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Point Based Data

* Data represented by points in
multidimensional space (at least 2D)

* Many problems can be converted to point
based representation, possibly in high
dimensional space

* Data structures for points are usually
spatial subdivisions:

— Non-overlapping spatial cells
— Each data point is only once in the data structures



Data Structures Overview

* Uniform grid
* Point quadtree
* Pseudo-quadtree

e TRIE based data structures
— MX-tree
— PR-quadtree

* Point Kd-tree

* Adaptive point Kd-tree
 BSP tree

* D-tree



Uniform Grid Representations
(regular data structures)
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Uniform Grid Representations

* Cell is directly addressed.

* |In each cell index to the list of points
* Each point — two coordinates in 2D
* How to solve data collisions”?

Note A: it can also be used for 3D/4D, but
memory increase makes it difficult to use

Note B: efficient for relatively uniform
distribution of points, in particular in 2D



Point Quadtree in 2D

* Partitioning planes aligned with data points
* Leaves may also contain data points
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Point Quadtree Insertion
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Point Quadtree Deletion
* Reconstructing the whole subtree rooted at
node that contains the deleted point

 Candidate selection for new root in the area
based on L1 (Manhattan) metric
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Point Quadtree Operations Overview

* Insertion — subdividing the cell containing
more than one point

* Deletion of point A
— Find a new candidate for splitting

— ldentify, which subtrees rooted in A are affected by
deleting A

— ldentify all the points in the changed subtrees
— Find a new candidate for splitting
— Rebuild the tree
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Pseudo-Quadtree

Partitioning planes are not aligned with the data
Data are only in leaves

Insertion and in particular deletion is faster
Higher space requirements.
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Point Quadtrees versus

Pseudo Quadtrees
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TRIE based Quadtrees

 TRIE

— No data (points, positions) in interior nodes
— Discretization in shape of the tree

— Partitioning planes located exactly in the “middle” (spatial
median subdivision)

* Either the data are also aligned with the
discretization (MX-quadtree) or are specified
exactly in leaves (PR-quadtree)

 Due to the discretization

— Space complexity is lower

— Dealing with non-uniform distribution is worse than for
pseudo-quadtree
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Pseudo Quadtrees versus PR-Quadtrees
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PR-quadtrees
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Octrees

* Octree has the same principles as quadtree
but the different dimension.

* Quadtree organizes 2D space (=plane, axis
X and y), each interior node has 4 children

* QOctree organizes 3D space (axis X, y, and z),
each interior node has 8 children
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Kd-trees Introduction (year 1980)

* "K" in Kd-trees originally stands for the
dimensionality of the tree

* The arity (also called the branching factor = number
of child nodes) is always two irrespective of
dimensionality of the data points

* Kd-trees correspond the most closely to 1D binary
trees, but the interior nodes are interpreted
differently (in multidimensional space)

* Kd-trees are very efficient and for many algorithms
you can stay with kd-trees only

17



Point Kd-trees

* Organization of points similar to point quadtrees

* Partitioning planes are aligned with the data — the
data are also in the interior nodes
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Incrementally Building Up Kd-tree

* Assumption: taking the
points in random order

* Time complexity is then
O(N log N).
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Insertion and Deletion in Point Kd-trees

( Analogy to Point Quadtrees )

* Insertion * Deletion

— Simple — More difficult than insertion

— Requires location an

interior node N and

reconstruction of the whole
—_ Assuming I‘andom Ol‘der Subtree rooted at N

of points, cost is O(log N)

— Locate a leaf and insert
new partitioning plane

— Expected deletion cost is
O(log N), as most of the
data are near leaves
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Example Application: Range Search

* Arange is given by a rectangle (in 2D) / box
in (3D)

* Find all the points in the query rectangle
* Assumption: kd-tree is built
* Practical use:

— location of the cities around a visitor

— Analogy in databases: find out all the employees
with age from 30 to 50 and salary between 2,000
to 3,000 USD
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Range Search with Point kd-trees
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Adaptive Point Kd-trees

* |t also organizes point data, similar to
pseudo quadtrees

* The data are stored only in leaves

* The deletion is simpler

* The data storage is higher if partitioning is
carried out until each leaf contains a single
point

* Kd-trees enable to store more than one point
In a leaf, which can be efficient for some
gueries (range search)
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Adaptive Kd-tree Example
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Non-adaptive versus Adaptive Point Kd-tree
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Choosing Partitioning Plane

* Geometrically in the middle — the children
cells are of the same size

* By data median — half of the points on the
left and half of the points on the right (if the
number of points is even)

* By other means: by assumed query
distribution ("the minimum-ambiguity
kd-tree”), using cost function
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Choosing Partitioning Axis

* We have to decide in which axis we partition

a set of the data circumvented by a box Iin
the current node

* Methods:

— Round robin: x,y,z,x,y,....

— Maximum extent of the box — select an axis in
which box has maximum size

— Combination: with 30% in round robin fashion

based on the parent node and with 70% maximum
extent of the box
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Kd-tree Notes

* There exist many variants: kd-tree, adaptive
kd-tree, fair-split tree, VAMSplit kd-tree,
minimum-ambiguity kd-tree, bucket
generalized pseudo kd-tree, bucket adaptive
kd-tree, PR kd-tree etc.

* The way of selection partitioning plane
position and orientation is crucial for
performance of the data structures

* The selection of the appropriate or the most
efficient variant of kd-trees is application
dependent
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Example: Sliding-Midpoint kd-tree

* Efficient for range searching and kNN
searching (in the lecture 6/7)
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Sliding-Midpoint Kd-tree

* Partitioning plane in the middle:

— Points on both side: nothing happens

— Point on one side only: slide the partitioning plane to the nearest
data point
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Examples of Other Data Structures

A content of the interior node can be anything !

* Binary space partitioning tree (2D/3D) —
general plane

* D-tree — general polyline in 2D
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Binary Space Partitioning (BSP) trees

General partitioning planes, not aligned with main coordinate system

Note: in computer graphics often used for triangle-based scenes.
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D-trees

* For 2D: partitioning by polylines
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Compression Methods for
Point-Based Data Structures

* Quantization of the partitioning plane — do
not store the partitioning plane by floating
point representation, but say where it is In
the box relatively using limited number of
positions:
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Compression Methods for
Point-Based Data Structures

* Quantization of data positions (MX-trees)

* Round-robin fashion: if we use x,y,z,X,y...
fashion in regular way, we may not need to
store the axis orientation in the interior
nodes.

* Implicit pointers: for depth-first-search (DFS)
storage of interior nodes in the memory
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Method of Implicit Pointers

* Saving one pointer in each interior node
* Address in memory: A1, A2, A3

* Size of the node is fixed: S bytes
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Implicit pointers on 32-bit computers

* The addresses have to be aligned: Amod 8 = A
* 3 bits — type of the node (8 possibilities)

— Leaf node

— 7 types of interior nodes
* 29 bits as pointer to the right child
* Left child pointed explicitly by address A+8

* In 32 bits can be used to store the position of the splitting
plane (for kd-trees) or several quantized positions for
octrees etc.

* Interior nodes/leaves need then only 8 Bytes!
A tree has to be constructed in DFS order
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Practical Recommendations for Data
Structures over Point Data

* First, use a kd-tree, with appropriate
representation in the memory

— Sliding-midpoint kd-tree
— Implicit pointers
— Data only in leaves — fast insertion and deletion

* |If the performance or storage space of kd-trees is
iInsufficient, try to use a different data structure
suitable to the task

— Uniform grids if data are known to be sufficiently uniform
— Octrees and quadtrees, different versions

— Special trees such as BSP-trees or D-trees if the data and
searching algorithm fits to the task.
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Thank you for your attention!
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