
1

Data Structures for Computer Graphics

Introduction to

Regular and Hierarchical

Data Structures

Lectured by Vlastimil Havran

2

Regular Data Structures (RegDS)Regular Data Structures (RegDS)

• RegDS contain some regular element, such as the
bucket of the same size, repeated many times.

• The number of elements is often proportional to the
number of input data. (Order O(N)).

• Data dimensionality either in 1D (array), 2D, 3D,
4D, etc.

• The search sometimes possible in O(1) time.

• They perform for uniform data distributions very
well.

• They do not perform well with the data that exhibit
skewed (=non-uniform) distributions.

3

RegDS Example:

Ray Tracing with Uniform Grids

RegDS Example:

Ray Tracing with Uniform Grids

4

Hierarchical Data Structures (HDS)Hierarchical Data Structures (HDS)

• Why do we need a hierarchy ?

• Common concept used by mankind (in Latin
Divide et Impera): Divide and Conquer

• Hierarchy enables delegating tasks from a
single subject to several subordinate
subjects. If there is nobody to delegate the
task, you have to do it yourself.

• Efficient means to master the complexity and
specialization required by complex tasks.

5

Hierarchy Example (simplified) Hierarchy Example (simplified)
President/Premiere Minister

Minister of Education

Vice-Dean of CTU in Prague

Dean of the Faculty of

Electrical Engineering

Head of Computer Graphics

and Interaction Department

A4M39DPG teacher

Student

6

Hierarchy Example 2: Biological PedigreeHierarchy Example 2: Biological Pedigree

Student

Mother Father

Grand-mother Grand-father Grand-mother Grand-father

Grand-grand-mother Grand-grand-father

7

In Real LifeIn Real Life

• Similar problems and solutions

In Computer Graphics ApplicationsIn Computer Graphics Applications

• You are the part of many hierarchies in your

life, be aware of that !

• During the life people move in the

hierarchies up and down.

• Note: some levels can be sometimes

skipped – if you have good luck.

8

Hierarchical RepresentationHierarchical Representation

= tree or even a graph (DAG)

interior node

leaf

root

9

• Connection to sorting

• Classification

• Bounding volume hierarchies (BVH)

• Spatial subdivisions

• Hybrid data structures

• HDS construction algorithm

• Searching algorithm with HDS

• HDS for dynamic data

Hierarchical Data Structures

(HDS)

10

Connection to Sorting

Hierarchical Data Structures =

implementation of (spatial) sorting

Why ?

• Time complexity is O(N log N)

• Space complexity is O(N)

• For 1D hierarchy over “points” the HDS

construction is clearly equivalent to

quicksort

11

Recall Quicksort

• Pick up a pivot Q

• Organize the data into two subarrays:

the left part smaller than pivot Q, the

right part larger or equal than pivot Q

• Recurse in both subarrays

12

D

B
A

C

D

B
A

C

Examples of HDS in 2D/3D

D

B
A

C

D

B
A

C

quadtree

(octree)
kd-tree

hierarchy

of grids

bounding

volume

hierarchy

Note that pivot is selected differently to 1D quicksort !

13

HDS Classification

• Data domain organization

• Dimensionality

• Data layout

14

HDS Classification

• Spatial subdivisions – primarily organizing

space (non-overlapping regions)

• Object hierarchies – primarily organizing

objects (possibly overlapping regions)

• Hybrid data structures – spatial subdivisions

mixed with object hierarchies

• (Transformations and mappings)

1) Data domain organization of HDS

15

HDS Classification

2) Dimensionality of HDS

• Necessary to represent data entities: 1D, 2D, 3D,

4D, or 5D

• Data entities: points, lines, oriented half-lines,

disks, oriented hemispheres, etc.

• Possibility to extend many problems to

time domain (so plus one dimension)

16

HDS Classification

Motivation: Memory Hierarchy =
Spatial and temporal data locality

3) HDS data layout

CPU

Cache L1

Cache L2
Main

Memory

Disk

8-64KBytes

0.5-6MBytes 1-16GBytes
64-1000GBytes

17

HDS Classification

Latency/Block Size per one transfer

3) HDS data layout

CPU

Cache L1

Cache L2
Main

Memory

Disk

8-12ms

16-64KB
50-100ns

32-128B

1-5 ns

32-256B

0.2-0.5ns

18

Hardware Note: SSD disksHardware Note: SSD disks

• SSD = solid state drive

• In principle it is a flash disk emulating SATA
interface

• No mechanical parts

• Two basic versions (MLC = multi level cell
and SLC = single level cell)

• Pros: latency in order of microseconds

• Cons: price (significantly higher than for
ordinary disks of the same capacity)

19

HDS Classification

• Internal data structures (use only internal

memory)

• External data structures (sometimes

called „out of core“)

• Cache-aware data structures (knowing the

block sizes and properties of hierarchy)

• Cache oblivious data structures (no cache

parameters available, but the caching is

assumed)

3) HDS data layout

20

Node Types in HDS

• An interior node represents a “pivot” –

according to pivot the data entities are

sorted

• Typical content is a subdivision plane or a

set of planes plus references to child

nodes

• The content of interior node is crucial for

the performance of the searching problem

21

Spatial Subdivisions

• Non-overlapping regions of child nodes

• Space is organized by some (cutting) entities,

typically by planes, constructed top-down

• Fully covering an original spatial region, point

location always possible in some (empty or

non-empty) leaf

• They are often called space partitionings

D

BA

C

kd-tree

22

Spatial Subdivision Examples

• Kd-trees – axis aligned planes

• BSP-trees – arbitrary planes

• Octrees – three axis aligned planes in a node

(Quadtrees – two axis aligned planes)

• Uniform grids (regular subdivision)

• Recursive grids

23

Object Hierarchies

• Possibly overlapping extents of child nodes

• Many different names - often called bounding

volume hierarchies

• Possibly some spatial regions are not covered

by an object hierarchy - point location is then

impossible

• Construction methods

– top-down (sorting)

– bottom-up (clustering)

– incrementally (by insertion)

24

Names used for Object Hierarchies

• Bounding Volume Hierarchies (BVHs)

• R-trees and their many variants

• Box-trees

• Several others (special sort of bounding

volumes... sphere trees etc.)

25

Bounding Volume Hierarchies

Constructed Top-Down

(The shape represented by interior nodes typically a box,

but other shapes as spheres also possible)

26

Hybrid Data Structures

• Combining between various interior nodes

• E.g. possibly combining between spatial

subdivisions and object hierarchies

• Sharing pros and cons of both types

• They can be tuned to compromise some

properties, for example efficiency and

memory requirements

27

Other HDS

• Content of the node – a single splitting plane,

more splitting planes, a box, and some

additional information.

• Arity of a node (also named as branching

factor, fanout factor)

• A way of constructing a tree (height, weight

balancing) + postprocessing

• Data only in leaves or also in interior nodes

• Augmenting data

28

Example of Other HDSExample of Other HDS

• Cell trees (polyhedral shapes for splitting)

• SKD-trees (two splitting planes at once)

• hB-trees (holey brick B-trees)

• LSD-tree (height balanced kd-tree)

• P-trees (polytope trees)

• BBD-trees (bounding box decomposition trees)

• And many others

(For details see book [Samet06])

29

HDS Transformation Approach

• Input: A spatial object in 2D or 3D domain,

for example a box

• Output: A point in 4D or 6D domain

• More complicated mapping is possible, for

example a sphere in 3D maps to a 4D

point

• The transformation often changes the

searching algorithm completely

30

Construction Algorithm (Top-Down)

Top-Down, Divide and Conquer:

(1) If AS is empty, then the algorithm stops.

(2) Take a node from an auxiliary data structure AS.

(2) Investigate a set of elements in the node and decide

if to subdivide or not. If not to subdivide, then create a

leaf and go to step (1).

(3) Decide how to split the set into two (N) subsets and

create new nodes. Distribute the content to the nodes.

(4) Put the new nodes to AS. Go to step (1).

Initial Phase: create a node with all elements and put it to

the auxiliary structure AS (stack or priority queue).

31

Search Algorithms using HDS

• Start from the root node

• Typically down traversal phase (location

phase) + some other phase

• During visiting an interior node use either a

stack (LIFO) or priority queue to record the

nodes that are not visited now (but they are

to be visited in future)

• Compute incidence (such as ray-object

intersection) when visiting a leaf

Note: auxiliary structure implements another

sorting phase during searching

32

Search Algorithms using HDS

• Range queries – given a range X, find all the
incidences of X with data

• Nearest neighbour – find a nearest neighbor

• k-nearest neighbour

• Intersection search – given a point Q, find all
the objects that contain Q

• Ranking – given a query object Q, report on
all the objects in order of distance from Q

• Reverse nearest neighbours – given a point
Q, find all the points to which Q is nearest
neighbour

33

Search Performance Model

• Result = the cost of computation ... C

• Performance is proportional to the quality

of the data structures for given problem

• The two uses of performance model

– a posteriori: documenting and testing

performance

– a priori: constructing data structures with higher

expected performance

34

Search Performance Model

• CT N cost of traversing the nodes of HDS

• CL N cost of incidence operation in leaves

• CR N cost of accessing the data from

internal or external memory

Typical cost model:

C = CT + CL + CR

C = CTS * NTS + CLO * NLO + CACCESS * NACCESS

35

Performance ModelPerformance Model

• CT N cost of traversing the nodes of HDS

– NTS N number of traversal steps per query

– CTS N average cost of a single traversal step

• CL N cost of incidence operation in leaves

– NLO N number of incidence operation per query

– CLO N average cost of incidence operation

• CR N cost of accessing the data from
internal or external memory

– NACCESS N number of read operations from
internal/external memory per query

– CACCESS N average cost of read operation

36

HDS for Dynamic Data - Introduction

• Two major options:

– Rebuild HDS after the data changes from scratch

– Update only necessary part of HDS

� Insertion method

� Postorder processing

• Design considerations:

– How much data are changed (M from N entities)

– How efficient would be the updated data structures

now and in the longer run?

– How much time is required in both methods?

37

Rebuild from ScratchRebuild from Scratch

• Construction time is typically O(N log N)

• The constants behind big-O notation are

important in practice !

• Suitable if most objects are moving (M ≈ N)

• Quality of hierarchy is high !

• Hint: (Top-down HDS) Number of exchange

operations can be decreased significantly if

we keep the order given by the previous

hierarchy for incremental data changes.

38

HDS updates

• Given changes, only update data structures to reflect

these changes

• It is assumed that the performance of searching

remains acceptable after update, but no guarantees

• Updates requires additional bookkeeping data to

monitor the cost/quality of a HDS node and the subtree

associated with the node

• Techniques known for 1D trees (rotation, balancing)

are often not applicable

• It is usually required to update larger amount of data at

once (bulk updating)

39

HDS updatesHDS updates

• Insertion method – delete and reinsert the data in

the tree (also deferred insertion)

– Suitable if the number of changed objects is small

– Each insertion/deletion requires O(log N)

– Necessary delete and update some interior nodes

• Postorder processing (only for object hierarchies)

– Suitable if number of changed objects is high

– First update all leaves (data itself)

– Traverse the whole tree in O(N) and reconstruct interior

nodes of object hierarchy knowing both children

– Possible structrural changes in the tree and further updates

Thank you for your attention!

40

