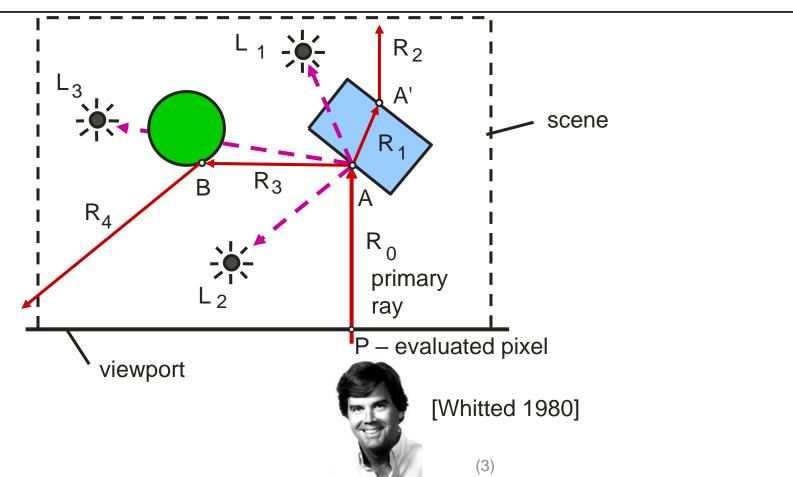


Ray Tracing


Jiří Bittner

Outline

Whitted Ray Tracing
MPG 15.9

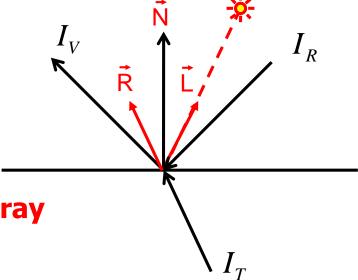
Ray Tracing Acceleration MPG 15.9.3

Ray Tracing Principle

(Backward) Ray Tracing - Algorithm

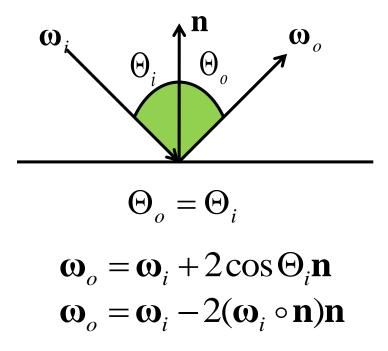
TraceRay (Ray *R*, recursion depth *H*)

- 1. Find intersection P of R with the nearest object
- If no intersection // ray leaves the scene assign R background color and terminate
- 3. For all light sources: cast a **shadow ray** from *P*.


if the shadow ray reaches the light source mark it visible

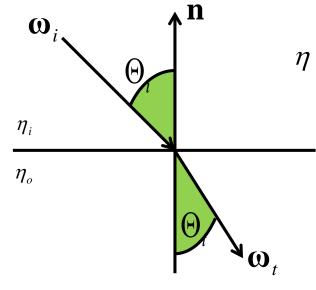
- 4. Evaluate light contribution at P from all visible light sources
- 5. If H < max depth:
 - (a) **TraceRay** (Reflected ray RR, H + 1)
 - (b) **TraceRay** (Refracted ray RT, H + 1)
- 6. Assign to R the resulting color using sum of illumination from light sources and RR and RT

Extending Illumination Model


- $I_V = I_a + I_r + I_t + \sum I_d + I_s$
- I_a ambient component
 - I_d diffuse component
 - I_s specular component
- $I_r = k_s I_R$ $I_t = k_t I_T$ Recursion

Shadow ray

- k_s ... specular coef.
- k_t ... transmittance coef.


Direction of Reflected Ray

Refracted Ray

$$\eta_i \sin \theta_i = \eta_o \sin \theta_t$$
 Snell's law

$$\boldsymbol{\omega}_t = \eta_{io} \boldsymbol{\omega}_i - \left[\sqrt{1 - \eta_{io}^2 (1 - \cos^2 \theta_i)} + \eta_{io} \cos \theta_i \right] \mathbf{n} \qquad \eta_{io} = \frac{\eta_i}{\eta_o}$$

index of refraction (air 1.000293, water 1.33, glass 1.6, diamond 2.4)

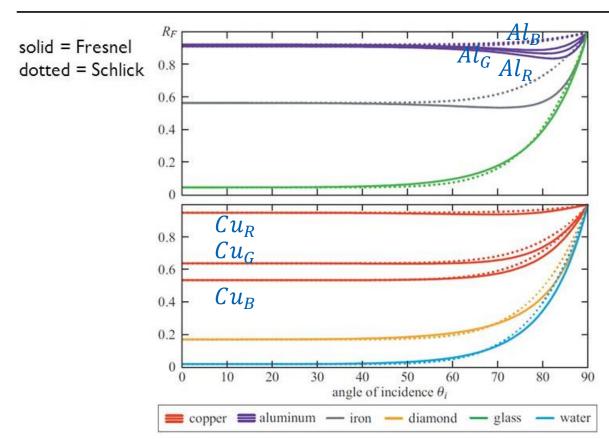
$$\sin^2 \theta_t = \eta_{io}^2 (1 - \cos^2 \theta_i) > 1$$

Total internal reflection – no refraction

Refraction - Example

Fresnel Equations

- Reflectivity / transmissivity varies with incident angle!
- And reflection / transmition different for polarized light


reflected
$$R(\theta_i) = \left| \frac{\eta_{io} cos\theta - \sqrt{1 - (\eta_{io} sin\theta)^2}}{\eta_{io} cos\theta + \sqrt{1 - (\eta_{io} sin\theta)^2}} \right|^2$$

transmitted
$$T(\theta_i) = 1 - R(\theta_i)$$

Schlick approximation [1994]

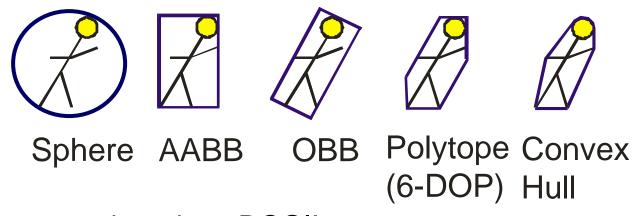
$$R(\theta_i) = R_0 + (1 - R_0)(1 - \cos \theta_i)^5 \qquad R_0 = \left(\frac{\eta_{io} - 1}{\eta_{io} + 1}\right)^{-1}$$

Examples

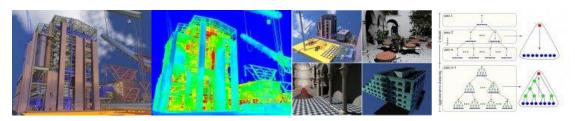
Source: Möller et al. RTR 3ed.

Outline

Whitted Ray Tracing
 MPG 15.9

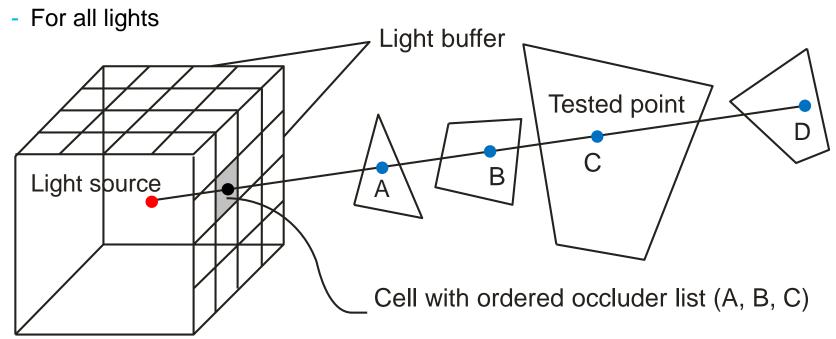

Ray Tracing Acceleration MPG 15.9.3

Acceleration Methods


- Ray tracing is costly must accelerate!
- Accelerating intersection computation
 - Faster ray X object intersection (fast routines with different primitives, simple bounding volumes)
 - Less ray X object intersections
 (BVH, spatial subdivison, light buffer, ray coherence)
- Less rays
 - Adaptive antialiasing, adaptive depth of recursion, ...
- Tracing more rays
 - Ray packets/ bundles

Accelerating Intersection Computation

Bounding Volume Hierarchy



Hot research topic at DCGI!

Accelerating Intersection Computation

- Light buffer [Haines & Greenberg 1986]
 - Faster shadow rays

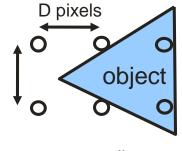
Acceleration Methods

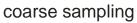
1. Accelerating intersection computation

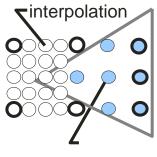
- a) Faster ray X object intersection (fast routines with different primitives, simple bounding volumes)
- b) Less ray X object intersections(BVH, spatial subdivison, light buffer, ray coherence)

2. Less rays

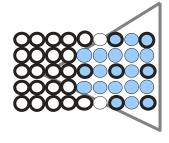
Adaptive antialiasing, adaptive depth of recursion, ...


3. Tracing more rays

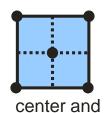

Ray packets/ bundles


Less rays

- Controlling recursion depth
 - Static using a constant (e.g. 5)
 - too deep for non reflecting surfaces
 - Adaptive using importance of contribution
 - Initial contribution 100%, reflection/refraction multiply with rs (<1)
- Adaptive sampling


Adaptive Sampling

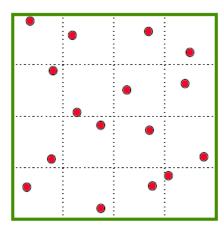
fine sampling

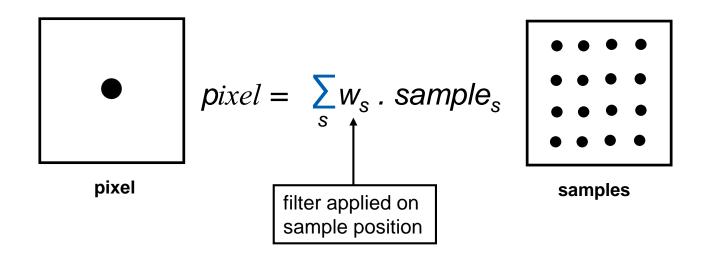

result

Supersampling

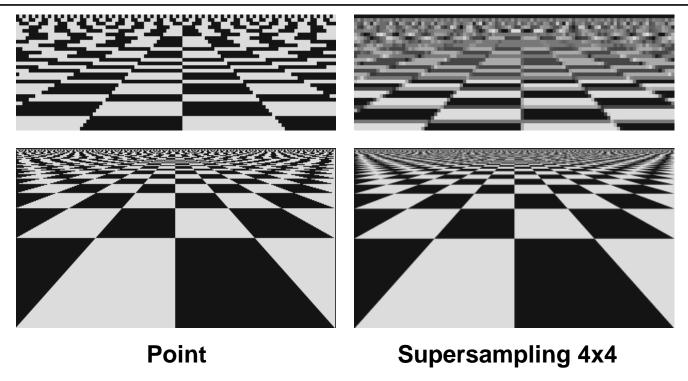
1 pixel:

subpixel centers

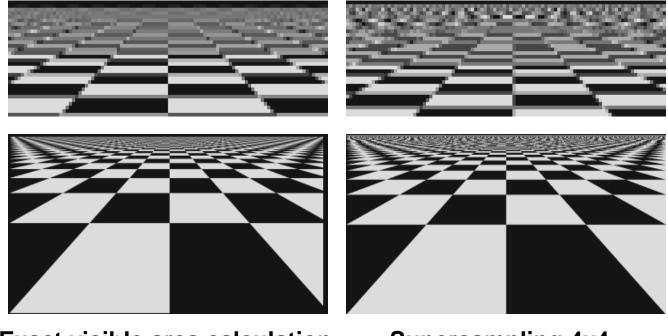

corners


jittering

Jittering

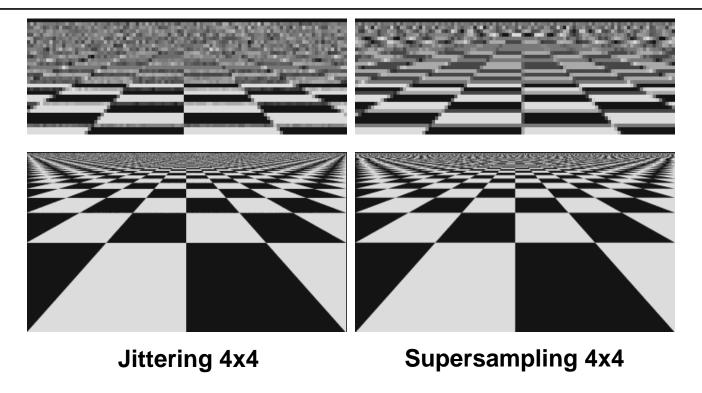

- Jittering = organized sampling in a grid
- Stratified sampling
- Avoids creating larger sample clusters
- Better distribution than random sampling
- Disadvantage up to four samples can get clustered
- Sample relaxation

Antialiasing using Supersampling



Point Sampling vs. Supersampling

Checkerboard sequence by Tom Duff


Exact Solution vs. Supersampling

Exact visible area calculation

Supersampling 4x4

Jittering vs. Regular Supersampling

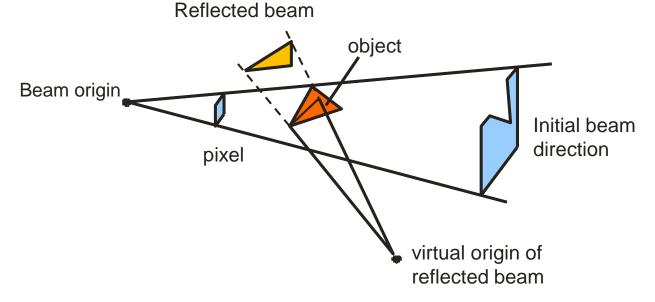
Interactive Path Tracing - Example

Acceleration Methods

1. Accelerating intersection computation

- a) Faster ray X object intersection (fast routines with different primitives, simple bounding volumes)
- b) Less ray X object intersections(BVH, spatial subdivison, light buffer, ray coherence)

2. Less rays


- Adaptive antialiasing, adaptive depth of recursion, ...

3. Tracing more rays together

Ray packets/ bundles

Tracing More Rays

Beam tracing – Heckbert & Hanrahan 1986

Packet / Bundle tracing (SSE)

Outline

Whitted Ray Tracing
MPG 15.9

Ray Tracing Acceleration MPG 15.9.3

Questions?