
1

Data Structures for Computer Graphics

Incidence Operations used

in Computer Graphics

Lectured by Vlastimil Havran

2

Incidence Operation UsageIncidence Operation Usage

• Testing the data against query, typically in leaves of
a hierarchical data structure

• Query is represented by some geometric entity
(point, shape, or another hierarchy)

• Incidence operation classification:

– Intersection detection – Boolean result (yes/no)

– Distance computation – distance between query and data
(or penetration depth)

– Intersection computation – intersection between the query
and the data (a point on the ray intersecting triangle)

– Other constructive queries – computes also some other
results (example: closest points between two lines)

3

Common Incidence ExamplesCommon Incidence Examples

• Does sphere (query) contain a point (data) ?

• Does the sphere (query) intersect a sphere

(data) ?

• Does the sphere (query) completely contain a

sphere (data)?

• Does a query ray intersect a sphere/triangle

(data) ? (and where?)

• Does a box intersect another box (collision

detection) ?

4

Distance IncidenceDistance Incidence

• What is a distance between (query) point
and data point ?

• What is a minimum/maximum distance
between query point and a box ?

• What is a distance between query point and
some more complex shape (cone, cylinder,
NURBS) ? For closed forms:

– Positive distance : outside the object

– Negative distance: inside the object

– Zero distance: on the object’s surface

5

Multiple IncidenceMultiple Incidence

• Compute the distance between the data and many

queries at once

• Could be programmed by a loop

• Specialized algorithms are usually more efficient

(branch prediction, spatial and data locality in

cache, use of SSE instructions, preprocess queries)

• Examples:

– compute for N rays the intersection with a single triangle

– compute for a ray the intersection with 4 triangles

(implementation by SSE instructions)

6

Types of Primitives used in IncidenceTypes of Primitives used in Incidence

• 1D (line based): 2D line, 2D line segment, 2D
ray, 3D line, 3D line segment, 3D ray.

• 2D planar (plane based): plane, triangle, convex
polygon, general polygon, polygon with holes.

• Quadrics: sphere, (capped) cylinder, (capped)
cone, ellipsoid.

• 3D shapes: axis-aligned bounding box (AAAB),
oriented bounding box (OBB), discrete orientation
polytope (k-DOP), viewing frustum, convex
polyhedron, non-convex polyhedron.

• Hundreds of of mutual combinations!

7

Dynamic Incidences on ObjectsDynamic Incidences on Objects

• Typically used in collision detection

• Either only one or both objects are moving

• Typical examples

– Ray/moving sphere

– Ray/moving triangle

– Ray/moving AAAB or OBB

– Plane/moving sphere or AAAB

– Moving sphere/sphere or triangle

– Moving triangle/moving triangle

Note: AABB – axis aligned bounding box

OBB – oriented bounding box

8

Non-Oriented Minkowski SumNon-Oriented Minkowski Sum

• Uses sphere as adding primitive

• Formally A+B = {x+y: x in A, y in B}

– x and y vectors from A and B, resp.

• Corresponds to a convolution

• Note: Minkowski sum of convex objects is convex

9

Oriented Minkowski Sum Oriented Minkowski Sum

• Uses any primitive to add original shape

+ =

10

Use of Minkowski Sum and DifferenceUse of Minkowski Sum and Difference

• In collision detection

• Instead of computing collision detection with original

shape, we compute collision detection with the

object(s) extended by Minkowski sum

• Use simpler query primitive for collision (point, ray)

• Directly only for precise computation, it could be

expensive

• Indirectly the principles can be used in the design of

incidence algorithms

11

More about 2D Minkowski SumMore about 2D Minkowski Sum

• http://cs.gmu.edu/~jmlien/research/mksum/

• http://en.wikipedia.org/wiki/Minkowski_addition

• http://cs.stonybrook.edu/~algorith/files/minkowski-

sum.shtml

• http://www.geometrylab.de/minkowski/index.html.en

• http://www.cgal.org/Manual/3.4/doc_html/cgal_man

ual/Minkowski_sum_2/Chapter_main.html

12

Computation Precision Computation Precision

• Exact

– gives correct results (up to number representation precision)

• Conservative

• if says no, then no; if says yes, then maybe

• Aggressive

• if says yes, then yes; if says no, then maybe

• Approximate

– No answer is sure

– Usually relative maximum error with respect to the size of
object or absolute maximum error

– It can be much faster than exact computation

13

Penetration Depth: for Collision DetectionPenetration Depth: for Collision Detection

• Definition: If two objects intersect, then the
penetration depth is the minimum distance
you have to move one object that the
objects do not intersect

• Example:

d

14

Bounding Volumes (BV)Bounding Volumes (BV)

• Bounding volume encloses the objects or a

set of objects

• Desirable properties:

– Inexpensive intersection test (between two BVs)

– Tight fitting of BV to the object

– Inexpensive computation of BV given an object

– Easy to rotate and transform

– Small use of memory

15

BV Usage in ApplicationsBV Usage in Applications

• Collision detection in conservative test: if

two BVs do not intersect, then neither

objects intersect.

• Ray tracing with BV is also conservative: if a

ray does not intersect BV of an object, then

ray cannot intersect an object

BV

objectray

16

BV TypesBV Types

• Sphere

• Axis-Aligned Bounding Box (AABB)

• Oriented Bounding Box (OBB)

• Discrete Orientation Polytope (k-DOP)

• Convex-Hull

17

BV Types and PropertiesBV Types and Properties

18

K-DopsK-Dops

• k=6: AABB (6-DOP is exactly AABB)

– directions (1,0,0), (0,1,0), (0,0,1)

• k=14: chamfer vertices

– add directions (1,1,1), (1,-1,1), (-1,1,1), (1,1,-1)

• k=18: chamfer edges

– add directions (1,1,0), (1,-1,0), (1,0,1), (1,0,-1), (0,1,1), (0,1,-1)

• k=26: chamfer vertices and edges

Example of 8-DOP in 2D:

19

Example 1: Sphere and PointExample 1: Sphere and Point

• Trivial to compute for

– Point (Px,Py,Pz)

– Sphere center (Sx,Sy,Sz) and radius R

• Point inside a sphere:

(Px-Sx)2 + (Py-Sy)2 + (Pz-Sz)2 < R2

20

Example 2: Sphere versus SphereExample 2: Sphere versus Sphere

• Also trivial to compute for

– Sphere center (Px,Py,Pz) and radius R2

– Sphere center (Sx,Sy,Sz) and radius R1

• Point inside a sphere:

(Px-Sx)2 + (Py-Sy)2 + (Pz-Sz)2 < (R1+R2)2

21

Example 3: AABB over set of pointsExample 3: AABB over set of points

• For each coordinate x, y, z

AABB min(x) = min(x) for all points

• The same for AABB over set of AABBs

22

Sphere - AABB intersection testSphere - AABB intersection test

• Easy cases: A and C

• More difficult cases: B and D

• What about 3D sphere/AABB ?

A

BC

D

23

Viewing Frustum - SphereViewing Frustum - Sphere

• Viewing frustum can be seen as expanding

AABB along some direction:

• Note that for 2D viewing frustum is easy to

solve, for 3D viewing frustum more difficult !

A

B

C

24

View Frustum - AABBView Frustum - AABB

• View frustum can be arbitrarily oriented

• The viewing frustum can be decomposed

into four triangles:

=

1

2

3

4

1
2

2

3

3

4
1

4

+

25

Method: DecompositionMethod: Decomposition

• Easy case: center of the box inside viewing

frustum

• Otherwise viewing frustum is decomposed

into simple primitives (triangles)

• Each triangle can be tested separately, if

intersection is found for any triangle, then it

exists

• Easier problem: rectangle against triangle

26

Generic Method:

Separating Axis Theorem (SAT)

Generic Method:

Separating Axis Theorem (SAT)

• SAT: two convex objects A and B are disjoint if for some
vector V the projections V.A and V.B do not overlap.

– SAT can be applied to all facets of both convex polytopes
and to all planes given by two faces, the first face of object
A and the second face of object B

– V defines an axis, a plane perpendicular to axis has two
halfspaces: positive halfspace contains the first object and
negative halfspace contains the second object.

[[

[

[
[A

B

[

[
[

27

Separating Axis Theorem (SAT)Separating Axis Theorem (SAT)

28

SAT for box versus box in 3DSAT for box versus box in 3D

• 3 axis for the first box normals

• 3 axis for the second box normals

• 3 x 3 = 9 axis for all vector products for normal of

the first box and normal of the second box

• In total 15 tests

More in the paper: S. Gottschalk, M. Lin, and D.

Manocha. “OBBTree: A hierarchical Structure for

rapid interference detection,” Proc. Siggraph 96.

ACM Press, 1996.

29

SAT for some combinationsSAT for some combinations

Polytope Polytope Number of axes
for testing

Line segment Triangle 0+1+(1x3)=4

Line segment Box 0+3+(1x3)=6

Triangle Triangle 1+1+(3x3)=11

Triangle Box 1+3+(3x3)=13

Box Box 3+3+(3x3)=15

30

Bibliographic ResourcesBibliographic Resources
• 3D Games: Real-time Rendering and Software Technology, Watt and Policarpo,

Addison Wesley, 2001

• Game Programming Gems, DeLoura, Charles River Media, 2000

• Geometric Tools for Computer Graphics, Schneider and Eberly, MKP, 2002

• The Graphics Gems Series (books)

• Introduction to Ray Tracing, ed. Glassner, Academic Press, 1989

• Journal of Graphics Tools (on web)

• Geometric Tools repository by Dave Eberly

• Real Time Collision Detection, Ericson, MKP, 2004

• Collision Detection in Interactive 3D environments, van den Bergen, MKP 2004

• Real Time Rendering, 3rd edition, Tomas Akenine-Moeller and Eric Haines, A.K.
Peters Ltd. 2008

• Simple Geometric Library by Steve Baker’s

• Talina Gaming System Collision by Andrew Aye

31

Literature - SurveyLiterature - Survey

• 3D Object Intersection page

http://www.realtimerendering.com/intersections.html

ray, plane, sphere, cylinder, cone, triangle,

AABB, OBB, frustum, polyhedron

times

ray, plane, sphere, cylinder, cone, triangle,

AABB, OBB, frustum, polyhedron

Thank you for your attention!

32

33

Minkowski Sum ProofMinkowski Sum Proof

• w1, w2 in A + B

• x1, x2 in A

• y1, y2 in B

• w1 = x1 + y1

• w2 = x2 + y2

• Any convex combination of w1 and w2 is a point in

A+B

• Convex combination:

w = k1 * w1 + k2 * w2, k1 + k2 = 1, k1>0, k2>0

34

w = k1.(x1 + y1) + k2.(x2 + y2) =

= k1.x1 + k2.x2 + k1.y1 + k2.y2 = x + y

, where x = k1.x1 + k2.x2

y = k1.y1 + k2.y2

That is x V convex combination of x1 and x2

y V convex combination of y1 and y2

Since A and B are convex, that is for any x1 in

A, x2 in A, y1 in B, y2 in B and also x in A, y

in B also holds w=x+y in (A+B)

35

Some ISSUES to think aboutSome ISSUES to think about

1. Does have Minkowski sum symmetry, i.e.,

is A+B “equal to” B+A ?

2. What about specifying Minkowski difference

as A-B similarly to A+B ?

3. Is Minkowski sum and difference reversible

operation, i.e.:

• Is (A+B) – B “equal to” A ?

• Is (A-B) + B “equal to” A ?

36

ExercisesExercises

• Point-box min/max method

• Ray-box min/max method

• Ray-triangle

• Ray-sphere

• Advanced task: two AABB – do they cover

completely another specified AABB ?

