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Data Structures for Computer Graphics

Incidence Operations used 

in Computer Graphics
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Incidence Operation UsageIncidence Operation Usage

• Testing the data against query, typically in leaves of 
a hierarchical data structure

• Query is represented by some geometric entity 
(point, shape, or another hierarchy)

• Incidence operation classification:

– Intersection detection – Boolean result (yes/no)

– Distance computation – distance between query and data 
(or penetration depth)

– Intersection computation – intersection between the query 
and the data (a point on the ray intersecting triangle)

– Other constructive queries – computes also some other 
results (example: closest points between two lines)
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Common Incidence ExamplesCommon Incidence Examples

• Does sphere (query) contain a point (data) ?

• Does the sphere (query) intersect a sphere 

(data) ?

• Does the sphere (query) completely contain a 

sphere (data)?

• Does a query ray intersect a sphere/triangle 

(data) ? (and where?)

• Does a box intersect another box (collision 

detection) ?
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Distance IncidenceDistance Incidence

• What is a distance between (query) point 
and data point ?

• What is a minimum/maximum distance 
between query point and a box ?

• What is a distance between query point and 
some more complex shape (cone, cylinder, 
NURBS) ? For closed forms:

– Positive distance : outside the object

– Negative distance: inside the object

– Zero distance: on the object’s surface
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Multiple IncidenceMultiple Incidence

• Compute the distance between the data and many 

queries at once

• Could be programmed by a loop

• Specialized algorithms are usually more efficient 

(branch prediction, spatial and data locality in 

cache, use of SSE instructions, preprocess queries)

• Examples: 

– compute for N rays the intersection with a single triangle

– compute for a ray the intersection with 4 triangles 

(implementation by SSE instructions)
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Types of Primitives used in IncidenceTypes of Primitives used in Incidence

• 1D (line based): 2D line, 2D line segment, 2D 
ray, 3D line, 3D line segment, 3D ray. 

• 2D planar (plane based): plane, triangle, convex 
polygon, general polygon, polygon with holes.

• Quadrics: sphere, (capped) cylinder, (capped) 
cone, ellipsoid.

• 3D shapes: axis-aligned bounding box (AAAB), 
oriented bounding box (OBB), discrete orientation 
polytope (k-DOP),  viewing frustum, convex 
polyhedron, non-convex polyhedron.

• Hundreds of of mutual combinations!
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Dynamic Incidences on ObjectsDynamic Incidences on Objects

• Typically used in collision detection

• Either only one or both objects are moving

• Typical examples

– Ray/moving sphere

– Ray/moving triangle

– Ray/moving AAAB or OBB

– Plane/moving sphere or AAAB

– Moving sphere/sphere or triangle

– Moving triangle/moving triangle

Note: AABB – axis aligned bounding box

OBB – oriented bounding box
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Non-Oriented Minkowski SumNon-Oriented Minkowski Sum

• Uses sphere as adding primitive

• Formally A+B = {x+y: x in A, y in B} 

– x and y vectors from A and B, resp.

• Corresponds to a convolution

• Note: Minkowski sum of convex objects is convex
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Oriented Minkowski Sum Oriented Minkowski Sum 

• Uses any primitive to add original shape

+ =
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Use of Minkowski Sum and DifferenceUse of Minkowski Sum and Difference

• In collision detection

• Instead of computing collision detection with original 

shape, we compute collision detection with the 

object(s) extended by Minkowski sum

• Use simpler query primitive for collision (point, ray)

• Directly only for precise computation, it could be 

expensive

• Indirectly the principles can be used in the design of 

incidence algorithms
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More about 2D Minkowski SumMore about 2D Minkowski Sum

• http://cs.gmu.edu/~jmlien/research/mksum/

• http://en.wikipedia.org/wiki/Minkowski_addition

• http://cs.stonybrook.edu/~algorith/files/minkowski-

sum.shtml

• http://www.geometrylab.de/minkowski/index.html.en

• http://www.cgal.org/Manual/3.4/doc_html/cgal_man

ual/Minkowski_sum_2/Chapter_main.html
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Computation Precision Computation Precision 

• Exact

– gives correct results (up to number representation precision)  

• Conservative

• if says no, then no; if says yes, then maybe

• Aggressive

• if says yes, then yes; if says no, then maybe

• Approximate

– No answer is sure

– Usually relative maximum error with respect to the size of 
object or absolute maximum error

– It can be much faster than exact computation
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Penetration Depth: for Collision DetectionPenetration Depth: for Collision Detection

• Definition: If two objects intersect, then the 
penetration depth is the minimum distance 
you have to move one object that the 
objects do not intersect

• Example:

d
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Bounding Volumes (BV)Bounding Volumes (BV)

• Bounding volume encloses the objects or a 

set of objects

• Desirable properties:

– Inexpensive intersection test (between two BVs)

– Tight fitting of BV to the object

– Inexpensive computation of BV given an object

– Easy to rotate and transform

– Small use of memory



15

BV Usage in ApplicationsBV Usage in Applications

• Collision detection in conservative test: if 

two BVs do not intersect, then neither 

objects intersect.

• Ray tracing with BV is also conservative: if a 

ray does not intersect BV of an object, then 

ray cannot intersect an object

BV

objectray
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BV TypesBV Types

• Sphere

• Axis-Aligned Bounding Box (AABB)

• Oriented Bounding Box (OBB)

• Discrete Orientation Polytope (k-DOP)

• Convex-Hull
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BV Types and PropertiesBV Types and Properties
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K-DopsK-Dops

• k=6: AABB (6-DOP is exactly AABB)

– directions (1,0,0), (0,1,0), (0,0,1) 

• k=14: chamfer vertices

– add directions (1,1,1), (1,-1,1), (-1,1,1), (1,1,-1) 

• k=18: chamfer edges

– add directions (1,1,0), (1,-1,0), (1,0,1), (1,0,-1), (0,1,1), (0,1,-1) 

• k=26: chamfer vertices and edges

Example of 8-DOP in 2D:
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Example 1: Sphere and PointExample 1: Sphere and Point

• Trivial to compute for

– Point (Px,Py,Pz)

– Sphere center (Sx,Sy,Sz) and radius R

• Point inside a sphere: 

(Px-Sx)2 + (Py-Sy)2 + (Pz-Sz)2 < R2
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Example 2: Sphere versus SphereExample 2: Sphere versus Sphere

• Also trivial to compute for

– Sphere center (Px,Py,Pz) and radius R2

– Sphere center (Sx,Sy,Sz) and radius R1

• Point inside a sphere: 

(Px-Sx)2 + (Py-Sy)2 + (Pz-Sz)2 < (R1+R2)2
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Example 3: AABB over set of pointsExample 3: AABB over set of points

• For each coordinate x, y, z                      

AABB min(x) = min(x) for all points

• The same for AABB over set of AABBs
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Sphere - AABB intersection testSphere - AABB intersection test

• Easy cases: A and C

• More difficult cases: B and D

• What about 3D sphere/AABB ?

A

BC

D
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Viewing Frustum - SphereViewing Frustum - Sphere

• Viewing frustum can be seen as expanding 

AABB along some direction:

• Note that for 2D viewing frustum is easy to 

solve, for 3D viewing frustum more difficult !

A

B

C
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View Frustum - AABBView Frustum - AABB

• View frustum can be arbitrarily oriented

• The viewing frustum can be decomposed 

into four triangles:
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Method: DecompositionMethod: Decomposition

• Easy case: center of the box inside viewing 

frustum

• Otherwise viewing frustum is decomposed 

into simple primitives (triangles)

• Each triangle can be tested separately, if 

intersection is found for any triangle, then it 

exists

• Easier problem: rectangle against triangle
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Generic Method: 

Separating Axis Theorem (SAT)

Generic Method: 

Separating Axis Theorem (SAT)

• SAT: two convex objects A and B are disjoint if for some 
vector V  the projections V.A and V.B do not overlap.

– SAT can be applied to all facets of both convex polytopes 
and to all planes given by two faces, the first face of object 
A and the second face of object B

– V defines an axis, a plane perpendicular to axis has two 
halfspaces: positive halfspace contains the first object and 
negative halfspace contains the second object.

[[
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Separating Axis Theorem (SAT)Separating Axis Theorem (SAT)
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SAT for box versus box in 3DSAT for box versus box in 3D

• 3 axis for the first box normals

• 3 axis for the second box normals

• 3 x 3 = 9 axis for all vector products for normal of 

the first box and normal of the second box

• In total 15 tests

More in the paper: S. Gottschalk, M. Lin, and D. 

Manocha. “OBBTree: A hierarchical Structure for 

rapid interference detection,” Proc. Siggraph 96. 

ACM Press, 1996. 
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SAT for some combinationsSAT for some combinations

Polytope Polytope Number of axes
for testing

Line segment Triangle 0+1+(1x3)=4

Line segment Box 0+3+(1x3)=6

Triangle Triangle 1+1+(3x3)=11

Triangle Box 1+3+(3x3)=13

Box Box 3+3+(3x3)=15
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Literature - SurveyLiterature - Survey

• 3D Object Intersection page 

http://www.realtimerendering.com/intersections.html

ray, plane, sphere, cylinder, cone, triangle, 

AABB, OBB, frustum, polyhedron

times

ray, plane, sphere, cylinder, cone, triangle, 

AABB, OBB, frustum, polyhedron
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Minkowski Sum ProofMinkowski Sum Proof

• w1, w2 in A + B

• x1, x2 in A

• y1, y2 in B

• w1 = x1 + y1

• w2 = x2 + y2

• Any convex combination of w1 and w2 is a point in 

A+B

• Convex combination:

w = k1 * w1 + k2 * w2,      k1 + k2 = 1, k1>0, k2>0
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w = k1.(x1 + y1) + k2.(x2 + y2) =

= k1.x1 + k2.x2 + k1.y1 + k2.y2 = x + y

, where   x = k1.x1 + k2.x2

y = k1.y1 + k2.y2

That is    x V convex combination of x1 and x2

y V convex combination of y1 and y2

Since A and B are convex, that is for any x1 in 

A, x2 in A, y1 in B, y2 in B and also x in A, y 

in B also holds w=x+y in (A+B)
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Some ISSUES to think aboutSome ISSUES to think about

1. Does have Minkowski sum symmetry, i.e.,             

is A+B “equal to” B+A ?

2. What about specifying Minkowski difference 

as A-B similarly to A+B ?

3. Is Minkowski sum and difference reversible 

operation, i.e.:

• Is (A+B) – B “equal to” A  ?

• Is (A-B) + B “equal to” A  ?
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ExercisesExercises

• Point-box min/max method

• Ray-box min/max method

• Ray-triangle

• Ray-sphere

• Advanced task: two AABB – do they cover 

completely another specified AABB ?


