Data Structures for Computer Graphics

Point Based Representations
and Data Structures

Lectured by Vlastimil Havran

Point Based Data

* Data represented by points in
multidimensional space (at least 2D)

* Many problems can be converted to point
based representation, possibly in high
dimensional space

* Data structures for points are usually
spatial subdivisions:

— Non-overlapping spatial cells
— Each data point is only once in the data structures

Data Structures Overview

* Uniform grid
* Point quadtree
* Pseudo-quadtree

e TRIE based data structures
— MX-tree
— PR-quadtree

* Point Kd-tree

* Adaptive point Kd-tree
 BSP tree

* D-tree

Uniform Grid Representations
(regular data structures)
(0,100) (100,100)

(62,77)
Toronto
®

(82,65)
-.Buffalo

(5,45) | (35,42)
Denver | Chicago
: @

R |
. (27,35) (85, 1 5)
Omaha Atlanta
o
(52,10) @ (90,5)
Mobile Miami ®

(0,0) X ey (100,0)

Uniform Grid Representations

* Cell is directly addressed.

* |In each cell index to the list of points
* Each point — two coordinates in 2D
* How to solve data collisions”?

Note A: it can also be used for 3D/4D, but
memory increase makes it difficult to use

Note B: efficient for relatively uniform
distribution of points, in particular in 2D

Point Quadtree in 2D

* Partitioning planes aligned with data points
* Leaves may also contain data points

(0,100) (100,100)
(62,77)
Toronto
(82,65)
Buffalo
@
(5,45) (35,42)
eDenver ‘Chicago

Y1 (27,35) e Chicago
Omaha (85,1 5)
(52,10) Atlanta
Mobile ¢ Denver

(90,5) o

Miami .
(0,0) X — 5 (100,0) Buffalo Atlanta Miami

(@) (b)

Mobile

Point Quadtree Insertion

(0,100) (100,100) (0,100) (100,100)
(62,77)
Toronto
82,65)
uffalo
*
(35,42) (35,42)
Chicago Chicago
(52,10) (52,10)
Mobile Mobile
[[]
(0,0) X & (100,0) (0,0 X — (100,0)
() (b)
(0,100) (100,100) (0,100) (100,100)
(62,77) (62,77)
Toronto Toronto
82,65) 82,65)
uffalo uffalo
[] ®
(5,45) (35,42) (5,45) (35,42)
eDenver |Chicago -| eDenver |[Chicago
(27,35) (27.35)
Omaha Omaha (85,15)
(52,10) (52,10) Atlanta
Mobile Mobile [
[]
Gt
(0,0) X — (100,00 . :(0,0) X— (100,0)

(©)

(d

Insertion order:
1) Chicago

2) Mobile

3) Buffalo

4) Toronto

5) Omaha

6) Denver

7) Atlanta

Point Quadtree Deletion
* Reconstructing the whole subtree rooted at
node that contains the deleted point

 Candidate selection for new root in the area
based on L1 (Manhattan) metric

l

|

| Node to

| be deleted
i 5 4

|

|

Winning |
node I dea
|

| Lx >

After Deletion

E |

HGC

KD

Before Deletion

Point Quadtree Deletion (point A)

Point Quadtree Operations Overview

* Insertion — subdividing the cell containing
more than one point

* Deletion of point A
— Find a new candidate for splitting

— ldentify, which subtrees rooted in A are affected by
deleting A

— ldentify all the points in the changed subtrees
— Find a new candidate for splitting
— Rebuild the tree

10

Pseudo-Quadtree

Partitioning planes are not aligned with the data
Data are only in leaves

Insertion and in particular deletion is faster
Higher space requirements.

(0,100) (100,100)
(62,77)
Toronto
* |@2,71)
—®-
®(32,65)
(5,45) {(43,55) Buffalo
Denver| (35,42) (43,55)
® Chicago
@
(16,38)]
(27,3b)
Omaha (85,15)
Atlanta
(68,12)i .
(52%10) (90,5) _ S
Mobile Miami Toronto Buffalo 1 Chicago Omaha Atlanta © Miami

(0,0) X (100,0) Denver Mobile

Point Quadtrees versus

Pseudo Quadtrees

(0,100) (100,100) (0,100) (100,100)
(62,77) (62,77)
Toronto Torc.)nto
&2 L
. (5.45) (43,55) .5382&6?)
y : uffalo
(5,45) (35,42) Denver| (35,42) |
eDenver *Chicago ° Chicago
g7,35) . " (G638 e
maha (85,15) (27,35)
' 85,15
(52,10) Atlanta Omaha el
Mobile ¢ (68,12) | o
(90,5) o (52M10) | (90,5)
Miami Mobile Miami
(0,0) X — (10010) (0.0) X —— (100‘0)
Chicago
(43,55)
Mobile

Denver

Atlanta Miami

Buffalo * Chicago Omaha Atlanta © Miami

Toronto .
Denver Mobile

12

TRIE based Quadtrees

 TRIE

— No data (points, positions) in interior nodes
— Discretization in shape of the tree

— Partitioning planes located exactly in the “middle” (spatial
median subdivision)

* Either the data are also aligned with the
discretization (MX-quadtree) or are specified
exactly in leaves (PR-quadtree)

 Due to the discretization

— Space complexity is lower

— Dealing with non-uniform distribution is worse than for
pseudo-quadtree

13

Pseudo Quadtrees versus PR-Quadtrees

(0,100) (100,100)
| |
' (62,77) !
Toronto
* |@271)
Z ®(82,65)
t1(645) (4359 Buffalo|
Denver| (35,42) |
° | Chicago ‘
y . °
[(16,38) - |
, | (27,35) |
‘ Omaha (85,15)
Atlanta
) (68,12) o |
‘ (52%0) | (90.5)
' _ Mobile | Miami
(0,0) 3 (100,0)
(43,55)

\

o 2]
Toronto Buffalo * Chicago Omaha
Denver

Atlanta © Miami
Mobile

Toronto Buffalo

Chicago Omaha Atlanta Miami

(0,100) (100,100)
(62,77)
Toronto
[]
[)
(82,65)
| (5,45) Buffalo
e Denver | (35,42)
(27,35)}¢ | Chicago
Omahal (85,15)
Atlanta
(52,10) . ®
Mobile (90.,5) |o
(0,0) X ——>» Miami (100,0)
(a)
A

14

PR-quadtrees

(0,100) (100,100)
(62,77)
Toronto
[)
[]
(82,65)
| (5,45) Buffalo
e Denver | (35,42)
y (27,35)[e Chicago :
Omahal (85,15) |
Atlanta
(52,10) .) 1
Mobile (905) |o
(0,0) X ——> Miami (100,0)
(a)
A

Denver
Toronto Buffalo

Chicago Omaha Atlanta Miami

versus MX-trees

(0.8 (8,8)
(62,77)
Toronto
: (82,65) ¢
Buffalo
I (5.45) | (35.42)
y Denver fhicago
(27,35) (85,15)
Omaha JAtlanta
(52,10) (90,5)
Mobile lemi
(0!0) X ——» (850)
(a)
O Bq QC n D
Eqd o o uF Gg Hoa oo o d gl

Toronto Buffalo Denver Chicago Omaha Mobile

0] L]
Atlanta Miami

15

Octrees

* Octree has the same principles as quadtree
but the different dimension.

* Quadtree organizes 2D space (=plane, axis
X and y), each interior node has 4 children

* QOctree organizes 3D space (axis X, y, and z),
each interior node has 8 children

16

Kd-trees Introduction (year 1980)

* "K" in Kd-trees originally stands for the
dimensionality of the tree

* The arity (also called the branching factor = number
of child nodes) is always two irrespective of
dimensionality of the data points

* Kd-trees correspond the most closely to 1D binary
trees, but the interior nodes are interpreted
differently (in multidimensional space)

* Kd-trees are very efficient and for many algorithms
you can stay with kd-trees only

17

Point Kd-trees

* Organization of points similar to point quadtrees

* Partitioning planes are aligned with the data — the
data are also in the interior nodes

(0,100) (100,100)
62,77
'I('orontc))‘ (82,65)
Buffalo
—.——_
(5,45)
Denver |
y $(35,42)
® |Chicago
(27,35) 9 (85,15
Omaha | (52,10) Atlanta
Mogile L
(90,5) e
Miam——
(0,0) X—=> (100,0)

(@)

Chicago

Denver Mobile

Toronto

Omaha Miami

Buffalo

Atlanta
(b)

18

Incrementally Building Up Kd-tree

* Assumption: taking the
points in random order

* Time complexity is then
O(N log N).

< —_—

(0,100) (100,100) (0,100) (100,100)
(62,77),
Toronto
| (35.42) | (35,42)
Chicago Chicago
(52,10) (52,10)
Mobile Njobile
X 100,0 0,0 X— 100,0
(0,0 @ () (0,0 ®) ()
(0,100) (100,100) (0,100) (100,100)
(62,77) 82,65 (62,77) 82,65
Toronto (Buffalg Torontot (Buﬁalcz
* (5,45) *
Denver (35,42)
| (35,42) . N
Chicago @7 35). Chicago
52,10 y (62,10)
gllobile) Omaha | vy bile
(0,0) X— (100,0) (0,0) X— (100,0)

(©

(@

19

Insertion and Deletion in Point Kd-trees

(Analogy to Point Quadtrees)

* Insertion * Deletion

— Simple — More difficult than insertion

— Requires location an

interior node N and

reconstruction of the whole
—_ Assuming I‘andom Ol‘der Subtree rooted at N

of points, cost is O(log N)

— Locate a leaf and insert
new partitioning plane

— Expected deletion cost is
O(log N), as most of the
data are near leaves

20

Example Application: Range Search

* Arange is given by a rectangle (in 2D) / box
in (3D)

* Find all the points in the query rectangle
* Assumption: kd-tree is built
* Practical use:

— location of the cities around a visitor

— Analogy in databases: find out all the employees
with age from 30 to 50 and salary between 2,000
to 3,000 USD

21

Range Search with Point kd-trees

. . ° o * Given a partitioning
, N plane, there are three
. T o | cases for traversal:
. 9 _ visit only left child
® [) @ Q PS . .
o . o o — visit both children
— visit only right child
® ® ® ® ® ®
® © o
@ o ® o ® o @) © ® @)
© o O o * %
@) o ® ®) o @ ®
° ® ® ®

22

Adaptive Point Kd-trees

* |t also organizes point data, similar to
pseudo quadtrees

* The data are stored only in leaves

* The deletion is simpler

* The data storage is higher if partitioning is
carried out until each leaf contains a single
point

* Kd-trees enable to store more than one point
In a leaf, which can be efficient for some
gueries (range search)

23

Adaptive Kd-tree Example

(0,100) (100,100)
(62,77)
Toronto (82,65)
Buffalo
[]
(5,45)
Denver, (35,42)
° .Chlcago
(27,35)
Omaha
(52,10) (85,15)
Mobile Atlanta ®
¢ (90,5) ,
Miami
(0,0) X —> (100,0)

(a)

57,X

Denver Omaha Mobile Chicago Miami
(5,45) (27,35) (52,10) (3542) (90,5)

(b)

(85,15) (62,77)

72,X

Atlanta Toronto Buffalo

(82,65)

24

Non-adaptive versus Adaptive Point Kd-tree

(0,100) (100,100)
(62,77)
¢ (82,65)
Toronto Buffalo
(5,45)
Denver |
y ®(35,42)
® | Chicago
(27,35) 9 (@5.15)
Omaha | (52,10) Atlanta
Mogile ®
(90,5) o
Miami——
(0,0) X > (100,0)
(@)
Chicago
Denver Mobile
Toronto
Omaha Miami

Buffalo

Atlanta
(b)

(0,100) (100,100)
(62,77)
Toronto | * (82,65)
Buffalo
[)]
5,45
[genvgr (35,42)
° .Chlcago
* [(27,35)
Omaha
(52,10) (85,15)
Mobile Atlanta ®
¢ (90,5 4
Miami
(0,0) X —> (100,0)

57,X

Denver Omaha Mobile Chicago Miami Atlanta Toronto Buffalo
(5,45) (27,35) (52,10) (35.42) (90,5) (B5,15) (62,77) (82,65)

(b) 6

Choosing Partitioning Plane

* Geometrically in the middle — the children
cells are of the same size

* By data median — half of the points on the
left and half of the points on the right (if the
number of points is even)

* By other means: by assumed query
distribution ("the minimum-ambiguity
kd-tree”), using cost function

26

Choosing Partitioning Axis

* We have to decide in which axis we partition

a set of the data circumvented by a box Iin
the current node

* Methods:

— Round robin: x,y,z,x,y,....

— Maximum extent of the box — select an axis in
which box has maximum size

— Combination: with 30% in round robin fashion

based on the parent node and with 70% maximum
extent of the box

27

Kd-tree Notes

* There exist many variants: kd-tree, adaptive
kd-tree, fair-split tree, VAMSplit kd-tree,
minimum-ambiguity kd-tree, bucket
generalized pseudo kd-tree, bucket adaptive
kd-tree, PR kd-tree etc.

* The way of selection partitioning plane
position and orientation is crucial for
performance of the data structures

* The selection of the appropriate or the most
efficient variant of kd-trees is application
dependent

28

Example: Sliding-Midpoint kd-tree

* Efficient for range searching and kNN
searching (in the lecture 6/7)

29

Sliding-Midpoint Kd-tree

* Partitioning plane in the middle:

— Points on both side: nothing happens

— Point on one side only: slide the partitioning plane to the nearest
data point

(0,100) (100,100)

(62,77)
Torgnto

(82,65)
B%ﬁalo

Denver _ __ _ _ _ ‘ Denver

*| Shcagh Omaha Chicago Mobile Toronto Buffalo

maha

(52,10)|,
Mobile 90,5) 4

|

[N I (P,

| (85,15) o

,r' Aﬂanta_ojv__. | o Atlanta Miami
! |

|

: Miami
(0,0) X ——> (100,0)

30

Examples of Other Data Structures

A content of the interior node can be anything !

* Binary space partitioning tree (2D/3D) —
general plane

* D-tree — general polyline in 2D

31

Binary Space Partitioning (BSP) trees

General partitioning planes, not aligned with main coordinate system

Note: in computer graphics often used for triangle-based scenes.

(0,100)

(100,100)

(27,35)
Omaha

(62,77)
Torgmto

(82,65)
Buffalo
®

(35,42)
Chicago

(85,15)
g Atlanta
®

(0,0)

[)
(90,5)
‘ﬁ%&%’ %/ Miami®
X > (100,0)

(@)

Omaha Denver Toronto Chicago Miami Mobile Atlanta Buffalo
(27,35) (5,45) (62,77) (35.42) (90,5) (52,10) (85,15) (82,65)

(b)

32

D-trees

* For 2D: partitioning by polylines

(0,100) (100,100)
(62,77)
Toronto
®
(82,65)
Buffalo
)
(5.45) (35,42)
y | Qenver Chicago
® K
(85,15)
(52,10 Allanta Denver Omaha Chicago Mobile Toronto Buffalo Atlanta Miami
Mabile 005” (5,45) (27.,35) (35,42) (52,10) (62,77) (82,65) (85,15) (90,5)
FL-Miami®
(0,0) X ———> (100,0)

33

Compression Methods for
Point-Based Data Structures

* Quantization of the partitioning plane — do
not store the partitioning plane by floating
point representation, but say where it is In
the box relatively using limited number of
positions:

34

Compression Methods for
Point-Based Data Structures

* Quantization of data positions (MX-trees)

* Round-robin fashion: if we use x,y,z,X,y...
fashion in regular way, we may not need to
store the axis orientation in the interior
nodes.

* Implicit pointers: for depth-first-search (DFS)
storage of interior nodes in the memory

35

Method of Implicit Pointers

* Saving one pointer in each interior node
* Address in memory: A1, A2, A3

* Size of the node is fixed: S bytes

A1]| data L

R

/

A2 | data L

R

N\

A+2.S

data

R
R

N

36

Implicit pointers on 32-bit computers

* The addresses have to be aligned: Amod 8 = A
* 3 bits — type of the node (8 possibilities)

— Leaf node

— 7 types of interior nodes
* 29 bits as pointer to the right child
* Left child pointed explicitly by address A+8

* In 32 bits can be used to store the position of the splitting
plane (for kd-trees) or several quantized positions for
octrees etc.

* Interior nodes/leaves need then only 8 Bytes!
A tree has to be constructed in DFS order

37

Practical Recommendations for Data
Structures over Point Data

* First, use a kd-tree, with appropriate
representation in the memory

— Sliding-midpoint kd-tree
— Implicit pointers
— Data only in leaves — fast insertion and deletion

* |If the performance or storage space of kd-trees is
iInsufficient, try to use a different data structure
suitable to the task

— Uniform grids if data are known to be sufficiently uniform
— Octrees and quadtrees, different versions

— Special trees such as BSP-trees or D-trees if the data and
searching algorithm fits to the task.

38

Thank you for your attention!

39

