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Data Structures for Computer Graphics

Proximity Search 

and its Applications II

Lectured by Vlastimil Havran
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ContentContent

• Approximate range, NN, k-NN search

• Some applications of range search, NN search,  

and k-NN search in computer graphics
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εεεε-approximate Nearest Neighborεεεε-approximate Nearest Neighbor

• Definition: for any ε > 0, we define a point “p” to 
be an 

ε−approximate nearest neighbor if

dist(p,q) < (1+ε)*dist(pt,q)

where “pt” is a true nearest neighbor.

p

pt

dist(pt,q)

q

(1+ε)dist(pt,q)
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Algorithm for Approximate NNAlgorithm for Approximate NN

• How to find an approximate nearest neighbor if 

we do not know the true nearest neighbor?

• Why do we need such an algorithm?

• Can our application use an approximate 

algorithm?
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Approximate Search with Balanced Box 

Decomposition-trees (BBD-trees)

Approximate Search with Balanced Box 

Decomposition-trees (BBD-trees)

• Approximation can make search significantly 
faster with small degradation of result quality.

• Approximation is possible to use for range-
search, NN search, and kNN search.

• The increased dimensionality makes a factor 2d in 
search complexity for kd-trees, which makes 
approximate search viable for many applications 
in high-dimensional space.

• BBD-trees properties:

– depth O(log N)

– space O(N), (number of nodes O(N))

– preprocessing time O(dN log N)

– (1+ε) approximation to NN-search in O( [1+6d/ε]d * log N)

– (1+ε) approximation to k-NN-search in O( (3+k+6d/ε)d * log N) for k>1



Running Time Dependence on Epsilon



Average Error
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BBD-Construction: fair splits + shrinkingBBD-Construction: fair splits + shrinking

• Fair split: geometric 

median in the largest 

extent, axis-aligned 

hyperplane. Two 

children have boxes  

of the same size: 

• Shrinking: 

– an inner box

– outer box (doughnut)

Low child High child
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Simplest Build AlgorithmSimplest Build Algorithm

• Either carry out fair split or shrink such that

– Fair split is preferred

– Shrinking is performed only when it makes sense, 

so at least one of the faces of inner box does not 

lie on the outer box:

Yes, make shrinking.
Do not make shrinking,

inner and outer box are equal.
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Approximate NN-search with BBD-treeApproximate NN-search with BBD-tree

• We use an algorithm similar to NN-search with a 
priority queue for child nodes to visit.

• Termination condition: we finish the search when 
the closest box in the priority queue is farther than 
dist(p,q)/(1+ε), where dist(p,q) is the distance to 
the nearest neighbor found so far.

Note: the proof for the properties of the algorithm is 
fairly involved and it can be found in:

Arya et al.: An Optimal Algorithm for Approximate 
Nearest Neighbor Searching in Fixed 
Dimensions, Journal of ACM, 1998.
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Approximate NN-search with BBD-treeApproximate NN-search with BBD-tree

• We keep the distance to the approximate NN (pk)

• We finish the search if the nodes to be traversed in 

priority que are in the distance farther than 

dist(pk,q)/(1+ε)

pt

dist(pt,q)

q

dist(pk,q)

pt - true nearest neighbor

pk - found approximate nearest neighbor
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Approximate NN Search Algorithm in BriefApproximate NN Search Algorithm in Brief

• Distance ‘d’ = infinity, approximate nearest neighbor ‘N’ = none

• Insert root node to PQ, dist 0

• DO

‘node’ = take closest one from PQ

IF ‘node’ is leaf THEN

Compute distance ‘dL’ to a point in leaf

Record the nearest neighbor ‘N’ so far and update ‘d’ by ‘dL’       (if ‘dL’ < ‘d’)

ELSE /* interior node */

Insert the farther child to PQ (distance d1)

Insert the closer child to PQ (distance d2)

ENDIF

‘Dclosest’ = the closest node to query in PQ

UNTIL  (d / (1+eps) > Dclosest)

• Report the approximate nearest neighbor ‘N’
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Approximate k-NN-search with BBD-treeApproximate k-NN-search with BBD-tree

• The algorithm is similar to approximate NN-search.

• The sequence of k-nearest neighbors is stored in 
additional priority queue Q2 of fixed size k.

• We finish the search when the closest box in the priority 
queue is greater than dist(pk,q)/(1+ε), where dist(pk,q) is 
the distance to the k nearest neighbor in the priority queue 
Q2.

pk

pt

dist(pt,q)

q

dist(pk,q)

true k-nearest neighbor

- found approximate k-nearest neighbor
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Approximate Circular Range Search 

with BBD-trees

Approximate Circular Range Search 

with BBD-trees

• The range is extended by epsilon, 
so we have 

– inner radius “r”

– outer radius r*(1+ε)

• We report all the cells, with 
maximum distance r*(1+ε) from 
the query point

r

Q

r*(1+ε)

• Faster compared to the exact algorithm

• Maximum distance to all found points is smaller than r*(1+ε)
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Case 1 Case 2

Do not include Fully include

(part of points can be approximate – red color)

Approximate Circular Range Search 

with BBD-trees – 4 cases in total for a box

Approximate Circular Range Search 

with BBD-trees – 4 cases in total for a box

radius

q

radius

q
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Case 3 Case 4 – exactly

resolved           

Traverse to child nodes Include or exclude

or process the points in leaves

Approximate Circular Range Search 

with BBD-trees – 4 cases in total for a box

Approximate Circular Range Search 

with BBD-trees – 4 cases in total for a box

radius

q

radius

q

When counting – can terminate 
also for inner boxes
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Applications of NN and k-NN searchApplications of NN and k-NN search

• Photon Mapping 

– equivalent to density estimation: we are given the hits 

made by some simulation and we want to recover the 

probability density function

• Data interpolation

– Approximation of measured data (for example 

range scanner) for digitization. Each data point is: 

coordinate in Rd + value

– Point-based models: re-sampling

– Many applications outside computer graphics
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Photon Mapping Algorithm Review

• Photon shooting

– Emission, scattering, 

storing into data structure

– Similar to ray tracing

• Gathering

– Ray tracing for direct 

illumination

– Photon map visualization

�Indirect bounce
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Photon Mapping – Two Phases: Shooting 

and Gathering

Photon Mapping – Two Phases: Shooting 

and Gathering
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Results of Photon MappingResults of Photon Mapping

Courtesy of Henrik Wann Jensen, 2001



Other example images by photon mappingOther example images by photon mapping

21
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Final GatheringFinal Gathering

• Shooting many secondary rays (possibly according to BRDF), gathering 
radiances from the rays

• The radiance along gather ray is computed via density estimation that 
requires kNN search or range search.

• Integrating the radiances properly to render image

• Used for indirect diffuse illumination

N
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Final Gathering in NumbersFinal Gathering in Numbers

• Each final gather ray requires density estimation 
that uses kNN search or range search

• The number of final gather rays is computed as: 

#pixels * #pixel samples * #rays per pixel sample

• 1000 x 1000 pixels * 5 samples per pixel * 1000 
final gather rays per pixel sample = 5x109  uses of 
kNN or range searches

• Each search operation requires to find 20-50 
nearest neighbors

• Irradiance/radiance caching – reuse some results!
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Direct Visualization of Photon MapsDirect Visualization of Photon Maps

• Do not shoot final gather rays, use directly visible 

photons from camera (primary rays)

• The radiance is computed by density estimation

• It is prone to artifacts on object boundaries 

referred to as bias
N

• Used only for indirect 

specular illumination 

(caustics)
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Example of Direct Visualization 

of Photon Map: why we need final gathering

Example of Direct Visualization 

of Photon Map: why we need final gathering

Photon Hits Direct Visualization



An Image with Final GatheringAn Image with Final Gathering
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Examples of CausticsExamples of Caustics
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Estimating Radiance along 

Final Gather Ray

Estimating Radiance along 

Final Gather Ray

• Using the density estimation, from the photon hits 

estimating PDF

• It requires K nearest neighbor search for each final 

gather ray

• The number of final gather rays (the number of 

searches) is enormous (200-4000/ pixel)
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Density Estimation Basics

Density Estimation: from samples we estimate 

probability density function p(x) U more complicated

Note: Importance Sampling: from given probability 

density function p(x) generate samples
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Intro to Density EstimationIntro to Density Estimation

• Histogram method – record hits into buckets

• Kernel density estimation

• K-Nearest neighbors estimator

• Variable kernel density estimator

• Multiple pass methods

– First pass – pilot estimate

– Second pass – final estimate

• We use some kernel function to weight the 
importance of samples for the estimate (the 
weight of samples decreases with the distance 
of a hit from the point to be estimated)
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Kernel TypesKernel Types

• High efficiency

• Simple formula

Uniform Epanechnikov (optimal kernel)

Hat

Gaussian
Biweight
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Kernel Formulae for 2D problemsKernel Formulae for 2D problems

• Uniform Kernel: KU(t) = 1/2   if |t|<1, else 0

• Hat(Cone) Kernel: KH(t) = 3/4.(1-|t|)  if |t|<1, else 0

• Gaussian Kernel: KG(t) = 1/sqrt(2π).exp(-t2/2)

• Epanechnikov Kernel: KE(t) = 3/4.(1-t2)  if |t|<1, 
else 0

• Biweight Kernel: KB(t) = 3/π.(1-t2)2 if |t|<1, else 0

Note: it is necessary to normalize the kernel, so the 
integration of the kernel over the input domain 
you get 1. Formulas above normalized for 2D 
domain.
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Relation to SearchingRelation to Searching

• Range search – given a fixed range query 

(sphere, ellipsoid), find all the photons in the 

range

• K nearest neighbor search – given a center of the 

expanding shape X (sphere, ellipsoid), find K 

nearest photons

– Without considering the direction of incoming 

photons

– With considering only valid photons with 

respect to the normal at point X



Lecture Content Below

• Offline search for many queries with two trees

• Special searching – ray maps etc.

• Data interpolation
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Even Faster: Aggregate Searching with Two 

Trees (several queries at once)

Even Faster: Aggregate Searching with Two 

Trees (several queries at once)
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Idea behind Aggregate SearchingIdea behind Aggregate Searching

• Idea: put similar queries together into one larger 
query

• Evaluate the big query by traversing the tree

• Limitations: 

you have to know all the queries in advance or the 
subsequent queries have to be similar 
(=coherent)

• Properties: depending on the implementation and 
size of the problem you can reach the speedup in 
practice between 4 to 8.
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The Method of Two Trees: Offline SearchThe Method of Two Trees: Offline Search
• Only if we know all the queries in advance before the first 

query is asked (=offline searching). We have to compute 
some incidence operations: NN-search or range-search.

• We need two trees:

– Tree over the data (to be queried)

– Tree over the queries (the second tree)

• We traverse the tree over the queries and compute the 
results in the tree over the data

– The second tree provides a coherence for the data 
access and it can be significantly faster

– It requires to store all the data: higher memory 
consumption

– If the number of queries is larger than the number of 
data, then if it is possible, exchange the role of the data 
and queries



38

Algorithm OverviewAlgorithm Overview

• Construct tree TD over the data

• Construct tree TQ over the queries

• Form an aggregate query AG by adding still 

unprocessed queries until the size of the 

aggregate query reaches a limit (size, number of 

points) – requires DFS trough TD

• Process AG by traversing TQ – if both children of 

an interior node should be processed:

– (A) Subdivide AG into two smaller queries

– (B) Process the individual queries
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Two Trees Searching for Photon MappingTwo Trees Searching for Photon Mapping
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Raymaps – Data Structure for RaysRaymaps – Data Structure for Rays

• We organize whole line segments (rays) in the kd-tree instead 

of storing points (photons)

• It requires lazily update/reconstruction of the kd-tree based on 

the coherent(=similar) queries

• It needs more memory than photon maps



41

Raymaps: Results for Direct VisualizationRaymaps: Results for Direct Visualization

Photon Maps                Ray Maps
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Data InterpolationData Interpolation

• Input: a set of vectors in Rn

• Output: interpolated vector in Rn

• There exist many interpolation methods based on 

different principles

• The implementation via searching:

– Shepard’s method + Renka’s

– Locally Supported Radial Basis Functions 

(RBFs)
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Shepard’s Algorithms for 2D and 3DShepard’s Algorithms for 2D and 3D

• We have M points (xr, yr, zr), r in <1, M>

• Interpolation in 3D is provided by formula:

Q(x,y,z) = 

[Sumi=1,m wr (x,y,z) * qr ] / [Sumi=1,m wr (x,y,z)], 

where

wr (x,y,z) = (1/dr(x,y,z))2, 

dr(x,y,z)2 = (x – xr)
2 + (y – yr )

2 + (z – zr )
2

Note: we take all data for each point, even if they are far away from (x,y,z)
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Renka’s method (1988)Renka’s method (1988)

• Localization of Shepard’s method

• Interpolation properties are better

• We take circular range search with the 

radius Rw

wr (x,y,z) = [(Rw - dr(x,y,z))+ / (Rw.dr(x,y,z)) ]2, 

Rw  - dr(x,y,z)   if  dr(x,y,z) < Rw

(Rw - dr,k(x,y,z))+=     0                    if  dr(x,y,z) > Rw
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Example and Testing of InterpolationExample and Testing of Interpolation

• Golden Standard method: define the 
function F, select some points, and try 
to recover the function – you can 
compare the result with ground truth = 
the function F

• Compute maximum error, root mean 
square error, etc. between interpolated 
results and function F to evaluate 
interpolation quality

100 point samples                      33 point samples                          25 point samples
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Example for 2D – Franke’s function for 2D 

functions used to test interpolation

Example for 2D – Franke’s function for 2D 

functions used to test interpolation

• F1(x,y) = 0.75 * exp(-((9x-2)2+(9y-2)2)/4)

+ 0.75 * exp(-(9x+2)2/49-(9y+1)/10)

+ 0.50 * exp(-((9x-7)2 + (9y-3)2/4)

- 0.20 * exp(-(9x-4)2 – (9y-7)2)

Note: it can be used to generate the data for 
homework: ray tracing height fields.

More in the paper: Renka+Brown, 1999, Algorithm 
792: Accuracy Tests of ACMU.



Thank you for your attention!
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