
1

Data Structures for Computer Graphics

Proximity Search

and its Applications II

Lectured by Vlastimil Havran

2

ContentContent

• Approximate range, NN, k-NN search

• Some applications of range search, NN search,

and k-NN search in computer graphics

3

εεεε-approximate Nearest Neighborεεεε-approximate Nearest Neighbor

• Definition: for any ε > 0, we define a point “p” to
be an

ε−approximate nearest neighbor if

dist(p,q) < (1+ε)*dist(pt,q)

where “pt” is a true nearest neighbor.

p

pt

dist(pt,q)

q

(1+ε)dist(pt,q)

4

Algorithm for Approximate NNAlgorithm for Approximate NN

• How to find an approximate nearest neighbor if

we do not know the true nearest neighbor?

• Why do we need such an algorithm?

• Can our application use an approximate

algorithm?

5

Approximate Search with Balanced Box

Decomposition-trees (BBD-trees)

Approximate Search with Balanced Box

Decomposition-trees (BBD-trees)

• Approximation can make search significantly
faster with small degradation of result quality.

• Approximation is possible to use for range-
search, NN search, and kNN search.

• The increased dimensionality makes a factor 2d in
search complexity for kd-trees, which makes
approximate search viable for many applications
in high-dimensional space.

• BBD-trees properties:

– depth O(log N)

– space O(N), (number of nodes O(N))

– preprocessing time O(dN log N)

– (1+ε) approximation to NN-search in O([1+6d/ε]d * log N)

– (1+ε) approximation to k-NN-search in O((3+k+6d/ε)d * log N) for k>1

Running Time Dependence on Epsilon

Average Error

8

BBD-Construction: fair splits + shrinkingBBD-Construction: fair splits + shrinking

• Fair split: geometric

median in the largest

extent, axis-aligned

hyperplane. Two

children have boxes

of the same size:

• Shrinking:

– an inner box

– outer box (doughnut)

Low child High child

9

Simplest Build AlgorithmSimplest Build Algorithm

• Either carry out fair split or shrink such that

– Fair split is preferred

– Shrinking is performed only when it makes sense,

so at least one of the faces of inner box does not

lie on the outer box:

Yes, make shrinking.
Do not make shrinking,

inner and outer box are equal.

10

Approximate NN-search with BBD-treeApproximate NN-search with BBD-tree

• We use an algorithm similar to NN-search with a
priority queue for child nodes to visit.

• Termination condition: we finish the search when
the closest box in the priority queue is farther than
dist(p,q)/(1+ε), where dist(p,q) is the distance to
the nearest neighbor found so far.

Note: the proof for the properties of the algorithm is
fairly involved and it can be found in:

Arya et al.: An Optimal Algorithm for Approximate
Nearest Neighbor Searching in Fixed
Dimensions, Journal of ACM, 1998.

11

Approximate NN-search with BBD-treeApproximate NN-search with BBD-tree

• We keep the distance to the approximate NN (pk)

• We finish the search if the nodes to be traversed in

priority que are in the distance farther than

dist(pk,q)/(1+ε)

pt

dist(pt,q)

q

dist(pk,q)

pt - true nearest neighbor

pk - found approximate nearest neighbor

12

Approximate NN Search Algorithm in BriefApproximate NN Search Algorithm in Brief

• Distance ‘d’ = infinity, approximate nearest neighbor ‘N’ = none

• Insert root node to PQ, dist 0

• DO

‘node’ = take closest one from PQ

IF ‘node’ is leaf THEN

Compute distance ‘dL’ to a point in leaf

Record the nearest neighbor ‘N’ so far and update ‘d’ by ‘dL’ (if ‘dL’ < ‘d’)

ELSE /* interior node */

Insert the farther child to PQ (distance d1)

Insert the closer child to PQ (distance d2)

ENDIF

‘Dclosest’ = the closest node to query in PQ

UNTIL (d / (1+eps) > Dclosest)

• Report the approximate nearest neighbor ‘N’

13

Approximate k-NN-search with BBD-treeApproximate k-NN-search with BBD-tree

• The algorithm is similar to approximate NN-search.

• The sequence of k-nearest neighbors is stored in
additional priority queue Q2 of fixed size k.

• We finish the search when the closest box in the priority
queue is greater than dist(pk,q)/(1+ε), where dist(pk,q) is
the distance to the k nearest neighbor in the priority queue
Q2.

pk

pt

dist(pt,q)

q

dist(pk,q)

true k-nearest neighbor

- found approximate k-nearest neighbor

14

Approximate Circular Range Search

with BBD-trees

Approximate Circular Range Search

with BBD-trees

• The range is extended by epsilon,
so we have

– inner radius “r”

– outer radius r*(1+ε)

• We report all the cells, with
maximum distance r*(1+ε) from
the query point

r

Q

r*(1+ε)

• Faster compared to the exact algorithm

• Maximum distance to all found points is smaller than r*(1+ε)

15

Case 1 Case 2

Do not include Fully include

(part of points can be approximate – red color)

Approximate Circular Range Search

with BBD-trees – 4 cases in total for a box

Approximate Circular Range Search

with BBD-trees – 4 cases in total for a box

radius

q

radius

q

16

Case 3 Case 4 – exactly

resolved

Traverse to child nodes Include or exclude

or process the points in leaves

Approximate Circular Range Search

with BBD-trees – 4 cases in total for a box

Approximate Circular Range Search

with BBD-trees – 4 cases in total for a box

radius

q

radius

q

When counting – can terminate
also for inner boxes

17

Applications of NN and k-NN searchApplications of NN and k-NN search

• Photon Mapping

– equivalent to density estimation: we are given the hits

made by some simulation and we want to recover the

probability density function

• Data interpolation

– Approximation of measured data (for example

range scanner) for digitization. Each data point is:

coordinate in Rd + value

– Point-based models: re-sampling

– Many applications outside computer graphics

18

Photon Mapping Algorithm Review

• Photon shooting

– Emission, scattering,

storing into data structure

– Similar to ray tracing

• Gathering

– Ray tracing for direct

illumination

– Photon map visualization

�Indirect bounce

19

Photon Mapping – Two Phases: Shooting

and Gathering

Photon Mapping – Two Phases: Shooting

and Gathering

20

Results of Photon MappingResults of Photon Mapping

Courtesy of Henrik Wann Jensen, 2001

Other example images by photon mappingOther example images by photon mapping

21

22

Final GatheringFinal Gathering

• Shooting many secondary rays (possibly according to BRDF), gathering
radiances from the rays

• The radiance along gather ray is computed via density estimation that
requires kNN search or range search.

• Integrating the radiances properly to render image

• Used for indirect diffuse illumination

N

23

Final Gathering in NumbersFinal Gathering in Numbers

• Each final gather ray requires density estimation
that uses kNN search or range search

• The number of final gather rays is computed as:

#pixels * #pixel samples * #rays per pixel sample

• 1000 x 1000 pixels * 5 samples per pixel * 1000
final gather rays per pixel sample = 5x109 uses of
kNN or range searches

• Each search operation requires to find 20-50
nearest neighbors

• Irradiance/radiance caching – reuse some results!

24

Direct Visualization of Photon MapsDirect Visualization of Photon Maps

• Do not shoot final gather rays, use directly visible

photons from camera (primary rays)

• The radiance is computed by density estimation

• It is prone to artifacts on object boundaries

referred to as bias
N

• Used only for indirect

specular illumination

(caustics)

25

Example of Direct Visualization

of Photon Map: why we need final gathering

Example of Direct Visualization

of Photon Map: why we need final gathering

Photon Hits Direct Visualization

An Image with Final GatheringAn Image with Final Gathering

26

27

Examples of CausticsExamples of Caustics

28

Estimating Radiance along

Final Gather Ray

Estimating Radiance along

Final Gather Ray

• Using the density estimation, from the photon hits

estimating PDF

• It requires K nearest neighbor search for each final

gather ray

• The number of final gather rays (the number of

searches) is enormous (200-4000/ pixel)

29

Density Estimation Basics

Density Estimation: from samples we estimate

probability density function p(x) U more complicated

Note: Importance Sampling: from given probability

density function p(x) generate samples

30

Intro to Density EstimationIntro to Density Estimation

• Histogram method – record hits into buckets

• Kernel density estimation

• K-Nearest neighbors estimator

• Variable kernel density estimator

• Multiple pass methods

– First pass – pilot estimate

– Second pass – final estimate

• We use some kernel function to weight the
importance of samples for the estimate (the
weight of samples decreases with the distance
of a hit from the point to be estimated)

31

Kernel TypesKernel Types

• High efficiency

• Simple formula

Uniform Epanechnikov (optimal kernel)

Hat

Gaussian
Biweight

32

Kernel Formulae for 2D problemsKernel Formulae for 2D problems

• Uniform Kernel: KU(t) = 1/2 if |t|<1, else 0

• Hat(Cone) Kernel: KH(t) = 3/4.(1-|t|) if |t|<1, else 0

• Gaussian Kernel: KG(t) = 1/sqrt(2π).exp(-t2/2)

• Epanechnikov Kernel: KE(t) = 3/4.(1-t2) if |t|<1,
else 0

• Biweight Kernel: KB(t) = 3/π.(1-t2)2 if |t|<1, else 0

Note: it is necessary to normalize the kernel, so the
integration of the kernel over the input domain
you get 1. Formulas above normalized for 2D
domain.

33

Relation to SearchingRelation to Searching

• Range search – given a fixed range query

(sphere, ellipsoid), find all the photons in the

range

• K nearest neighbor search – given a center of the

expanding shape X (sphere, ellipsoid), find K

nearest photons

– Without considering the direction of incoming

photons

– With considering only valid photons with

respect to the normal at point X

Lecture Content Below

• Offline search for many queries with two trees

• Special searching – ray maps etc.

• Data interpolation

35

Even Faster: Aggregate Searching with Two

Trees (several queries at once)

Even Faster: Aggregate Searching with Two

Trees (several queries at once)

36

Idea behind Aggregate SearchingIdea behind Aggregate Searching

• Idea: put similar queries together into one larger
query

• Evaluate the big query by traversing the tree

• Limitations:

you have to know all the queries in advance or the
subsequent queries have to be similar
(=coherent)

• Properties: depending on the implementation and
size of the problem you can reach the speedup in
practice between 4 to 8.

37

The Method of Two Trees: Offline SearchThe Method of Two Trees: Offline Search
• Only if we know all the queries in advance before the first

query is asked (=offline searching). We have to compute
some incidence operations: NN-search or range-search.

• We need two trees:

– Tree over the data (to be queried)

– Tree over the queries (the second tree)

• We traverse the tree over the queries and compute the
results in the tree over the data

– The second tree provides a coherence for the data
access and it can be significantly faster

– It requires to store all the data: higher memory
consumption

– If the number of queries is larger than the number of
data, then if it is possible, exchange the role of the data
and queries

38

Algorithm OverviewAlgorithm Overview

• Construct tree TD over the data

• Construct tree TQ over the queries

• Form an aggregate query AG by adding still

unprocessed queries until the size of the

aggregate query reaches a limit (size, number of

points) – requires DFS trough TD

• Process AG by traversing TQ – if both children of

an interior node should be processed:

– (A) Subdivide AG into two smaller queries

– (B) Process the individual queries

39

Two Trees Searching for Photon MappingTwo Trees Searching for Photon Mapping

40

Raymaps – Data Structure for RaysRaymaps – Data Structure for Rays

• We organize whole line segments (rays) in the kd-tree instead

of storing points (photons)

• It requires lazily update/reconstruction of the kd-tree based on

the coherent(=similar) queries

• It needs more memory than photon maps

41

Raymaps: Results for Direct VisualizationRaymaps: Results for Direct Visualization

Photon Maps Ray Maps

42

Data InterpolationData Interpolation

• Input: a set of vectors in Rn

• Output: interpolated vector in Rn

• There exist many interpolation methods based on

different principles

• The implementation via searching:

– Shepard’s method + Renka’s

– Locally Supported Radial Basis Functions

(RBFs)

43

Shepard’s Algorithms for 2D and 3DShepard’s Algorithms for 2D and 3D

• We have M points (xr, yr, zr), r in <1, M>

• Interpolation in 3D is provided by formula:

Q(x,y,z) =

[Sumi=1,m wr (x,y,z) * qr] / [Sumi=1,m wr (x,y,z)],

where

wr (x,y,z) = (1/dr(x,y,z))2,

dr(x,y,z)2 = (x – xr)
2 + (y – yr)

2 + (z – zr)
2

Note: we take all data for each point, even if they are far away from (x,y,z)

44

Renka’s method (1988)Renka’s method (1988)

• Localization of Shepard’s method

• Interpolation properties are better

• We take circular range search with the

radius Rw

wr (x,y,z) = [(Rw - dr(x,y,z))+ / (Rw.dr(x,y,z))]2,

Rw - dr(x,y,z) if dr(x,y,z) < Rw

(Rw - dr,k(x,y,z))+= 0 if dr(x,y,z) > Rw

45

Example and Testing of InterpolationExample and Testing of Interpolation

• Golden Standard method: define the
function F, select some points, and try
to recover the function – you can
compare the result with ground truth =
the function F

• Compute maximum error, root mean
square error, etc. between interpolated
results and function F to evaluate
interpolation quality

100 point samples 33 point samples 25 point samples

46

Example for 2D – Franke’s function for 2D

functions used to test interpolation

Example for 2D – Franke’s function for 2D

functions used to test interpolation

• F1(x,y) = 0.75 * exp(-((9x-2)2+(9y-2)2)/4)

+ 0.75 * exp(-(9x+2)2/49-(9y+1)/10)

+ 0.50 * exp(-((9x-7)2 + (9y-3)2/4)

- 0.20 * exp(-(9x-4)2 – (9y-7)2)

Note: it can be used to generate the data for
homework: ray tracing height fields.

More in the paper: Renka+Brown, 1999, Algorithm
792: Accuracy Tests of ACMU.

Thank you for your attention!

47

