
Visibility Algorithms

Jiří Bittner

 Visibility in graphics MPG – chapter 11

 Depth Buffer

 Ray Casting

 Painter’s algorithm

 BSP Trees

 Warnock’s Algorithm

 Specialized Visibility Algorithms

(2)

Outline

(3)

Visibility – What is that?

[Tim Bow – flickr.com]

[Julian Barker – flickr.com][Premysl – panoramio.com]

 Points A,B visible ⇔ line segment AB does not intersect

opaque object

 Example: visibility from a view point

(4)

Visibility - Introduction

 Hidden surface removal

 Shadows

 Radiosity

 Ray Tracing

 Visibility culling

 Games / Multi-User Environments

 Streaming

(5)

Visibility in Computer Graphics

 Creating “correct” 2D image of 3D scene
- Finding visible objects and their visible parts

- Eliminating invisible objects and invisible parts

(6)

Hidden surface removal

ON

OFF

 Raster algorithms (image space)

- Solve visibility for pixels

- For each pixel

• Find nearest object projected to pixel

• Shade the pixel using object color

- Algorithms: z-buffer, ray casting, painters alg.

 Vector algorithms (object space)

- Vector based description of visibility

- For each object

• Find object parts not hidden by others

• Draw visible/invisible parts

- Algorithms: Naylor, Weiler-Atherton, Roberts

- CAD systems, technical drawings, special applications

(7)

Visibility algorithms

Complexity: O(P.N)

Complexity: O(N2)

P .. #pixels

N .. #objects

 Visibility in graphics MPG – chapter 11

 Depth Buffer

 Ray Casting

 Painter’s algorithm

 BSP Trees

 Warnock’s Algorithm

 Specialized Visibility Algorithms

(8)

Outline

 Ed Catmull – 1975
- Co-founder and president of Pixar

 Wolfgand Strasser - 1975

 For each pixel depth of the nearest object

 Process objects in arbitrary order
1. Rasterize to fragments

2. Compare depth of each fragment with z-bufer content

3. If closer overwrite z-buffer and pixel color

(9)

Depth buffer (Z-buffer)

 Two arrays: z_buffer, color_buffer

(10)

Depth buffer – pseudocode

Clear color_buffer;

Set z-buffer to “infinity”;

for (each object) {

for (each object pixel P[x,y]) {

if (z-buffer[x,y] > P[x,y].depth) {

z_buffer[x,y] = P[x,y]. depth;

color_buffer[x,y] = P[x,y].color;

}
}

}

 Computing pixel depth - interpolation

 Linear interpolation of z’’ ~ 1/z (z’’ - device coordinates)

 For perspective projection depth resolution is non-uniform

- Nearer objects have higher depth resolution

 z-fighting when rendering farther objects

(11)

Depth buffer - details

 glFrustum(left,right,bottom,top,near,far)

(12)

Perspective projection - OpenGL

𝑀 =

2𝑛𝑒𝑎𝑟

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0

𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0

0
2𝑛𝑒𝑎𝑟

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚
0

0 0
𝑛𝑒𝑎𝑟 + 𝑓𝑎𝑟

𝑛𝑒𝑎𝑟 − 𝑓𝑎𝑟

2 𝑓𝑎𝑟 𝑛𝑒𝑎𝑟

𝑛𝑒𝑎𝑟 − 𝑓𝑎𝑟
0 0 −1 0

near

far

left right

bottom

top

𝑥

𝑦

𝑧

𝑥

𝑦

𝑧

[−1, −1, −1]

[1,1,1]

view/camera/eye coordinates clip coordinates / NDC

(13)

Perspective projection

𝑀 =

2𝑛𝑒𝑎𝑟

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0

𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡
0

0
2𝑛𝑒𝑎𝑟

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 + 𝑏𝑜𝑡𝑡𝑜𝑚

𝑡𝑜𝑝 − 𝑏𝑜𝑡𝑡𝑜𝑚
0

0 0
𝑛𝑒𝑎𝑟 + 𝑓𝑎𝑟

𝑛𝑒𝑎𝑟 − 𝑓𝑎𝑟

2 𝑓𝑎𝑟 𝑛𝑒𝑎𝑟

𝑛𝑒𝑎𝑟 − 𝑓𝑎𝑟
0 0 −1 0

𝑥′ =
2 near

left − right

x

z
−

𝑟𝑖𝑔ℎ𝑡 + 𝑙𝑒𝑓𝑡

𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒𝑓𝑡

𝑧′ =
𝑛𝑒𝑎𝑟 + 𝑓𝑎𝑟

𝑓𝑎𝑟 − 𝑛𝑒𝑎𝑟
+

2 𝑓𝑎𝑟 𝑛𝑒𝑎𝑟

𝑓𝑎𝑟 − 𝑛𝑒𝑎𝑟

1

𝑧

 Careful setting of near-far planes

- near = 1 / far = 10 : 50% between 1.0 a 1.8

- near = 0.01 / far = 10 : 90% between 0.01 – 0.1

- Median = 2*near*far/(near + far)

(14)

Depth distributions in z-buffer

 Careful settings of near(!) and far planes

 Rendering close and far objects

- Several passes, updating near/far

- combine using stencil

 W-buffer
- stores eye space z, linear depth distribution

- reciprocal of zi’ for each pixel

(15)

Resolving Z-fighting

 LERP in screen space
- non linear in object

space (hyperbola) !

 Solution for color
- Compute c’=c/z and z’ = 1/z

- LERP of c’ and z’

- For each pixel ci = ci’/zi’

 The same for texture coordinates u, v (!)

(16)

Perspectively correct interpolation

 Benefits
- Simplicity

- No preprocessing or sorting

- Easy parallelization and HW implementation

 Issues
- Pixel overdraw

- Mapping depth to z-buffer bit range

- Transparent objects

- Alias

17

Depth buffer - properties

(17)

 10 polygons project to pixel in random order

 What is the average number of overdraws?

(18)

Quiz – number of overdraws

Source: Eric Haines - Subtle Tools

a) 3

b) 5.5

c) 7

 Front-to-back 1x, back-to-front 10x

 So the average is 5.5 overdraws

(19)

Intuitive answer

 The first polygon must cause overdraw: 1

 The second is either back or front

- Chance of overdraw: ½

 Third polygon

- 1/3 chance that it is the closest and causes overdraw

 Harmonic series: 1 + 1/2 + 1/3 + … + 1/10 = 2.9289

(20)

Correct answer

1 poly 1x

4 polys 2.08x

11 polys 3.02x

31 polys 4.03x

83 polys 5.00x

12,367 polys 10.00x

Aproximation for big N

overdraw(N) = ln(N) + 0.57721

(21)

Depth buffer in image pipeline

Transformation Clipping Projection

Rasterization + Visibility Shading

 glutInitDisplayMode (… | GLUT_DEPTH | …);

 glEnable(GL_DEPTH_TEST);

 glDepthFunc(GL_LESS);

 glClear(GL_DEPTH_BUFFER_BIT);

 glDepthMask(mask);
- GL_TRUE read/write

- GL_FALSE read only

(22)

Depth buffer in OpenGL

 Draw all non-transparent objects using z-buffer

 Sort all transparent objects back-to-front

 Render transparent objects with alfa-blending
- OpenGL:

• glDepthMask(GL_FALSE);

• glBlendFunc(gl.ONE, gl.ONE_MINUS_SRC_ALPHA);

• glEnable(GL_BLEND);

(23)

Depth buffer and transparent objects

 C=(r, g, b, 𝛼)

 𝛼 opacity
- 𝛼 = 0 transparent

- 𝛼 = 1 opaque

(24)

Alpha blending – Over operator

𝐶 = 𝛼𝑎𝐶𝑎 + 𝛼𝑏𝐶𝑏 1 − 𝛼𝑎

𝛼 = 𝛼𝑎 + 𝛼𝑏 1 − 𝛼𝑎

𝑐 = 𝑐𝑎 + 𝑐𝑏 1 − 𝛼𝑎

𝑐𝑎 = 𝛼𝑎𝐶𝑎

𝑐𝑏 = 𝛼𝑏𝐶𝑏

a over b

a
b

“pre-multiplied alpha”

 Should we draw back to front or front to back? And should we

care?

 How to increase depth resolution?

 When to perform the depth test?

 How to handle transparent objects?

(25)

Depth buffer – Questions

 Visibility in graphics MPG – chapter 11

 Depth Buffer

 Ray Casting

 Painter’s algorithm

 BSP Trees

 Warnock’s Algorithm

 Specialized Visibility Algorithms

(26)

Outline

 Cast ray for each image pixel [Appel68]

 Find the nearest intersection with scene object

 Complexity
- Naive: 𝑂(𝑅. 𝑁)

- With spatial data structure: 𝑂(𝑅. log 𝑁)

(27)

Ray casting

 Step 1: construct spatial DS
- Preprocessing

- BVH, kD-tree, octree, 3D grid

 Step 2: find the nearest

intersection
- Walk through cells intersected

by the ray

- Intersection found: terminate

(28)

Accelerated ray casting

 Implicit camera parameters
- MVP matrix inversion

 Explicit knowledge of camera parameters
- position (o), view direction (v), up vector (u), view angle (θ)

(29)

Ray Casting – Generating (Primary) Rays

1. Compute view coordinate system: a, s, t
2. Ray through pixel x, y (image size width x height):
ray_origin = o;
ray_dir = Normalize(a + x/width*s + y/height*t – o);

o

u

v
θ

t

s
a

 Benefits
- Flexibility (adaptive raster, ray tracing)

- Efficient culling of occluded objects

 Drawbacks
- Lower use of coherence

- Requires spatial DS

• Issue for dynamic scenes and HW implementation

(30)

Ray casting - properties

Scan-line

coherence

Requires

preprocessing

Efficient handling of

occluded objects

Z-buffer yes + no + no -

Ray casting no - yes - yes +

(31)

Z-buffer vs. Ray Casting

Z-buffer better for dynamic scenes with low occlusion

Ray casting better for complex highly occluded scenes

 Z-cull
- zmin,zmax for 8x8 pixel blocks

- If trizmin > tilezmax discard

 Early-z test (for each pixel)
- Apply z-test before shader execution

- On newer GPUs used by default

- Switched off when modifying “z” in shader

 HW occlusion queries, conditional rendering

(32)

Z-buffer GPU optimizations

 Visibility in graphics MPG – chapter 11

 Depth Buffer

 Ray Casting

 Painter’s algorithm

 BSP Trees

 Warnock’s Algorithm

 Specialized Visibility Algorithms

(33)

Outline

 Rendering back to front

 Farther patches overwritten by closer ones

 Used in 2D drawing tools (layers)

 In 3D without explicit ordering more complicated

 Depth sort algorithm [Newell72]

(34)

Painter’s algorithm

 Sort patches using zmax of each patch

 Farthest patch = candidate for rendering (P1)

 Series of tests to confirm the candidate using remaining patches

(35)

Depth Sort Painter’s algorithm

36

Depth Sort Painter’s algorithm – cont.

1. depth

overlap

z

projection plane xy

P2

P1
z1max

z1min

z2max

z2min

2. xy-projection

overlap

z

projection plane xy

P2 P1

3. P2 before P1
z

projection plane xy

P2

P1

4. P1 behind P2

z

projection plane xy

P2

P1

no overlap – render P1 no overlap –

next patch

YES – next patch YES – next patch

Tests failed: swap (P2 = new candidate)

 Can be detected using counter for candidate

 Solved by cutting the patch

(37)

Cycle of candidates

 Benefits
- No depth buffer needed

- Simplified version: easy implementation

 Issues
- Overdraw

- Correct depth order

- Self intersections of patches not allowed

(38)

Painter’s algorithm - properties

 Visibility in graphics MPG – chapter 11

 Depth Buffer

 Ray Casting

 Painter’s algorithm

 BSP Trees

 Warnock’s Algorithm

 Specialized Visibility Algorithms

(39)

Outline

 View independent sorting of the scene [Fuchs80]

 Two phases
- BSP tree construction (1x)

- Tree traversal and rendering (as painter’s alg.)

(40)

Binary Space Partitioning (BSP)

 Recursive splitting by planes

 Planes typically defined using scene polygons

(41)

BSP Tree Construction

void RenderBSP (Node S)

if (camera in front of S.plane) {

RenderBSP (S.back);

Render(S.polygons);

RenderBSP (S.front);
}

else {

RenderBSP (S.front);

Render(S.polygons);

RenderBSP (S.back);
}

}

(42)

Rendering with BSP tree

 Reduce number of overdraws

 Traverse front-to-back (reverse order compared to painter’s alg.)

 Alternatives to BSP tree
- kD tree, octree, BVH

(43)

BSP tree and Z-buffer

 Visibility in graphics MPG – chapter 11

 Depth Buffer

 Ray Casting

 Painter’s algorithm

 BSP Trees

 Warnock’s Algorithm

 Specialized Visibility Algorithms

(44)

Outline

 Recursive fast rectangle clipping tests

 Recursion terminates in pixel /subpixel

(45)

Image Subdivision – Warnock’s alg.

Divide and Conquer [Warnock69]

1. No object: background color

2. One object: render

3. More objects, one closest:

render closest

4. Rozděl rekurzivně

1

2
3

4

 Sort primitives by scan lines (Y)

 Compute spans: intersections of primitives and scan lines

 Elementary spans: intersection of spans

 Sort elementary spans (X)

 Find the closest object for each elementary span (Z)

 [Watkins70]
- Bubble sort for X and Y

- O(log n) search for Z

(46)

Scan-line Algorithms

 Visibility in graphics MPG – chapter 11

 Depth Buffer

 Ray Casting

 Painter’s algorithm

 BSP Trees

 Warnock’s Algorithm

 Specialized Visibility Algorithms

(47)

Outline

 Eliminates ~ 50% polygons

 If d*n > 0 : cull

 In NDC: just check for sign of 𝑛𝑧
′

- Computed from transformed vertices (not shading normal)

 OpenGL:
glFrontFace(GL_CCW);

glCullFace(GL_FRONT);

glEnable(GL_CULL_FACE);

(48)

Back-face Culling

d

n
camera

 Specialized ray casting

 Intervals of ray/object intersections

 Solving set operations = set operations on intervals

(49)

Direct rendering of CSG models

A B

–C: C

A
B

viewport

A:

B:

C = A-B

 Graphs of functions z = (x,y)

 Terrains (height field)

 Algorithm outline
- Render front-to-back

- Keep bottom and top horizon

(50)

Floating horizon algorithm

top horizon

bottom horizon

New drawing

cut r2

cut r3

cut r1

 Antialiasing, correct transparency

- [Carpenter84], Lucasfilm: “The Road To Point Reyes”

- Later used in RenderMan (Pixar)

 Ordered list of primitives for each pixel

 Storing not just depth

- transparency, coverage, object ID, normal,…

 Polygon rasterization

- Non-transparent polygon covers the whole pixel – add to list and remove farther ones

- Transparent polygon or partial pixel coverage – insert to list, do not remove farther ones

(51)

A-Buffer

 Rendering pass
- For each pixel process the list

- Composition (subpixel rasterization, coverage mask 4x4)

- Similar to MSAA

 Benefits
- More general than z-buffer

- Used in production rendering

- Handles transparency

(52)

A-Buffer

+

(53)

Other buffers…

A-buffer - Carpenter, 1984

G-buffer - Saito & Takahashi, 1991

M-buffer - Schneider & Rossignac, 1995

P-buffer - Yuan & Sun, 1997

T-buffer - Hsiung, Thibadeau & Wu, 1990

W-buffer - 3dfx, 1996?

Z-buffer - Catmull, 1973 (?)

ZZ-buffer - Salesin & Stolfi, 1989

Accumulation Buffer - Haeberli & Akeley, 1990

Area Sampling Buffer - Sung, 1992

Back Buffer - Baum, Cohen, Wallace & Greenberg,

1986

Close Objects Buffer - Telea & van Overveld, 1997

Color Buffer

Compositing Buffer - Lau & Wiseman, 1994

Cross Scan Buffer - Tanaka & Takahashi, 1994

Delta Z Buffer - Yamamoto, 1991

Depth Buffer - 1984

Depth-Interval Buffer - Rossignac & Wu, 1989

Double Buffer - 1993

Escape Buffer - Hepting & Hart, 1995

Frame Buffer - Kajiya, Sutherland & Cheadle, 1975

Hierarchical Z-Buffer - Greene, 1993

Item Buffer - Weghorst, Hooper & Greenberg, 1984

Light Buffer - Haines & Greenberg, 1986

Mesh Buffer - Deering, 1995

Normal Buffer - Curington, 1985

Picture Buffer - Ollis & Borgwardt, 1988

Pixel Buffer - Peachey, 1987

Ray Distribution Buffer - Shinya, 1994

Ray-Z-Buffer - Lamparter, Muller & Winckler,

1990

Refreshing Buffer - Basil, 1977

Sample Buffer - Ke & Change, 1993

Shadow Buffer - GIMP, 1999

Sheet Buffer - Mueller & Crawfis, 1998

Stencil Buffer - 1997?

Super Buffer - Gharachorloo & Pottle, 1985

Super-Plane Buffer - Zhou & Peng, 1992

Triple Buffer

Video Buffer - Scherson & Punte, 1987

Volume Buffer - Sramek & Kaufman, 1999

Source: Eric Haines - Is the Hardware Z-Buffer Doomed?

 Visibility in graphics MPG – chapter 11

 Depth Buffer

 Ray Casting

 Painter’s algorithm

 BSP Trees

 Warnock’s Algorithm

 Specialized Visibility Algorithms

(54)

Outline

Questions?

