
Vis ib i l i ty -Based Pursui t -Evas ion in a Po lygonal E n v i r o n m e n t

Leonidas J. Guibas, Jean-Claude Latombe, Steven M. LaValle, David Lin and
Rajeev Motwani

Computer Science Department
Stanford University

Stanford, CA 94305 USA
{guibas,latombe,lavalle,dlin,rajeev} @cs.st anford.edu

Abstract . This paper addresses the problem of planning the motion of
one or more pursuers in a polygonal environment to eventually "see" an
evader that is unpredictable, has unknown initial position, and is capable
of moving arbitrarily fast. This problem was first introduced by Suzuki and
Yamashita. Our study of this problem is motivated in part by robotics
applications, such as surveillance with a mobile robot equipped with a
camera that must find a moving target in a cluttered workspace.
A few bounds are introduced, and a complete algorithm is presented for
computing a successful motion strategy for a single pursuer. For simply-
connected free spacea~ it is shown that the minimum number of pur-
suers required is O(lg n). For multiply-connected free spaces, the bound
is 69(v~ + lg n) pursuers for a polygon that has n edges and h holes. A
set of problems that are solvable by a single pursuer and require a linear
number of recontaminations is shown. The complete algorithm searches a
finite cell complex that is constructed on the basis of critical information
changes. It has been implemented and computed examples are shown.

1 I n t r o d u c t i o n

The general problem addressed in this paper is an extension or combination of
problems that have been considered in several contexts. Interesting results have
been obtained for pursuit-evasion in a graph, in which the pursuers and evader
can move from vertex to vertex until eventually a pursuer and evader lie in the
same vertex [16, 19]. The search number of a graph refers to the minimum num-
ber of pursers needed to solve a pursuit-evasion problem, and has been closely
related to other graph properties such as cutwidth [15, 17]. Pursuit-evasion sce-
narios in continuous spaces have arisen in a variety of applications such as air
traffic control [1], military strategy [10], and trajectory tracking [9]. Although
interesting decision problems arise through the differential motion models, ge-
ometric free-space constraints are usually not considered in classical pursuit-
evasion games. Once these constraints axe introduced, the problem inherits the
additional complications that arise in geometric motion planning.

A region of capture is often associated with a pursuit-evasion problem, and
the "capture" for our problem is defined as having the evader lie within a line-
of-sight view from a pursuer. A moving visibility polygon in a polygonal envi-
ronment adds geometric information that must be utilized, and also leads to

18

connections with the static art gallery problems [18, 21]. In the limiting case, art
gallery results serve as a loose upper bound on the number of pursuers by allow-
ing a covering of the free space by static guards, guaranteeing that any evader
will be immediately visible. Far fewer guards are needed when they are allowed
to move and search for an evader; however, the required motion strategies can
become quite complex. A closely related art gallery variant is the watchman tour
problem [4]. In this case a minimum-length closed path is computed such that
any point in the polygon is visible from some point along the path. In our case,
however, the pursuers have the additional burden of ensuring that an evader
cannot "sneak" to a portion of the environment that has already been explored.
The problem that we consider and other variations have been considered previ-
ously in [5, 22]. It was stated in [21] that it remained an interesting challenge to
determine if a polygon is searchable by a single pursuer.

Several applications can be envisioned for problems and motion strategies of
this type. For example, suppose a building security system involves a few mobile
robots with cameras or range sensors that can detect an intruder. A patrolling
route can be automatically computed that guarantees that any mobile intruder
will eventually be found. To optimize expenses, it would also be important to
know the minimum number of robots that would be needed. Applications are
not necessarily limited to adversarial targets. For example, the task might be
to automatically locate another mobile robot, items in a warehouse or factory
that might get moved during the search process, or possibly even people in a
search/rescue effort. Such strategies could be used by automated systems or by
human searchers.

2 P r o b l e m D e f i n i t i o n

The pursuers and evader are modeled as points that translate in a polygonal
free space, F . Let e(t) C F denote the position of the evader at time t >_ 0. It is
assumed that e : [0, oo) --~ F is a continuous function, and the evader is capable
of moving arbitrarily fast. The initial position e(0) and the path e are assumed
unknown to pursuers. Any region in F that might contain the evader will be
referred to as contaminated, otherwise it will be referred to as cleared. If a region
is contaminated, becomes cleared, and then becomes contaminated again, it will
be referred to as recontaminated.

Let 7 i (t) denote the position of the i th pursuer at time t _> 0. Let 7 i represent
a continuous path of the i th pursuer of the form 7 i : [0, c~) -+ F. Let 7 denote
a (motion) strategy, which refers to the specification of a continuous path for
every pursuer: 3' = { @ , . . . , 7N}.

For any point, q C F, let V(q) denote tile set of all points in F that are visible
from q (i.e., the linear segnaent joining q and any point in V(q) lies in F) . A
strategy, % is a solution strategy if for every continuous function e : [0, oo) -+ F
there exists a t ime t E [0, co) and an i E { 1 , . . . , N} such that e(t) 6 V(7i(t)) .
This implies that the evader will eventually be seen by one or more pursuers,

19

regardless of its path. Let H(F) represent the minimum number of pursuers for
which there exists a solution strategy for F.

Section 3 presents some bounds on H(F) for classes of free spaces, and also
shows that some polygons for which H(F) = 1 only admit solutions that require a
linear number of recontaminations. Section 4 addresses the problem of computing
a solution strategy, % for a given F.

3 W o r s t - C a s e B o u n d s

Several new bounds are presented in this section. For a simply-connected free
space, F, with n edges, it is shown that H(F) = O(lg n). For a free space, F,
with h holes, it is shown that H(F) = f2(x/~+lg n) and H(F) = O(h+ lg n). For
the class of problems in which H(F) = 1, it is shown that the same region can
require recontamination as many as f2(n) times. This result is surprising because
pursuit-evasion in a graph is known not to require any recontaminatious [11].

Consider the problem of determining the minimum number of pursuers,
H(F), required to find an evader in a given free space F. This number will
generally depend on both the topological and geometric complexity of F. In [22]
a class of simple polygons is identified for which a single pursuer suffices (re-
ferred to as "hedgehogs"). For any F that has at least one hole, it is clear that
at least two pursuers will be necessary; if a single pursuer is used, the evader
could always move so that the hole is between the evader and pursuer. In some
cases subtle changes in the geometry significantly affect H(F).

Consider H(F) for the class of simply-connected free spaces. Let n represent
the number of edges in the free space, which is represented by a simple polygon
in this case. A logarithmic worst-case bound can be established:

T h e o r e m 1. For any simply-connected free space F at worst H(F) = O(lg n).

Proof." The proof is built on the following observation. Suppose that two vertices
of F are connected by a linear segment, thus partitioning F into two simply-
connected, polygonal components, /'1 and F~. If H(F1) < k and H(F2) <_ k
for some k, then H(F) < k + 1 because the same k pursuers can be used to
clear both F1 and F2. This requires placing a static (k + 1) th pursuer at the
edge common to F1 and F2 to keep F1 cleared after the k pursuers move to F2
(assuming arbitrarily that F1 is cleared first).

In general, if two simply-connected polygonal regions share a common edge
and can each be cleared by at most k pursuers, then the combined region can
be cleared at most k + 1 pursuers. Recall that for any simple polygon, a pair of
vertices can always be connected so that polygon is partitioned into two regions,
each with at least one third of the edges of the original polygon [3]. This implies
that F can be recursively partitioned until a triangulation is constructed, and
each triangular region only requires O(lg n) recombinations before F is obtained
(i.e., the recursion depth is logarithmic in n). Based on the previous observation
and the fact that each triangular region can be trivially searched by a single
pursuer, H (F) = O(lgn). []

20

The remaining question for simply-connected free spaces is whether there
actuMly exist problems that require a logarithmic number of pursuers. Some
results from graph searching will first be described and utilized to construct
difficult worst-case problem instances. Let Parsons' problem refer to the graph-
searching problem presented in [16, 19]. The task is to specify the number of
pursuers required to find an evader that can execute continuous motions along
the edges of a graph. Instead of using visibility, capture is achieved when one of
the pursuers "touches" the evader. Let G represent a graph, and S(G) represent
the number of needed pursuers, referred to as the search number of G.

The following lemma implies that a geometric realization of any planar graph
instance can be constructed:

L e m m a 2. For every planar graph, G, there exists a polygonal free space F such
that Parsons'problem on G is equivalent to the visibility-based pursuit evasion
problem on F.

Proof'. Consider a planar representation of G in which linear segments corre-
spond to the edges. Each linear segment can be replaced by a corridor of sufficient
length ms shown in Figure 1, with e > 0 chosen such that no pair or corridors
intersect. Portions of the corridor edges can be removed at corridor junctions to
prevent overlap.

I !

i I

Fig. 1. Second-order visibility between the two entrances is not maintained.

It remains to establish that searching the environment constructed by the
network of bent corridors is equivalent to searching a planar graph. If a solution
strategy for Parsons' problem is specified as an ordered set of traversed edges
for each pursuer, then traversing the corresponding corridors will clearly solve
the geometric problem. Consider a given solution for the geometric problem. If
the pursuers move from junction to junction without reversing within a corridor,
then traversing the equivalent edges also solves the planar graph problem. For
the geometric problem, a static pursuer can be placed in a corridor (as in position
a in Figure 1), allowing two other pursuers to clear the corridor from each end
without leaving the junctions unguarded. In this case and in similar cases, the
pursuer that is fixed in the geometric problem can clear the corresponding edge
by traveling between its endpoints in G; thus, the graph problem can still be
solved using the same number of pursuers. [3

This theorem, from [19], is useful for proving Theorem 4:

2]

L e m m a 3. (Parsons) Let G be a tree. Then S(G) = N + 1 if and only if there
exists a vertex in G whose removal separates G into three components, G1, G2,
and G3, such that S(Gi) > N for i E {1, 2, 3}.

T h e o r e m 4 . There exist simply-connected free spaces F with n edges such that
H(F)-= f2(lg n).

Proof: Using Lemma 3, a tree, G, can be constructed recursively that has a
constant branching factor of three, height N - 1, and requires N pursuers (an
example is given in [19]). By Lemma 2, an equivalent geometric instance can be
constructed for any N. []

Figure 2.a shows an example, which relies on Lemma 3. Theorem 1 and
Theorem 4 together imply a tight logarithmic bound, H(F) = O(lg n).

Next consider the class of problems for which F has h holes.

a . b.

Fig. 2. a) An instance from a sequence of simply-connected free spaces that
require $2(lg n) pursuers, b) An instance from a sequence of problems that re-
quires a number of pursuers that is at least proportional to the square root of
the number of holes.

T h e o r e m 5. For any free space F with h holes at worst H(F) = O(v/-h + lg n).

Proof: Divide the pursuers into two groups: O(v/-h) pursuers will be used to
reduce the polygon to simply-connected components, and O(Ig n) pursuers will
be used to clear each component. Construct an arbitrary triangulation of F.
Let a trichromatic triangle be defined as a triangle that touches three distinct
connected components of the boundary of F. Using at most O(h) trichromatic
triangles, F can be partitioned into simply-connected components whose bound-
aries are comprised of the boundary of F and edges of trichromatic triangles.
To establish this, form a planar graph by placing a vertex in each hole of F
and one vertex outside of F. For every trichromatic triangle edge joining two

22

boundaries, form an edge for this graph by joining the vertices corresponding
to these boundaries by a path along the trichromatic edge, in the obvious way.
From the planarity of this graph we can easily argue that the overall number of
trichromatic edges, and therefore of trichromatic triangles, is O(h).

Consider the dual graph of the triangulation, which has O(n) edges and ver-
tices. Take the subgraph induced by taking only the vertices that correspond
to trichromatic triangles in the original triangulation. The planar graph separa-
tor theorem [14] implies that at most, O(x/'h) edges can be chosen to partition
the graph into two portions with at least one third of the edges on each side
of the partition. Each edge in the induced subgraph corresponds to a simply-
connected region of F that can be cleared with O(lg n) pursuers by Theorem 1.
In fact, the same set of pursuers can be used for each simply connected com-
ponent. The O(x/~) pursuers then form a barrier that maintains the cleared
areas obtained by other pursuers on either side, much in the same way as the
partitioning edges in the proof of Theorem 1. The planar graph separator the-
orem can be applied recursively to the remaining portions of F on either side
of a barrier, and the free space can be cleared using the same progression as
for Theorem 1. At the i th level of recursion, at most ~ as many pursuers will
be needed to form a barrier in comparison to the (i - 1) th level of recursion.
The free space is reduced to simply-connected components that can be cleared
using O(lg n) pursuers. The total number of pursuers needed to form barriers is

O (v ~ + ~ h + ~ + - . -) = O(v/-h). Thus, F can be cleared using at most

O (v ~ + lgn) pursuers. []
Figure 2.b shows an illustrative example of the following theorem:

T h e o r e m 6 . There exist free spaces F with h holes such that H(F) = ~(v/-fi q -
lg n).

Proof i For any positive integer k, a planar graph of cutwidth k can be con-
structed using O(k 2) vertices and edges. Recall that the cutwidth, CW(G), is
the minimum cutwidth taken over all possible linear layouts of G. A linear lay-
out of G is a one-to-one function mapping the vertices of G t() integers, and
the cutwidth for a particular layout is the maximum over all i of the number
of edges connecting vertices assigned to integers less than i to vertices assigned
to integers as large as i. Define a sequence of planar graphs, G1, G2,.. . . Let
the vertices of Gk correspond to the set of all points with integer coordinates,
(i,j), such that 0 _< i , j < k. Let the edges of Gk connect any two vertices for
which one coordinate differs by one unit (i.e., a standard four-neighborhood).
The cutwidth of Gk is k.

It is established in [15] that for all graphs G, the search number S(G) is
related to the cutwidth as S(G) <_ CW(G) < Ldeg(G)/2] .S(G), in which dey(G)
is the maximum vertex degree of G. Since deg(Gk) = 4, S(G~) < k < 2S(Gk).
Using Lemma 2, geometric instances of Gk can be constructed. Both Gk and
each geometric instance require ~2(k) pursuers. There is a quadratic number of
holes in each geometric instance; hence, H(F) = ~2(x/~). This corridor structure

23

can be combined with the structure from Theorem 4 to yield an example that
requires ~(x/~ + lg n) pursuers. [3

Theorem 6 and Theorem 5 together imply a tight bound, H(F) = 6)(x/~ +
lgn).

The final theorem of this section pertains to the class of free spaces that can
be searched by a single pursuer. A similar result is also obtained in [5]. It states
that there exist examples that require recontaminating some portion of the free
space a linear number of times. This result is surprising because for Parsons'
problem it was shown in [11] that no recontamination is necessary (a shorter
proof of this appears in [2]). In [22] a free space was given that requires two
recontaminations, which at least established that recontamination is generally
necessary for visibility-based pursuit evasion. Theorem 7 establishes that a linear
number of recontaminations can be needed, and it still remains open to deter-
mine whether the number of recontaminations can be bounded from above by a
polynomial, which would imply that the problem of deciding whether H(F) = 1
lies in N P .

T h e o r e m 7. There exists a sequence of simply-connected free spaces with H(F) =
1 such that $2(n) reeontaminations are required for n edges.

Proof : It will be shown that the example in Figure 3 requires k - 2 recontam-
inations by visiting the point a E F a total of k - 1 times to repeatedly clear
the "peak." Without loss of generality, consider the set of strategies that can
be specified by identifying the sequence of points, a, b l , . . . , bk, c l , . . . , ck, that
are visited. Assume that the shortest-distance path is taken between any pair of
points. Consider visiting bi for some 1 < i < k, followed by a visit to another
"leg", say bj (or cj). If any legs between bi and bj are contaminated, then bi will
get contaminated, which undoes previous work. If all legs are initially contam-
inated, then they must be visited in one of two orders: (bl, cl, b2, c2 , . . . , bk, ck)
or (bk, Ck, bk-1, ck-1, . . . , bl, ci). Because of symmetry, consider visiting the legs
from left to right without loss of generality. Assume that the peak is initially
contaminated. The points bl and cl can be visited to clear the leftmost set of
legs; however, these will get contaminated when b~ is visited. By traveling from
ci to a to b2, the leftmost set of legs remain cleared because the peak is cleared.
When e2 is visited, the leftmost three legs remain cleared; however, the peak
becomes recontaminated. Thus, a will have to be visited again before clearing
b3. By induction on i for 1 < i _< k, the peak will have to be cleared by visiting a
each time between visits to ci and bi+l. This implies that a will be visited k - 1
times, resulting in k - 2 recontaminations. [:1

4 C o m p u t i n g a S o l u t i o n S t r a t e g y

Section 4.1 defines a general information space (or space of knowledge states)
for this problem, and provides a general method for partitioning the information
space into equivalence classes, which can reduce the general problem to finite cell
searching. NP-hardness is also established in Section 4.1. Section 4.2 presents a

24

Recontarn~

b, Cf b2 C 2 bk Ck

Fig. 3. A linear number of recontaminations is required. Although this polygon
can be searched by a single pursuer, the peak must be visited k - 1 times.

complete algorithm for the case in which H(F) = 1 that computes a solution
strategy by decomposing F into convex cells based on edge visibility. This algo-
rithm is quite efficient in practice, and was used to compute the examples shown
in Section 5.

4.1 Genera l Concep t s

A complete algorithm must compute a solution strategy for a given number
of pursuers, if such a strategy exists. It is natural to compare the notion of
completeness for this problem to completeness for the basic motion planning
problem (i.e., the algorithm will find a collision-free path if such a path exists).
One important difference, however, is that the minimum number of pursuers is
crucial, but does not have a correspondence for the basic path planning problem.
A variety of simple, heuristic algorithms can be developed that might use more
pursuers than necessary.

The general problem is intractable if P ~ NP:

T h e o r e m 8. Computing H(F) is NP-hard.

Proof." It is shown in [17] that Parsons' problem for a planar graph with maxi-
mum vertex degree 3 is NP-complete (i.e., computing the search number, S(G)).
By Lemma 2, equivalent geometric instances can be constructed, which implies
that computing H(F) is NP-hard. []

This significantly reduces hopes that an efficient algorithm can be determined
for the general problem. A complete algorithm for H(F) = 1 is detailed in this
paper, and the general techniques apply to the case in which H(F) > 1. In
related work [13] we have developed a greedy algorithm that efficiently solves
many multiple-pursuer problems.

25

Because the position of the evader is unknown, one does not have direct access
to the state at a given time. This motivates the consideration of an information
space that identifies all unique situations that can occur during the execution
of a motion strategy. Let a state space, X , be spanned by the coordinates x =
(x l , . . . , x N, xe), in which x i for 1 < i < N represents the position of the i th
pursuer, and x e represents the position of the evader. Since the positions of the
pursuers are always known, let X p denote the subspace of X that is spanned by
the pursuer positions, x v = (x l , . . . , x2v).

It will be useful to analyze a strategy in terms of manipulating the set of
possible positions of the evader. Let S __ F represent the set of all contaminated
points in F. Let ~ = (x p,S) for which x p E X v and S C F represent an
information state. Let the information space, Z, represent the set of possible
information states. The information space is a standard representational tool for
problems that have imperfect state information, and has been useful for other
motion planning problems [6, 12].

For a fixed strategy, 7, a path in the information space will be obtained by
y(t) = (71 , . . . , 7 N, S(t!) in which S(t) can be determined from an initial S(0)
and the trajectories {7 ~ (t')It' e [0, t]} for each i E {1 , . . . , g } . Let ~(~, 7, to, t l)
represent the information state that will be obtained by starting from informa-
tion state y, and applying the strategy 7 from to to tl . The function ~ can be
thought of as a "black box" that produces the resulting information state when
a portion of a given strategy is executed.

We next describe a general mechanism for defining critical information changes.
This is inspired in part by a standard approach used in motion planning, which
is to preserve completeness by using a decomposition of the configuration space
that is constructed by analyzing critical events. For example, in [20] a cell de-
composition is determined by analyzing the contact manifolds in a composite
configuration space that is generated by the positions of several disks in the
plane.

The next definition describes an information invariance property, which al-
lows the information space, I , to be partitioned into equivalence classes. A
connected set D _ X p is conservative if V~/ E Z such that z p E D, and
V7 : [t0,tl] ~ D such that -y is continuous and 7(t0) = ~/(tl) = xp, then
the same information state, ~/= ~(~, 7, to, tl), is obtained. This implies that the
information state cannot be altered by moving along closed paths in D. Just as
in the case of motions in a conservative field, the following holds:

T h e o r e m 9. (Path invariance) If D is conservative then for any two continuous
trajectories, 71,72, mapping into D such that 71(t0) = 72 (to) and 71 (tl) = 72 (tl)
then ~(r/, "1'1, to, t l) = ~t(y, 72, to, t l) , for any ~1.

Proof." Select any third continuous trajectory, 73 : [to,t1] --+ D, such that
73(t0) = 71(tl) and 73(tl) = 71(t0) (i.e., heading in the opposite direction).
Form a new trajectory, 7132, by concatenating the trajectories 71, 3'3, and 72.
The resulting information state will be ~(y, 71, to, t l) because "~3 followed by 72
forms a closed-loop path, and thus yields the same information state by con-
servativity of D. Note that 71 followed by 73 is also a closed-loop path, which

26

implies that 72 must bring the information state from 7/to ~(7/, 3'1, to, tl). Hence,
m (, 7 , - n , t o , t l) = []

Thus, the information state from moving between x R E D and x p C D
is invariant with respect to the chosen path. This partitions the information
space into equivalence classes. Within is each class the particular chosen path is
insignificant, which leads to a finite graph search problem.

4.2 A Comple te A lgo r i t hm for a Single P u r s u e r

Since the general problem is NP-hard, it is worth focusing on the complete
algorithm for the case of a single pursuer. The basic idea is to partition the free
space into convex cells that maintain completeness, and perform a search on the
resulting quotient information space. This algorithm has been implemented and
tested on a variety of examples, two of which are shown in Section 5.

Suppose the pursuer is at a point q E F. Consider the circular sequence of
edges in the resulting visibility polygon. The edges generally alternate between
bordering an obstacle and bordering free space. Let each edge that borders free
space be referred to as a gap edge. Consider associating a binary label with
each gap edge. If the portion of the free space that borders the gap edge is
contaminated, then it is assigned a "1" label; otherwise, it is assigned a "0" label
indicating that it is clear. Let B(q) denote a binary sequence that corresponds
to labelings that were assigned from q C F. Note that the set of all contaminated
points is bounded by a polygon that must contain either edges of F or gap edges
from the visibility polygon of the pursuer. Thus, the specification of q and B(q)
uniquely characterizes the information state.

Consider representing the information state using q and B(q), and let a pur-
suer move in a continuous, closed-loop path that does not cause gap edges to
appear or disappear at any time. Each gap edge will continuously change dur-
ing the motion of the pursuer; however, the corresponding gap edge label will
not change. The information state cannot change unless gap edges appear or
disappear. For example, consider the problem shown in Figure 4 which shows
a single pursuer that is approaching the end of a corridor. If the closed-loop
motion on the left is executed, the end of the corridor remains contaminated.
This implies that although the information state changes during the motion, the
original information state is obtained upon returning. During the closed-loop
motion on the right, the gap edge disappears and reappears. In this case, the
resulting information state is different. The gap label is changed from "1" to

Hence, a cell decomposition that maintains the same corresponding gap edges
will only contain conservative cells. The idea is to partition the free space into
convex cells by identifying critical places at which edge visibility changes. A
decomposition of this type has been used for robot localization in [8, 23], and
generates O(n 3) cells in the worst case for a simple polygon (which is always
true if H(F) = 1). The free space can be sufficiently partitioned in our case by
extending rays in the three general cases. Obstacle edges are extended in either
direction, or both directions if possible. Pairs of vertices are extended outward

27

taminated

Without crossing
a critical boundary Crossing a critical boundary

Fig. 4. A critical event in the information space can only occur when edge visi-
bility changes.

only if both directions are free along the line drawn through the pair of points.
This precludes the case in which one direction cannot be extended; although edge
visibility actually changes for this case, it does not represent a critical change in
information.

The next issue is searching the information space for a solution, which cor-
responds to specifying a sequence of adjacent cells. The solution strategy must
take the form of a path that maps into F. This can be constructed by concate-
nating linear path segments, in which each segment connects the centroids of a
consecutive pair of cells in the sequence.

The cells and their natural adjacency relationships define a finite, planar
graph, Go, referred to as the cell graph. Vertices in Gc are generally visited
multiple times in a solution sequence because of the changing information states.
For each vertex in Go, a point, q E F, in the corresponding cell can be identified,
and the labels B(q) can be distinct at each visit. Initially, the pursuer will be in
some position at which all gap labels are "1". The goal is to find any sequence
of cells in Gc that leave the pursuer at some position at which all gap labels are
~¢0 ~ .

A directed information state graph, GI, can be derived from Go, for which
each vertex is visited at most once during the execution of a solution strategy.
For each vertex in Go, a set of vertices are included in GI for each possible
labeling of the gap edges. For example, suppose a vertex in Gc represents some
cell D, and there are 2 gap edges for B(q) and any q E D. Four vertices will be
included in G1 that all correspond to the pursuer at cell D; however, each vertex
represents a unique possibility for B(q): "00", "01", "10", or "11". Let a vertex
in Gx be identified by specifying the pair (q, B(q)).

To complete the construction of Gx, the set of edges must be defined. This
requires determining the appropriate gap labels as the pursuer changes cells.
Suppose the pursuer moves from qi E Di to qj E Dj. For the simple case shown
in the lower right of Figure 4, assume that the gap edge on the left initially has

28

a label of "0" and the gap edge on the right has a label of "1". Let the first bit
denote the leftmost gap edge label. The first transition is from "01" to "0", and
the second transition is from "0" to "00". The directed edges in G1 are (qi,"Ol")
leads to (qj,"O"), (qj,"O") leads to (qi,"O0").

In the case of multiple gap edges, correspondences must be determined to
correctly compute the gap labels. In general, if any n gap edges are merged, the
corresponding gap edges will receive a "1" label if any of the original gap edges
contain a "1" label. Once the gap edge correspondences have been determined,
the information state graph can be searched using Dijkstra's algorithm with
an edge cost that corresponds to the distance traveled in the free space by
the pursuer. Unfortunately, the precise complexity of the complete algorithm
cannot be determined. In the worst-case, examples can be constructed that yield
an exponential number of information states, but it is not clear whether these
information states necessarily have to be represented and searched to determine
a solution (it is not even known if optimal-length solutions to the single-pursuer
problem can be verified in polynomial time).

5 C o m p u t e d E x a m p l e s

The complete algorithm is implemented in C++ and executed on an SGI In-
digo2 workstation with a 200 Mhz MIPS R4400 processor. Most problems we
encountered were solved in a few seconds or less. The implementation uses the
quad-edge structure from [7] to maintain the topological ordering of the conser-
vative cells. The search strategy is Dijkstra's shortest path algorithm, in which
the distance is measured from the adjacent cell centroids. Figure 5 shows two
computed examples. We have also computed solutions for the example shown in
Figure 3, the hookpin example described in [22] that requires two recontamina-
tions, and several other problems.

6 C o n c l u s i o n s

We proved some new bounds and introduced a complete algorithm for the poly-
gon searching problem. A logarithmic bound on the number of needed pursuers
was shown for the case of simply-connected free spaces, and a square-root bound
was expressed in terms of the number of holes for multiply-connected free spaces.
It was also shown that there exist problems requiring a linear number of recon-
taminations. A few open problems remain, such as determining tight bounds
on the number of pursuers for general polygons, and determining whether a
polynomial-time algorithm exists to decide whether H(F) = 1. The complexity
of our complete algorithm also remains open. It also remains an interesting pur-
suit to attempt to characterize the set of simple polygons such that H(F) = 1;
interesting subsets have been characterized in [22], and our information space
concepts might be useful in this endeavor.

Information space concepts were used to provide a natural characterization
of the unique problem states. The visibility-based pursuit-evasion problem was

29

x

/3 F-~

Fig. 5. Two computed examples are shown, each with three snapshots of the
solution. The black area represents the contaminated region, and the white area
represents the cleared region. The thick curve shows a portion of computed
trajectory, which is continued in each frame. The shaded region indicates the
visibility region at the final t ime step of the indicated portion of the trajectory.
The thin lines in the cleared region indicate the cell boundaries.

established as NP-hard. The general concept of partitioning the information
space on the basis of critical information changes was introduced to develop a
complete algorithm. For the case in which H(F) = 1, the complete algorithm
was implemented and tested on several examples.

References

1. T. Ba~ar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic
Press, London, 1982.

2. D. Bienstock and P. Seymour. Monotonicity in graph searching. J. Algorithms,
12:239-245, 1991.

3. B. Chazelle. A theorem on polygon cutting with applications. In Proc. 23rd Annu.
[EEE Sympos. Found. Comput. ScL, pages 339-349, 1982.

4. W.-P. Chin and S. Ntafos. Optimum watchman routes. Information Processing
Letters, 28:39-44, 1988.

5. D. Crass, I. Suzuki, and M. Yamashita. Searching for a mobile intruder in a corri-
dor - the open edge variant of the polygon search problem. Int. J. Comput. Geom.

Appl., 5(4):397-412, 1995.
6. M. Erdmann. Randomization for robot tasks: Using dynamic programming in the

space of knowledge states. Algorithmica, 10:248-291, 1993.
7. L. Guibas and J. Stolfe. Primitives for the manipulation of general subdivisions

and the computation of Voronoi diagrams. AMC Trans. Graphics, 4(2):74-123,
1985.

30

8. L. J. Guibas, R. Motwani, and P. Raghavan. The robot localization problem. In
K. Goldberg, D. Halperin, J.-C. Latombe, and R. Wilson, editors, Proc. Ist Work-
shop on Algorithmic Foundations of Robotics, pages 269-282. A.K. Peters, Welles-
ley, MA, 1995.

9. O. Hdjek. Pursuit Games. Academic Press, New York, 1975.
10. R. Isaacs. Differential Games. Wiley, New York, NY, 1965.
11. A. S. Lapaugh. Recontamination does not help to search a graph. J. ACM,

40(2):224-245, April 1993.
12. S. M. LaValle. A Game-Theoretic Framework for Robot Motion Planning. PhD

thesis, University of Illinois, Urbana, IL, July 1995.
13. S. M. LaValle, D. Lin, L. J. Gnibas, J.-C. Latombe, and R. Motwani. Finding an

unpredictable target in a workspace with obstacles. In Prof. IEEE Int'l Conf. on
Robotics and Automation, 1997.

14. R. J. Lipton and R. E. Tarjan. A separator theorem for planar graphs. SIAM
Journal of Applied Mathematics, 36:177-189, 1979.

15. F. Makedon and I. H. Sudborough. Minimizing width in linear layouts. In Proc.
lOth ICALP, Lecture Notes in Computer Science 154, pages 478-490. Springer-
Verlag, 1983.

16. N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou.
The complexity of searching a graph. J. ACM, 35(1):18-44, January 1988.

17. B. Monien and I .H. Sudborough. Min cut is NP-complete for edge weighted
graphs. Theoretical Computer Science, 58:209-229, 1988.

18. J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press,
New York, NY, 1987.

19. T. D. Parsons. Pttrsuit-evasion in a graph. In Y. Alani and D. R. Lick, editors,
Theory and Applcation of Graphs, pages 426-441. Springer-Verlag, Berlin, 1976.

20. J. T. Schwartz and M. Sharir. On the piano movers' problem: III. Coordinating
the motion of several independent bodies. Int. J. Robot. Res., 2(3):97-140, 1983.

21. T. Shermer. Recent results in art galleries. Proc. IEEE, 80(9):1384-1399, Septem-
ber 1992.

22. I. Suzuki and M. Yamashita. Searching for a mobile intruder in a polygonal region.
SIAM J. Comput., 21(5):863-888, October 1992.

23. R. Talhiri and J. K. Aggarwal. Mobile robot self-location using model-image fea-
ture correspondence. IEEE Trans. Robot. ~4 Autom., 12(1):63-77, February 1996.

Acknowledgments

The research of Leonidas J. Gnibas is supported by NSF grant CCR-9623851 and
US Army MURI grant 5-23542-A. Rajeev Motwani's research is supported by an
Alfred P. Sloan Research Fellowship, an IBM Faculty Partnership Award, an ARO
MURI Grant DAAH04-96-1-007, and NSF Young Investigator Award CCR-9357849,
with matching funds from IBM, Mitsubishi, Schlumberger Foundation, Shell Foun-
dation, and Xerox Corporation. The remaining researchers are supported by ARO
MURI grant DAAH04-96-1-007 and ONR grant N00014-94-1-0721. The authors thank
Jian Bao, Julien Basch, Fr6d~ric Cazals, Bruce Donald, H~ctor Gouzdlez-Bafios, Gary
Kalmanovich, Jon Kleinberg, Suresh Venkatasubramanian, Li Zhang, and the anony-
mous reviewers, for their helpful suggestions.

