
1

Data Structures for Computer Graphics

Point Based Representations

and Data Structures

Lectured by Vlastimil Havran

2

Point Based DataPoint Based Data

• Data represented by points in

multidimensional space (at least 2D)

• Many problems can be converted to point

based representation, possibly in high

dimensional space

• Data structures for points are usually

spatial subdivisions:

– Non-overlapping spatial cells

– Each data point is only once in the data structures

3

Data Structures OverviewData Structures Overview

• Uniform grid

• Point quadtree

• Pseudo-quadtree

• TRIE based data structures

– MX-tree

– PR-quadtree

• Point Kd-tree

• Adaptive point Kd-tree

• BSP tree

• D-tree

4

Uniform Grid Representations

(regular data structures)

Uniform Grid Representations

(regular data structures)

5

Uniform Grid RepresentationsUniform Grid Representations

• Cell is directly addressed.

• In each cell index to the list of points

• Each point – two coordinates in 2D

• How to solve data collisions?

Note A: it can also be used for 3D/4D, but

memory increase makes it difficult to use

Note B: efficient for relatively uniform

distribution of points, in particular in 2D

6

Point Quadtree in 2DPoint Quadtree in 2D

• Partitioning planes aligned with data points

• Leaves may also contain data points

7

Point Quadtree InsertionPoint Quadtree Insertion

Insertion order:

1) Chicago

2) Mobile

3) Buffalo

4) Toronto

5) Omaha

6) Denver

7) Atlanta

8

Point Quadtree DeletionPoint Quadtree Deletion

• Reconstructing the whole subtree rooted at

node that contains the deleted point

• Candidate selection for new root in the area

based on L1 (Manhattan) metric

9

Point Quadtree Deletion (point A)Point Quadtree Deletion (point A)

Before Deletion
After Deletion

10

Point Quadtree Operations OverviewPoint Quadtree Operations Overview

• Insertion – subdividing the cell containing

more than one point

• Deletion of point A

– Find a new candidate for splitting

– Identify, which subtrees rooted in A are affected by

deleting A

– Identify all the points in the changed subtrees

– Find a new candidate for splitting

– Rebuild the tree

11

Pseudo-QuadtreePseudo-Quadtree

• Partitioning planes are not aligned with the data

• Data are only in leaves

• Insertion and in particular deletion is faster

• Higher space requirements.

Point Quadtrees versus Pseudo QuadtreesPoint Quadtrees versus Pseudo Quadtrees

12

13

TRIE based QuadtreesTRIE based Quadtrees

• TRIE

– No data (points, positions) in interior nodes

– Discretization in shape of the tree

– Partitioning planes located exactly in the “middle” (spatial

median subdivision)

• Either the data are also aligned with the

discretization (MX-quadtree) or are specified

exactly in leaves (PR-quadtree)

• Due to the discretization

– Space complexity is lower

– Dealing with non-uniform distribution is worse than for

pseudo-quadtree

Pseudo Quadtrees versus PR-QuadtreesPseudo Quadtrees versus PR-Quadtrees

14

15

PR-quadtrees versus MX-treesPR-quadtrees versus MX-trees

16

OctreesOctrees

• Octree has the same principles as quadtree

but the different dimension.

• Quadtree organizes 2D space (=plane, axis

x and y), each interior node has 4 children

• Octree organizes 3D space (axis x, y, and z),

each interior node has 8 children

17

Kd-trees Introduction (year 1980)Kd-trees Introduction (year 1980)

• “K” in Kd-trees originally stands for the

dimensionality of the tree

• The arity (also called the branching factor = number

of child nodes) is always two irrespective of

dimensionality of the data points

• Kd-trees correspond the most closely to 1D binary

trees, but the interior nodes are interpreted

differently (in multidimensional space)

• Kd-trees are very efficient and for many algorithms

you can stay with kd-trees only

18

Point Kd-treesPoint Kd-trees

• Organization of points similar to point quadtrees

• Partitioning planes are aligned with the data – the

data are also in the interior nodes

19

Incrementally Building Up Kd-treeIncrementally Building Up Kd-tree

• Assumption: taking the

points in random order

• Time complexity is then

O(N log N).

20

Insertion and Deletion in Point Kd-treesInsertion and Deletion in Point Kd-trees

• Insertion

– Simple

– Locate a leaf and insert

new partitioning plane

– Assuming random order

of points, cost is O(log N)

• Deletion

– More difficult than insertion

– Requires location an

interior node N and

reconstruction of the whole

subtree rooted at N

– Expected deletion cost is

O(log N), as most of the

data are near leaves

(Analogy to Point Quadtrees)

21

Example Application: Range SearchExample Application: Range Search

• A range is given by a rectangle (in 2D) / box

in (3D)

• Find all the points in the query rectangle

• Assumption: kd-tree is built

• Practical use:

– location of the cities around a visitor

– Analogy in databases: find out all the employees

with age from 30 to 50 and salary between 2,000

to 3,000 USD

22

Range Search with Point kd-treesRange Search with Point kd-trees

• Given a partitioning
plane, there are three
cases for traversal:

– visit only left child

– visit both children

– visit only right child

Q

23

Adaptive Point Kd-treesAdaptive Point Kd-trees

• It also organizes point data, similar to

pseudo quadtrees

• The data are stored only in leaves

• The deletion is simpler

• The data storage is higher if partitioning is

carried out until each leaf contains a single

point

• Kd-trees enable to store more than one point

in a leaf, which can be efficient for some

queries (range search)

24

Adaptive Kd-tree ExampleAdaptive Kd-tree Example

25

Non-adaptive versus Adaptive Point Kd-treeNon-adaptive versus Adaptive Point Kd-tree

26

Choosing Partitioning PlaneChoosing Partitioning Plane

• Geometrically in the middle – the children
cells are of the same size

• By data median – half of the points on the
left and half of the points on the right (if the
number of points is even)

• By other means: by assumed query
distribution (“the minimum-ambiguity
kd-tree”), using cost function

27

Choosing Partitioning AxisChoosing Partitioning Axis

• We have to decide in which axis we partition
a set of the data circumvented by a box in
the current node

• Methods:

– Round robin: x,y,z,x,y,I.

– Maximum extent of the box – select an axis in
which box has maximum size

– Combination: with 30% in round robin fashion
based on the parent node and with 70% maximum
extent of the box

28

Kd-tree NotesKd-tree Notes

• There exist many variants: kd-tree, adaptive
kd-tree, fair-split tree, VAMSplit kd-tree,
minimum-ambiguity kd-tree, bucket
generalized pseudo kd-tree, bucket adaptive
kd-tree, PR kd-tree etc.

• The way of selection partitioning plane
position and orientation is crucial for
performance of the data structures

• The selection of the appropriate or the most
efficient variant of kd-trees is application
dependent

29

Example: Sliding-Midpoint kd-treeExample: Sliding-Midpoint kd-tree

• Efficient for range searching and kNN

searching (in the lecture 6/7)

30

Sliding-Midpoint Kd-treeSliding-Midpoint Kd-tree

• Partitioning plane in the middle:

– Points on both side: nothing happens

– Point on one side only: slide the partitioning plane to the nearest
data point

31

Examples of Other Data StructuresExamples of Other Data Structures

A content of the interior node can be anything !

• Binary space partitioning tree (2D/3D) –

general plane

• D-tree – general polyline in 2D

32

Binary Space Partitioning (BSP) treesBinary Space Partitioning (BSP) trees

• General partitioning planes, not aligned with main coordinate system

• Note: in computer graphics often used for triangle-based scenes.

33

D-treesD-trees

• For 2D: partitioning by polylines

34

Compression Methods for

Point-Based Data Structures

Compression Methods for

Point-Based Data Structures

• Quantization of the partitioning plane – do

not store the partitioning plane by floating

point representation, but say where it is in

the box relatively using limited number of

positions:
0 1 2 3 4 5 6 7

35

Compression Methods for

Point-Based Data Structures

Compression Methods for

Point-Based Data Structures

• Quantization of data positions (MX-trees)

• Round-robin fashion: if we use x,y,z,x,yI

fashion in regular way, we may not need to

store the axis orientation in the interior

nodes.

• Implicit pointers: for depth-first-search (DFS)

storage of interior nodes in the memory

36

Method of Implicit PointersMethod of Implicit Pointers

• Saving one pointer in each interior node

• Address in memory: A1, A2, A3

• Size of the node is fixed: S bytes

A1 data L R A data R

A+S data R

A+2.S data R

A2 data L R

A3 data L R

37

Implicit pointers on 32-bit computersImplicit pointers on 32-bit computers

• The addresses have to be aligned: A mod 8 = A

• 3 bits – type of the node (8 possibilities)

– Leaf node

– 7 types of interior nodes

• 29 bits as pointer to the right child

• Left child pointed explicitly by address A+8

• In 32 bits can be used to store the position of the splitting
plane (for kd-trees) or several quantized positions for
octrees etc.

• Interior nodes/leaves need then only 8 Bytes!

• A tree has to be constructed in DFS order

38

Practical Recommendations for Data

Structures over Point Data

Practical Recommendations for Data

Structures over Point Data

• First, use a kd-tree, with appropriate
representation in the memory

– Sliding-midpoint kd-tree

– Implicit pointers

– Data only in leaves – fast insertion and deletion

• If the performance or storage space of kd-trees is
insufficient, try to use a different data structure
suitable to the task

– Uniform grids if data are known to be sufficiently uniform

– Octrees and quadtrees, different versions

– Special trees such as BSP-trees or D-trees if the data and
searching algorithm fits to the task.

Thank you for your attention!

39

