Data Structures for Computer Graphics

Proximity Search and its Applications II

Content

- Approximate range, NN, k-NN search
- Some applications of range search, NN search, and k-NN search in computer graphics

ε-approximate Nearest Neighbor

• Definition: for any $\varepsilon > 0$, we define a point "p" to be an

 ϵ -approximate nearest neighbor if dist(p,q) < (1+ ϵ)*dist(pt,q) where "pt" is a true nearest neighbor.

Algorithm for Approximate NN

- How to find an approximate nearest neighbor if we do not know the true nearest neighbor?
- Why do we need such an algorithm?
- Can our application use an approximate algorithm?

Approximate Search with Balanced Box Decomposition-trees (BBD-trees)

- Approximation can make search significantly faster with small degradation of result quality.
- Approximation is possible to use for rangesearch, NN search, and kNN search.
- The increased dimensionality makes a factor 2^d in search complexity for kd-trees, which makes approximate search viable for many applications in high-dimensional space.
- BBD-trees properties:
 - depth O(log N)
 - space O(N), (number of nodes O(N))
 - preprocessing time O(dN log N)
 - $(1+\varepsilon)$ approximation to NN-search in O($[1+6d/\varepsilon]^d * log N$)
 - $(1+\varepsilon)$ approximation to k-NN-search in O($(3+k+6d/\varepsilon)^d$ * log N) for k>1

Running Time Dependence on Epsilon

Average Error

BBD-Construction: fair splits + shrinking

 Fair split: geometric median in the largest extent, axis-aligned hyperplane. Two children have boxes of the same size:

- Shrinking:
 - an inner box
 - outer box (doughnut)

Simplest Build Algorithm

- Either carry out fair split or shrink such that
 - Fair split is preferred
 - Shrinking is performed only when it makes sense, so at least one of the faces of inner box does not lie on the outer box:

Yes, make shrinking.

Do not make shrinking, inner and outer box are equal.

Approximate NN-search with BBD-tree

- We use an algorithm similar to NN-search with a priority queue for child nodes to visit.
- Termination condition: we finish the search when the closest box in the priority queue is farther than dist(p,q)/(1+ε), where dist(p,q) is the distance to the nearest neighbor found so far.

Note: the proof for the properties of the algorithm is fairly involved and it can be found in:

Arya et al.: An Optimal Algorithm for Approximate Nearest Neighbor Searching in Fixed Dimensions, Journal of ACM, 1998.

Approximate NN-search with BBD-tree

- We keep the distance to the approximate NN (pk)
- We finish the search if the nodes to be traversed in priority que are in the distance farther than dist(pk,q)/(1+ε)

Approximate NN Search Algorithm in Brief

- Distance 'd' = infinity, approximate nearest neighbor 'N' = none
- Insert root node to PQ, dist 0
- 'node' = take closest one from PQ IF 'node' is leaf THEN Compute distance 'dL' to a point in leaf Record the nearest neighbor 'N' so far and update 'd' by 'dL' (if 'dL' < 'd') ELSE /* interior node */ Insert the farther child to PQ (distance d1) Insert the closer child to PQ (distance d2) **ENDIF** 'Dclosest' = the closest node to query in PQ UNTIL (d / (1+eps) > Dclosest)
- Report the approximate nearest neighbor 'N'

Approximate k-NN-search with BBD-tree

- The algorithm is similar to approximate NN-search.
- The sequence of k-nearest neighbors is stored in additional priority queue Q2 of fixed size k.
- We finish the search when the closest box in the priority queue is greater than dist(pk,q)/(1+ε), where dist(pk,q) is the distance to the k nearest neighbor in the priority queue Q2.

Approximate Circular Range Search

with BBD-trees

 The range is extended by epsilon, so we have

- inner radius "r"
- outer radius $r^*(1+\varepsilon)$
- We report all the cells, with maximum distance r*(1+ε) from the query point

Maximum distance to all found points is smaller than r*(1+ε)

Approximate Circular Range Search with BBD-trees – 4 cases in total for a box

Case 1

Do not include

Case 2

Fully include

(part of points can be approximate – red color)

Approximate Circular Range Search with BBD-trees – 4 cases in total for a box

Case 3

Case 4 – exactly resolved

Traverse to child nodes or process the points in leaves

Include or exclude

When counting – can terminate also for inner boxes

Applications of NN and k-NN search

- Photon Mapping
 - equivalent to density estimation: we are given the hits made by some simulation and we want to recover the probability density function
- Data interpolation
 - Approximation of measured data (for example range scanner) for digitization. Each data point is: coordinate in R^d + value
 - Point-based models: re-sampling
 - Many applications outside computer graphics

Photon Mapping Algorithm Review

- Photon shooting
 - Emission, scattering, storing into data structure
 - Similar to ray tracing

- Gathering
 - Ray tracing for direct illumination
 - Photon map visualization
 - → Indirect bounce

Photon Mapping – Two Phases: Shooting and Gathering

Results of Photon Mapping

Courtesy of Henrik Wann Jensen, 2001

Other example images by photon mapping

Final Gathering

- Shooting many secondary rays (possibly according to BRDF), gathering radiances from the rays
- The radiance along gather ray is computed via density estimation that requires kNN search or range search.
- Integrating the radiances properly to render image

Used for indirect diffuse illumination

Final Gathering in Numbers

- Each final gather ray requires density estimation that uses kNN search or range search
- The number of final gather rays is computed as:
- #pixels * #pixel samples * #rays per pixel sample
- 1000 x 1000 pixels * 5 samples per pixel * 1000 final gather rays per pixel sample = 5x10⁹ uses of kNN or range searches
- Each search operation requires to find 20-50 nearest neighbors
- Irradiance/radiance caching reuse some results!

Direct Visualization of Photon Maps

- Do not shoot final gather rays, use directly visible photons from camera (primary rays)
- The radiance is computed by density estimation
- It is prone to artifacts on object boundaries referred to as bias

 Used only for indirect specular illumination (caustics)

Example of Direct Visualization of Photon Map: why we need final gathering

Photon Hits

Direct Visualization

An Image with Final Gathering

Examples of Caustics

Estimating Radiance along Final Gather Ray

- Using the density estimation, from the photon hits estimating PDF
- It requires K nearest neighbor search for each final gather ray
- The number of final gather rays (the number of searches) is enormous (200-4000/ pixel)

Density Estimation Basics

Density Estimation: from samples we estimate probability density function p(x) ... more complicated *Note:* **Importance Sampling**: from given probability density function p(x) generate samples

Intro to Density Estimation

- Histogram method record hits into buckets
- Kernel density estimation
- K-Nearest neighbors estimator
- Variable kernel density estimator
- Multiple pass methods
 - First pass pilot estimate
 - Second pass final estimate
- We use some kernel function to weight the importance of samples for the estimate (the weight of samples decreases with the distance of a hit from the point to be estimated)

Kernel Types

Uniform

Gaussian

Epanechnikov (optimal kernel)

- High efficiency
- Simple formula

Biweight

Kernel Formulae for 2D problems

- Uniform Kernel: $K_U(t) = 1/2$ if |t| < 1, else 0
- Hat(Cone) Kernel: $K_H(t) = 3/4.(1-|t|)$ if |t| < 1, else 0
- Gaussian Kernel: $K_G(t) = 1/sqrt(2\pi).exp(-t^2/2)$
- Epanechnikov Kernel: K_E(t) = 3/4.(1-t²) if |t|<1, else 0
- Biweight Kernel: $K_B(t) = 3/\pi \cdot (1-t^2)^2$ if |t| < 1, else 0

Note: it is necessary to normalize the kernel, so the integration of the kernel over the input domain you get 1. Formulas above normalized for 2D domain.

Relation to Searching

- Range search given a fixed range query (sphere, ellipsoid), find all the photons in the range
- K nearest neighbor search given a center of the expanding shape X (sphere, ellipsoid), find K nearest photons
 - Without considering the direction of incoming photons
 - With considering only valid photons with respect to the normal at point X

Lecture Content Below

- Offline search for many queries with two trees
- Special searching ray maps etc.
- Data interpolation

Even Faster: Aggregate Searching with Two Trees (several queries at once)

- splitting planes of the spatial kd-treefirst intersected plane <=> start node
 - density estimation point (ep)
 - photon hit point

- leaf node containing ep
- searched leaf
- start node for individual queries
- I left child, r right child

Idea behind Aggregate Searching

- Idea: put similar queries together into one larger query
- Evaluate the big query by traversing the tree
- Limitations:
 - you have to know all the queries in advance or the subsequent queries have to be similar (=coherent)
- Properties: depending on the implementation and size of the problem you can reach the speedup in practice between 4 to 8.

The Method of Two Trees: Offline Search

- Only if we know all the queries in advance before the first query is asked (**=offline searching**). We have to compute some incidence operations: NN-search or range-search.
- We need two trees:
 - Tree over the data (to be queried)
 - Tree over the queries (the second tree)
- We traverse the tree over the queries and compute the results in the tree over the data
 - The second tree provides a coherence for the data access and it can be significantly faster
 - It requires to store all the data: higher memory consumption
 - If the number of queries is larger than the number of data, then if it is possible, exchange the role of the data and queries

Algorithm Overview

- Construct tree TD over the data
- Construct tree TQ over the queries
- Form an aggregate query AG by adding still unprocessed queries until the size of the aggregate query reaches a limit (size, number of points) – requires DFS trough TD
- Process AG by traversing TQ if both children of an interior node should be processed:
 - (A) Subdivide AG into two smaller queries
 - (B) Process the individual queries

Two Trees Searching for Photon Mapping

Raymaps – Data Structure for Rays

- We organize whole line segments (rays) in the kd-tree instead of storing points (photons)
- It requires lazily update/reconstruction of the kd-tree based on the coherent(=similar) queries
- It needs more memory than photon maps

Raymaps: Results for Direct Visualization

Photon Maps

Ray Maps

Data Interpolation

- Input: a set of vectors in Rⁿ
- Output: interpolated vector in Rⁿ
- There exist many interpolation methods based on different principles
- The implementation via searching:
 - Shepard's method + Renka's
 - Locally Supported Radial Basis Functions (RBFs)

Shepard's Algorithms for 2D and 3D

- We have M points (x_r, y_r, z_r), r in <1, M>
- Interpolation in 3D is provided by formula:

$$Q(x,y,z) =$$

 $[Sum_{i=1,m} \ w_r(x,y,z) * q_r] / [Sum_{i=1,m} \ w_r(x,y,z)],$ where

$$w_r(x,y,z) = (1/d_r(x,y,z))^2,$$

 $d_r(x,y,z)^2 = (x - x_r)^2 + (y - y_r)^2 + (z - z_r)^2$

Note: we take all data for each point, even if they are far away from (x,y,z)

Renka's method (1988)

- Localization of Shepard's method
- Interpolation properties are better
- We take circular range search with the radius R_w

Example and Testing of Interpolation

 Golden Standard method: define the function F, select some points, and try to recover the function – you can compare the result with ground truth = the function F

 Compute maximum error, root mean square error, etc. between interpolated results and function F to evaluate interpolation quality

25 point samples

Example for 2D – Franke's function for 2D functions used to test interpolation

Note: it can be used to generate the data for homework: ray tracing height fields.

More in the paper: Renka+Brown, 1999, Algorithm 792: Accuracy Tests of ACM....

Thank you for your attention!