entries in the structure
- Based on the known distances we can prune the search extensively
- They can be time efficient but memory demanding in order O(N²)
- Two methods: AESA and LAESA

AESA – Approximating and Eliminating Search Algorithm

- It precomputes all the distances between the objects
- Hence the space complexity is O(N²)
- During nearest neighbor search it selects an arbitrary object (pivot p) and establishes lower bound distances to all other objects (o)
- The number of distance computations for search can be remarkably low
- It can also be used for range searching and kNN search

AESA – Graphical Illustration

AESA - Use of Triangle Inequality

- For a query "q", an object "o", and a pivot "p" we know:
 d(q,o) >= |d(q,p) d(p,o)|
- If we have more pivots, the greatest lower bound d(q,o) is computed as:

 $d(q,o) = Max(|d(q,p_i) - d(p_i,o)|)$

for all pivots i where we have already the distance d(q,p_i)

AESA NN-search

- Mark all objects as candidate NN-neighbors
- Given a query "q" pickup arbitrary object "p" and add it to a set "P" (set of pivots)
- Compute closest distance so far e = d(q,p)
- While more than one candidate is possible NN-neighbor do in a loop:
 - Computing greatest lower bound d(q,o) = Max(|d(q,p_i) d(p_i,o)| for all possible remaining candidates and all pivots p_i in "P"
 - Exclude those remaining candidates from the computation that are farther than "e" from the query (including those in "P")
 - Select another pivot (the estimated closest candidate) and compute new distance d(q,p) and add it to the set "P"

AESA conclusion

- If you have a small number of candidates and enough memory – very low number of distance calculations
- The use of AESA makes sense only if the number of queries is substantially higher than the number of data entries in the distance array
- It can be used in dynamic version computing distances on the demand

LAESA – linear AESA

- Selects only limited number M of pivots given by a user
- The space complexity is therefore only O(N*M) where M is the number of selected pivots
- The pivots are selected in such a way that they are maximally separated
- The search becomes more complicated

LAESA versus AESA

- The difference during the search is that we do not exclude from candidate objects the pivot objects.
- The search is faster with increasing M
- We can tradeoff the space complexity and the search complexity

Dimension Reduction Techniques

- Principle is to project the original space to some other space, for example a plane that is described by fewer coordinates
- The selection of a projection plane is of crucial importance for the algorithm performance – we reduce such dimensions to not to lose too much of the information in the data.
- Currently active research area (PCA, LPCA, ...) although used for many years

Literature

- G.R. Hjaltason and H. Samet: Index-Driven Similarity Search in Metric Spaces, 2003
- E. Chavez, G. Navarro, R. Baeza-Yates, J. L. Marroquin: Searching in Metric Spaces, 2000.
- H. Samet: Foundations of Multidimensional and Metric Data Structures, 2006. (chapter 4)

Software:

Metric Spaces Library: http://www.sisap.org

Introduction to Sampling

- Many applications require sampling of different types.
- For many reasons uniform equidistant sampling is not a right choice.
- A Poisson-disk point set is a set of points taken from a uniform distribution in which no two points are closer than some minimum distance "R".
- Blue noise characteristics
 - density proportional to f over a finite frequency range.
 - power density increases 3dB per octave

Poisson-disk Point Set Example

Minimum low frequency components and no spikes in energy.

Generation: Hierarchical Dart Throwing

- Initial active squares
- Check if the square is covered

$$d_{fc}^2 = (|x_c - x_p| + b/2)^2 + (|y_c - y_p| + b/2)^2$$

COVERED if $d_{fc}^2 < r^2$ center

 $C=(x_c,y_c)$... square center $P=(x_p,y_p)$... disk center b ... size of a square

Sampling Algorithm Overview

- Put base level squared on active list 0 (the base level)
- Initialize the point set to be empty
- While there are active squares
 - Choose an active square S with probability proportional to the area.
 - Let "i" be the index of the active list containing "S".
 - Remove S from the active lists.
 - Choose a random point, P, inside square S.
 - IF P satisfies the minimum distance condition THEN (use grid index, O(1))
 add P to the point set.
 - ELSE
 - → Split S into four child squares.
 - → Check each child square to see if it is covered
 - → Put each non-covered child of S on active list i+1
 - ENDIF

Algorithm Summary

- In practice O(N) complexity for sampling N samples when we have O(1) search to find nearest neighbors.
- Practically 30 times faster than other algorithms published so far.
- Details in the paper:

K. B. White, D. Cline, P.K. Egbert: *Poisson Disk Point Sets by Hierarchical Dart Throwing*, 2007.

Thank you for your attention!